JPH069258A - Superhigh-fluidity concrete - Google Patents

Superhigh-fluidity concrete

Info

Publication number
JPH069258A
JPH069258A JP3123306A JP12330691A JPH069258A JP H069258 A JPH069258 A JP H069258A JP 3123306 A JP3123306 A JP 3123306A JP 12330691 A JP12330691 A JP 12330691A JP H069258 A JPH069258 A JP H069258A
Authority
JP
Japan
Prior art keywords
water
cement
concrete
admixture
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3123306A
Other languages
Japanese (ja)
Inventor
Yoshihide Shimoyama
善秀 下山
Toshitsugu Tanaka
敏嗣 田中
Hiroyasu Kubota
裕康 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP3123306A priority Critical patent/JPH069258A/en
Publication of JPH069258A publication Critical patent/JPH069258A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent separation of the materials, retardation of setting time and reduction of initial strength by using a water-treated cement holding a prescribed amount of water, water-reducing admixture and thickening admixture as the materials for the cement. CONSTITUTION:The objective superhigh fluidity concrete is comprised of a water-treated cement, a water-reducing admixture, for example, AE water- reducing admixture, a thickening admixture such as hydroxyethyl cellulose, polyacrylamide polymer. The water-treated cement is adjusted in its moisture content to 0.1 to 2-wt.%, by spraying the cement with water or steaming it, as it is stirred at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土木分野、建築分野な
どの現場や各種コンクリート二次製品の製造などに用い
られる締め固め不要の超高流動コンクリートに関するも
ので、各種グラウト材、注入材、セルフレベリング材、
プレパクトコンクリートのモルタルなどにも使用でき
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compaction-free ultra-high fluidity concrete used in the field of civil engineering, construction, etc. and in the production of various concrete secondary products. Self-leveling material,
It can also be used for prepact concrete mortar.

【0002】[0002]

【従来の技術】従来からコンクリートは、建設産業の基
幹資材として重要な役割を担ってきた。しかしながら、
昨今一部のコンクリートの品質低下の反省や近い将来に
予想される建設業界を始めとする関連業界の作業員不足
などの対策から、コンクリート作業の省力化に向けての
取組みが盛んに行なわれてきた。
2. Description of the Related Art Conventionally, concrete has played an important role as a basic material for the construction industry. However,
Recently, efforts have been made to reduce the labor of concrete work due to measures such as the reflection of some concrete quality deterioration and the shortage of workers in related industries such as the construction industry expected in the near future. It was

【0003】その結果、スランプフロー値(JIS A
1108「スランプ試験方法」に準じたスランプ試験
の実施後、コンクリート試料の広がりの最大径とそれに
直交する径との平均値)が500〜800mm程度の超
高流動性を示し、締め固め不要のコンクリート(以下、
超高流動コンクリートという)が開発され、徐々に実用
化されてきている。
As a result, the slump flow value (JIS A
After carrying out a slump test according to 1108 “Slump Test Method”, the concrete sample shows ultra-high fluidity with an average value of the maximum diameter of the spread of the concrete sample and the diameter orthogonal thereto, which is about 500 to 800 mm, and compaction-free concrete. (Less than,
Ultra-high fluidity concrete) has been developed and gradually put into practical use.

【0004】すなわち、流動性を高めるために、セメン
ト、高炉スラグ及びフライアッシュを適当な比率で組み
合わせた水硬性結合材、減水剤ならびに増粘性混和材料
をコンクリート用原材料とした超高流動コンクリートで
ある。
[0004] That is, it is a super-high-fluidity concrete which uses a cement, blast furnace slag, and fly ash in an appropriate ratio to set a hydraulic binder, a water-reducing agent, and a thickening admixture as a raw material for concrete. .

【0005】一方、コンクリートの流動性を向上させる
ために、セメントに0.1〜10重量%の水を予め保持
させて、セメント中のCAを部分水和させた水硬性結
合材を減水剤とともにコンクリート用原材料として用い
る方法(特開昭 62−162506)が既に開示され
ている。
On the other hand, in order to improve the fluidity of concrete, 0.1 to 10% by weight of water is preliminarily held in the cement to reduce the water content of the hydraulic binder obtained by partially hydrating C 3 A in the cement. A method of using as a raw material for concrete together with an agent (Japanese Patent Laid-Open No. 62-162506) has already been disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前者の
超高流動コンクリートは、流動性を高めるために、初期
の反応が比較的遅い高炉スラグ及びフライアッシュをセ
メントと組み合わせるので、凝結時間が大幅に遅れると
ともに初期強度の発現も小さい。 そのため、このコ
ンクリートを用いて打設したのち、シートで覆う程度の
一般的な現場養生の場合には、型枠の存置期間を長くす
る必要があり、またコンクリート二次製品の製造などで
実施されている蒸気養生の場合には、前置期間を長くと
らないと強度が十分に得られない。
However, in the former ultra-high fluidity concrete, the blast furnace slag and fly ash, which have a relatively slow initial reaction, are combined with cement in order to enhance the fluidity, so that the setting time is significantly delayed. At the same time, the expression of initial strength is small. For this reason, in the case of general on-site curing such as covering with a sheet after placing it using this concrete, it is necessary to extend the period of time for which the formwork is to be used. In the case of steam curing, sufficient strength cannot be obtained unless the pre-treatment period is long.

【0007】一方、後者の方法では、良好な超高流動コ
ンクリートを得ることはできない。すなわち、スランプ
フロー値を500〜800mm程度にまで流動性を高め
ると、コンクリートの材料分離が著しくなるからであ
る。
On the other hand, with the latter method, it is not possible to obtain good super-high fluidity concrete. That is, when the fluidity is increased to a slump flow value of about 500 to 800 mm, the material separation of concrete becomes remarkable.

【0008】[0008]

【課題を解決するための手段】本発明者らは、スランプ
フロー値が500〜800mm程度でも凝結時間の遅延
及び初期強度の低下が起こらず、かつコンクリートの材
料分離も生じない超高流動コンクリートを求めて研究し
た結果、本発明を完成するに至った。
The present inventors have developed an ultra-high fluidity concrete which does not cause delay in setting time and reduction in initial strength even when the slump flow value is about 500 to 800 mm, and does not cause material separation of concrete. As a result of seeking and researching, the present invention has been completed.

【0009】すなわち、本発明の要旨は、コンクリート
用原材料として、予め0.1〜2.0重量%の水を保持
させた加水処理セメント、減水剤及び増粘性混和材判を
用いてなる超高流動コンクリートにある。
[0009] That is, the gist of the present invention is that an ultra-high-quality cement prepared by using a hydrolyzed cement, which has previously held 0.1 to 2.0% by weight of water, a water reducing agent, and a thickening admixture as a raw material for concrete. Located in fluid concrete.

【0010】セメントの加水処理は、セメントを高速攪
拌しながら水を噴霧するか水蒸気を吹きつける方法で行
ない、セメント粒子の表面にできるだけ均一に加水す
る。
Water addition to the cement is carried out by spraying water or spraying water vapor on the cement while stirring the cement at a high speed so that the surface of the cement particles is watered as uniformly as possible.

【0011】その加水率は0.1〜2.0重量%、好ま
しくは0.5〜1.0重量%である。 0.1重量%
未満では加水処理の効果が小さくて、コンクリートの流
動性があまり改善されない。 また、2.0重量%
を超えると増粘性混和材料がままこ状となってセメント
ペースト中に取込まれるために、増粘性混和材料の材料
分離抑制が低下する。
The water content is 0.1 to 2.0% by weight, preferably 0.5 to 1.0% by weight. 0.1% by weight
If the amount is less than the above, the effect of water treatment is small, and the fluidity of concrete is not improved so much. Also, 2.0% by weight
If it exceeds, the thickening admixture material is trapped in the cement paste and the suppression of material separation of the thickening admixture material is reduced.

【0012】減水剤としては、コンクリート製造におい
て一般的に用いられている減水剤、AE減水剤、高性能
減水剤、高性能AE減水剤、流動化剤などである。
Examples of the water reducing agent include a water reducing agent, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent and a fluidizing agent which are generally used in concrete production.

【0013】増粘性混和材料としては、ヒドロキシエチ
ルセルローズ、ヒドロキシメチルセルローズ、ヒドロキ
シプロピルメチルセルローズなどのセルローズ系のも
の、ポリアクリルアミド重合体などのアクリル系のもの
など一般に増粘剤、水中不分離混和剤、保水剤、分離低
減剤などと呼ばれているものである。
Examples of the thickening admixture materials include cellulose-based materials such as hydroxyethyl cellulose, hydroxymethyl cellulose and hydroxypropylmethyl cellulose, and acrylic materials such as polyacrylamide polymer. Generally, thickeners and non-separable admixtures in water. , Water retention agents, separation reducing agents, etc.

【0014】減水剤及び増粘性混和材料の混和量は、加
水処理セメントの加水率、コンクリート用原材判の配合
割合によって異なるので、所望するコンクリートの流動
性及び材料分離抑制性状が得られる量を予め定めてお
く。
The admixture amount of the water reducing agent and the viscosity increasing admixture material differs depending on the water addition ratio of the water-treated cement and the mixing ratio of the raw material for concrete, so that the desired fluidity of the concrete and the material separation inhibiting property can be obtained. Set in advance.

【0015】超高流動コンクリートの混練方法は、通常
のコンクリートの混練方法でもよいが、少量の増粘性混
和材料をより分散させるためや、減水剤の効果を有効に
発揮させるために、加水処理セメント、増粘性混和材料
及び骨材を予め練り混ぜ、その後、減水剤と水を投入し
て練り混ぜる方法がよい。
The super-high-fluidity concrete may be kneaded by an ordinary concrete kneading method, but in order to further disperse a small amount of the thickening admixture material and to effectively exert the effect of the water-reducing agent, the water-treated cement is used. It is preferable to knead the thickening admixture and the aggregate in advance, and then add the water reducing agent and water and knead.

【0016】[0016]

【実施例】普通セメント(日本セメント社製)、普通セ
メントに各割合で水を保持させた加水処理セメント(試
製品)、3成分系セメント〈普通七メント30、高炉ス
ラグ50、フライアッシユ20の割合の試製品〉、減水
剤としてレオビルド NL−4000(日曹マスタービ
ルダーズ)、増粘性混和材料としてアサノHF(日本セ
メント社製)を用いて表 1に示す配合のコンクリート
をつくった。
[Example] Ordinary cement (manufactured by Nippon Cement Co., Ltd.), hydrolyzed cement (prototype) in which water is held in ordinary cement at various ratios, ratio of three-component cement <ordinary cement ment 30, blast furnace slag 50, and fly ash 20 Sample product>, Rheobuild NL-4000 (Nisso Master Builders) as the water reducing agent, and Asano HF (manufactured by Nippon Cement Co., Ltd.) as the thickening admixture material, to prepare concrete with the composition shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】これらのコンクリートについて、流動性試
験としてスランプとスランプフロー、料分離性状試験と
して中心部と周辺部の単位粗骨材量の差とブリージング
量、凝結試験及び強度試験を行なった。 これらの試
験方法は次の通である。
With respect to these concretes, slump and slump flow were conducted as a fluidity test, and a difference in unit coarse aggregate amount between the central portion and the peripheral portion and a breathing amount, a coagulation test and a strength test were conducted as a material separation property test. These test methods are as follows.

【0019】スランプ試験は、JIS A 1101ス
ランプ試験方法に準じる。
The slump test is based on the JIS A 1101 slump test method.

【0020】スランプフロー値は、スランプ試験後、そ
のコンクリートの広がりの最大径とそれに直交する径と
を測定し、その平均値を求める。
For the slump flow value, after the slump test, the maximum diameter of the spread of the concrete and the diameter orthogonal thereto are measured, and the average value is obtained.

【0021】中心部と周辺部の単位粗骨材量の差は、ス
ランプフロー試験後、直ちにフローコンクリートの中心
から半径 10cmを境にして、中心部と周辺部のコン
クリートをそれぞれ2l採取し、5mmふるい上で水洗
して粗骨材を採取し、その表面乾燥飽和状態の重量を計
量し、両者の差を求める。
After the slump flow test, immediately after the slump flow test, a radius of 10 cm from the center of the flow concrete was used as the boundary, and 2 l of each of the concrete in the center and the peripheral portion were sampled, and the difference was 5 mm. The coarse aggregate is collected by washing with water on a sieve, and the weight of the surface dry saturated state is weighed to obtain the difference between the two.

【0022】ブリージシグ試験は、JIS A 112
3ブリージング試験方法に準ずる。
The Breath sig test is based on JIS A 112.
3 Follow the breathing test method.

【0023】凝結試験は、ASTM C 403−65
Tプロクター貫入抵抗法に準ずる。
The setting test is based on ASTM C 403-65.
According to the T-Proctor penetration resistance method.

【0024】強度試験は、JIS A 1132に準じ
て直径10cm、高さ20cmの圧縮強度試験用供試体
を成形し、所定の材令まで20℃水中養生し、JIS
A1108に準じで行なう。
In the strength test, a specimen for a compression strength test having a diameter of 10 cm and a height of 20 cm is molded in accordance with JIS A 1132, and is aged at 20 ° C. in water to a predetermined material age.
Perform according to A1108.

【0025】これらの試験結果を表2に示す。The results of these tests are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明の超高流動コンクリートは、スラ
ンプフローが500〜800mm程度でも材料分離を起
こさず、凝結時間が延びることもなく、また初期強度も
高い。
The super-high-fluidity concrete of the present invention does not cause material separation even when the slump flow is about 500 to 800 mm, does not extend the setting time, and has high initial strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項 1】 コンクリート用原材料して、予め0.
1〜2.0重量%の水を保持させた加水処理セメント、
減水剤及び増粘性混和材料を用いてなる超高流動コンク
リート。
1. A raw material for concrete, which is preliminarily set to 0.
Hydrolyzed cement holding 1 to 2.0% by weight of water,
Super high fluidity concrete made with water reducing agent and thickening admixture.
JP3123306A 1991-03-07 1991-03-07 Superhigh-fluidity concrete Pending JPH069258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3123306A JPH069258A (en) 1991-03-07 1991-03-07 Superhigh-fluidity concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3123306A JPH069258A (en) 1991-03-07 1991-03-07 Superhigh-fluidity concrete

Publications (1)

Publication Number Publication Date
JPH069258A true JPH069258A (en) 1994-01-18

Family

ID=14857280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3123306A Pending JPH069258A (en) 1991-03-07 1991-03-07 Superhigh-fluidity concrete

Country Status (1)

Country Link
JP (1) JPH069258A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117700A (en) * 1998-09-09 2000-09-12 Matsushita Electronics Corporation Method for fabricating semiconductor device having group III nitride
JP2007106615A (en) * 2005-10-11 2007-04-26 Kao Corp Dispersant for self-leveling material
JP2009227557A (en) * 2008-03-25 2009-10-08 Sumitomo Osaka Cement Co Ltd Self-recovering hydration hardened material and low reaction active cement material
JP2015009999A (en) * 2013-06-27 2015-01-19 宇部興産株式会社 Cement composition and method for producing cement composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162506A (en) * 1985-11-08 1987-07-18 サンド・アクチエンゲゼルシヤフト Hydraulic binding material and manufacture of cement mixture
JPH01160852A (en) * 1987-12-18 1989-06-23 Tokyu Constr Co Ltd Extremely highly fluidized concrete
JPH02175637A (en) * 1988-12-27 1990-07-06 Nippon Cement Co Ltd Cement powder composition
JPH0345544A (en) * 1989-07-13 1991-02-27 Jdc Corp Concrete blend composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162506A (en) * 1985-11-08 1987-07-18 サンド・アクチエンゲゼルシヤフト Hydraulic binding material and manufacture of cement mixture
JPH01160852A (en) * 1987-12-18 1989-06-23 Tokyu Constr Co Ltd Extremely highly fluidized concrete
JPH02175637A (en) * 1988-12-27 1990-07-06 Nippon Cement Co Ltd Cement powder composition
JPH0345544A (en) * 1989-07-13 1991-02-27 Jdc Corp Concrete blend composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117700A (en) * 1998-09-09 2000-09-12 Matsushita Electronics Corporation Method for fabricating semiconductor device having group III nitride
JP2007106615A (en) * 2005-10-11 2007-04-26 Kao Corp Dispersant for self-leveling material
JP4757597B2 (en) * 2005-10-11 2011-08-24 花王株式会社 Dispersant for self-leveling material
JP2009227557A (en) * 2008-03-25 2009-10-08 Sumitomo Osaka Cement Co Ltd Self-recovering hydration hardened material and low reaction active cement material
JP2015009999A (en) * 2013-06-27 2015-01-19 宇部興産株式会社 Cement composition and method for producing cement composition

Similar Documents

Publication Publication Date Title
US20050241539A1 (en) Tile cement mortars using water retention agents
CN108947419A (en) A kind of dedicated mending mortar of structure and preparation method
EP1258464B1 (en) Use of a powder composition as rheologic additive with viscosifying effect
EP0008094B1 (en) Additive for concrete or cement mortar and its use as pumping aid
JP2007534608A (en) Cement system using moisture retention agent made from raw cotton linter
CN105542072B (en) A kind of concrete inner curing agent and preparation method thereof suitable for strong alkali environment
CN104961423A (en) Machine-spraying-type plastering gypsum mortar and preparation technology thereof
JPS58145651A (en) Cement superplasticizer
JPH0515655B2 (en)
RU2681158C1 (en) Dry construction mixture and solid-phase composition for its production
Punkki et al. Workability loss of high-strength concrete
CN110342894A (en) A kind of novel water-proof gypsum based self-leveling material
Vyšvařil et al. Influence of cellulose ethers on fresh state properties of lime mortars
CN111423153A (en) Wet-mixed mortar additive and preparation method thereof
CN111732395A (en) Waste concrete-based regenerated dry powder masonry mortar and preparation method thereof
CN108585698A (en) A kind of special joint filling mortar of light cellular partition board
CN111943560B (en) Low-resilience alkali-free liquid accelerator and preparation method thereof
CN108439919A (en) A kind of fibre-reinforced infiltration crystallization type concrete
JPH069258A (en) Superhigh-fluidity concrete
KR20150092744A (en) Additive for hydraulically setting mixtures
JPH08113613A (en) Cement additive
CN109665790B (en) Cement-based self-leveling mortar and preparation method thereof
JPH01242445A (en) Hydraulic cement composition
CN108275908A (en) A kind of low grade high flowability concrete plasticity micro-crack defect inhibitor and preparation method thereof
JPH11131804A (en) Method for suppressing carbonation of lightweight concrete