JPH0692322B2 - Process for producing ethane and ethylene by partial oxidation of methane - Google Patents

Process for producing ethane and ethylene by partial oxidation of methane

Info

Publication number
JPH0692322B2
JPH0692322B2 JP2154000A JP15400090A JPH0692322B2 JP H0692322 B2 JPH0692322 B2 JP H0692322B2 JP 2154000 A JP2154000 A JP 2154000A JP 15400090 A JP15400090 A JP 15400090A JP H0692322 B2 JPH0692322 B2 JP H0692322B2
Authority
JP
Japan
Prior art keywords
methane
catalyst
ethylene
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2154000A
Other languages
Japanese (ja)
Other versions
JPH0446130A (en
Inventor
正美 山村
直英 続木
大塚  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Exploration Co Ltd
Original Assignee
Japan Petroleum Exploration Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Exploration Co Ltd filed Critical Japan Petroleum Exploration Co Ltd
Priority to JP2154000A priority Critical patent/JPH0692322B2/en
Publication of JPH0446130A publication Critical patent/JPH0446130A/en
Publication of JPH0692322B2 publication Critical patent/JPH0692322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メタンまたはメタンを含む天然ガスを酸素ま
たは含酸素ガスで部分酸化することによって、エタン、
エチレンを製造する方法に関する。
The present invention relates to ethane, by partially oxidizing methane or a natural gas containing methane with oxygen or an oxygen-containing gas.
It relates to a method for producing ethylene.

〔従来の技術〕[Conventional technology]

メタンは、天然ガスの主成分として全世界に豊富に存在
する資源であるが、その反応性の低さのため、そのほと
んどが燃料として消費されており、有用な物質を製造す
るための原料としての利用方法は限られている。
Methane is an abundant resource that exists abundantly in the world as the main component of natural gas, but due to its low reactivity, most of it is consumed as fuel, and as a raw material for the production of useful substances. The usage of is limited.

しかしながら、1982年に、ケラー氏とバージン氏が種々
の金属酸化物を触媒として、メタンを酸素の存在下で部
分酸化すると、エタン、エチレンが生成することをアメ
リカ国発行、ジャーナル・オブ・キャタリシス誌、第73
巻、9〜19ページに報告して以来、メタンの酸化カップ
リング反応と呼ばれるこの反応に世界の研究者が注目
し、これまでに多くの触媒が報告されている。
However, in 1982, when Keller and Virgin partially oxidized methane in the presence of oxygen using various metal oxides as catalysts, ethane and ethylene were produced, which was published in the United States, Journal of Catalysis. , No. 73
Vol. 9, pp. 9-19, researchers in the world have paid attention to this reaction called oxidative coupling reaction of methane, and many catalysts have been reported so far.

たとえば、日本化学会、1987年発行、ケミストリー・レ
ターズ誌、483−484ページには、ランタニド系金属酸化
物、特に酸化サマリウムがこの反応において、エタン・
エチレンの選択性に優れた触媒であることが報告されて
いる。しかし、C2収率は12〜13%程度であり、工業化に
は未だ不十分である。また、主として希土類元素を用い
た触媒であるため、原料コストが高いという欠点があ
る。
For example, in the Chemical Society of Japan, 1987, Chemistry Letters, pages 483-484, lanthanide-based metal oxides, especially samarium oxide, are used in this reaction.
It has been reported that the catalyst has excellent ethylene selectivity. However, the C 2 yield is about 12 to 13%, which is still insufficient for industrialization. Further, since the catalyst is mainly a rare earth element, there is a drawback that the raw material cost is high.

また、特開昭61−225141号公報によれば、触媒としてア
ルカリおよびアルカリ土類元素,周期表の第IIIb族の元
素、原子番号24〜30の元素、ランタニド元素、銀、カド
ミウム、鉛およびビスマスの塩化物、臭化物およびヨウ
化物を単独または混合物で使用すると、メタンがエタン
・エチレンに変換することが記載されている。この方法
では、これらの金属ハロゲン化物を単独で用いる場合に
は、変換率の低下が頻繁に起こること、したがって好ま
しくは軽石などの担体上で使用することが有利であると
され、また有効な変換率を得るためにはハロゲン化物触
媒が作業温度で容融されていることが有利であると記載
されている(公報第3頁左下欄第10行〜左下欄第16行参
照)。
Further, according to JP-A-61-225141, alkali and alkaline earth elements, elements of Group IIIb of the periodic table, elements of atomic numbers 24 to 30, lanthanide elements, silver, cadmium, lead and bismuth are used as catalysts. The use of chlorides, bromides and iodides, either alone or in mixtures, of methane is described as converting methane to ethane ethylene. According to this method, when these metal halides are used alone, a reduction in conversion frequently occurs, and therefore it is advantageous to use them on a carrier such as pumice, and it is also effective conversion. It is stated that it is advantageous for the halide catalyst to be melted at working temperature in order to obtain the rate (see page 3, lower left column, line 10 to lower left column, line 16).

しかし、このような有利な条件下においてもメタンの変
換率は20%以下と低く、したがってC2収率は最大12%程
度であり、工業化に十分とは認められない。また、変換
率を高めるため、反応温度をハロゲン化物の溶融温度以
上にあげているが、そのため、流出ガス混合物中にハロ
ゲン化物およびハロゲンが認められ、触媒の失活化をと
もなう。これを防ぐため、触媒の連続的な再生操作が必
要であるという欠点を有する。さらに、同明細書にはハ
ロゲン化アルカリ金属を添加した触媒を使用することが
記載されているが、具体的手段およびこれらを添加する
ことによって収率が上昇したという記載はなく、実施例
においてもそのような事実は認められない。
However, even under such advantageous conditions, the conversion rate of methane is as low as 20% or less, and therefore the C 2 yield is about 12% at maximum, which is not sufficient for industrialization. Further, in order to increase the conversion rate, the reaction temperature is raised above the melting temperature of the halide, but therefore, halide and halogen are recognized in the outflow gas mixture, which is accompanied by deactivation of the catalyst. In order to prevent this, there is a drawback that a continuous regeneration operation of the catalyst is necessary. Further, although the specification describes that a catalyst to which an alkali metal halide is added is used, there is no description about a concrete means or the addition of these, and the yield is increased. No such fact is recognized.

また、特開昭61−282323号公報によれば、コバルト;ジ
ルコニウム、亜鉛、ニオブ、インジウム、鉛およびビス
マスから成る群から選ばれる少なくとも一種の金属;
燐;少なくとも一種の第1A族金属;酸素および所望によ
りハロゲンおよび硫黄からなる群から選ばれる物質から
成る触媒を用いると、メタンをエタン・エチレンに転化
できることが記載されているが、この方法は触媒系が複
雑であるにもかかわらず、実施例による結果ではC2収率
が10%程度と低く、やはり工業化には十分とは認められ
ない。なお、この公報には、前記触媒にハロゲン好まし
くは塩素を添加すると、メタンの転化率およびこれより
高級な炭化水素、特にエチレンおよびエタンに対する選
択率が実質的に向上すると記載されている(公報第3頁
左下欄第3行〜第6行および第4頁左上欄第5行〜第8
行参照)が、比較例が記載されておらず、その実質的向
上の程度を窺い知ることはできない。
Further, according to JP-A-61-282323, cobalt; at least one metal selected from the group consisting of zirconium, zinc, niobium, indium, lead and bismuth;
Phosphorus; at least one Group 1A metal; oxygen and optionally a catalyst selected from the group consisting of halogen and sulfur are described as being capable of converting methane to ethane-ethylene. Despite the complexity of the system, the results of the examples show that the C 2 yield is as low as about 10%, which is not sufficient for industrialization. It is noted in this publication that the addition of halogen, preferably chlorine, to the catalyst substantially improves the conversion of methane and the selectivity towards higher hydrocarbons, especially ethylene and ethane (Patent Publication No. Page 3, lower left column, lines 3 to 6 and Page 4, upper left column, lines 5 to 8
However, since the comparative example is not described, it is not possible to know the degree of substantial improvement.

さらにまた、日本化学会、1988年発行、ケミストリー・
レターズ誌、237ページによれば、2種の金属A,Bが結晶
格子内に取り込まれた、一般式ABO3で表わされる複合金
属酸化物の一種であるペロブスカイト(灰チタン石)型
酸化物の一部が、酸化カップリング反応に触媒活性を有
することが報告されている。しかしながら、この刊行物
に記載されている最大のC2収率は、SrZrO3の11.7%であ
り、エタン・エチレン製造の工業化を図るには、収率の
点で未だ不十分であり、本触媒系における収率の向上が
望まれるところである。
Furthermore, the Chemical Society of Japan, published in 1988, Chemistry
According to Letters, p. 237, two types of metal A, B are incorporated into the crystal lattice, which is one of the complex metal oxides represented by the general formula ABO 3 , which is a perovskite type oxide. Some have been reported to have catalytic activity in oxidative coupling reactions. However, the maximum C 2 yield described in this publication is 11.7% of SrZrO 3 , which is still insufficient in terms of yield for industrialization of ethane / ethylene production. It is desired to improve the yield in the system.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者は、ペロブスカイト型およびイルメナイト(チ
タン鉄鉱)型と呼ばれる複合金属酸化物が、二種の金属
の酸化物または金属塩を1000℃以上の高温で焼成して調
製するものである点に着目し、これらが耐熱性でかつ長
寿命の触媒として有望であると考えられることから、エ
タン・エチレンの製造を目的としたメタンの部分酸化反
応において、ペロブスカイト型およびイルメナイト型金
属酸化物にハロゲン化アルカリ金属を担持させたものを
触媒として用いることにより、メタンの転化率およびエ
タン・エチレンの収率を向上させることができる知見を
得て、本発明に到達した。
The present inventor has noticed that the complex metal oxides called perovskite type and ilmenite type are prepared by firing oxides or metal salts of two kinds of metals at a high temperature of 1000 ° C. or higher. However, since these are considered to be promising as heat-resistant and long-life catalysts, in the partial oxidation reaction of methane for the production of ethane / ethylene, perovskite-type and ilmenite-type metal oxides are alkali halides. The present invention has been accomplished by obtaining the knowledge that the conversion rate of methane and the yield of ethane / ethylene can be improved by using a catalyst supporting a metal as a catalyst.

本発明の目的は、特定の触媒を使用することによって、
効率よくエタン・エチレンを製造する方法を提供するこ
とにある。
The purpose of the present invention is to use a specific catalyst,
It is to provide a method for efficiently producing ethane / ethylene.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、2種の金属からなる複合金属酸化物にハロゲ
ン化アルカリ金属を担持した触媒を用いて、メタンを部
分酸化することによって、エタン、エチレンを製造する
ことを特徴とする。
The present invention is characterized by producing ethane and ethylene by partially oxidizing methane using a catalyst in which an alkali metal halide is supported on a composite metal oxide composed of two kinds of metals.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明で使用される触媒は、ペロブスカイト型またはイ
ルメナイト型複合金属酸化物にハロゲン化アルカリ金属
を担持した触媒であるが、これは次のようにして得られ
る。
The catalyst used in the present invention is a perovskite type or ilmenite type composite metal oxide carrying an alkali metal halide, which can be obtained as follows.

一般に複合金属酸化物を構成する金属Aと金属Bにおい
て、イオン価数に違いがある場合は小さい方をA、同じ
価数の場合はイオン半径が大きい方をAとすると、理想
的なペロブスカイト構造の複合金属酸化物では、次式が
成立つ。
In general, if there is a difference in ionic valence between the metal A and the metal B that compose the composite metal oxide, the smaller one is A, and if the valence is the same, the larger ionic radius is A, and an ideal perovskite structure is obtained. In the complex metal oxide of, the following equation holds.

ここで、Ra,Rb:金属AおよびBのイオン半径(Å)、R
o:酸素のイオン半径(Å)である。しかし、実際は許容
されうる限界があって、次式のように係数tが入り、通
常、係数tが0.8〜1.0の範囲の場合はペロブスカイト構
造をとり、tが0.8以下の場合はイルメナイト構造をと
るといわれている。
Where Ra, Rb: Ion radius of metal A and B (Å), R
o: is the ionic radius (Å) of oxygen. However, there is a practically allowable limit, and the coefficient t is entered as shown in the following equation. Usually, when the coefficient t is in the range of 0.8 to 1.0, the perovskite structure is adopted, and when t is 0.8 or less, the ilmenite structure is adopted. It is said that.

本発明の方法においては、tが0.75〜1.0の範囲に入る
金属を選ぶことが必要である。また、金属Aと金属Bの
酸化数の和は結晶全体としての電気的中性を保つため、
+6でなければならないので、金属Aイオンと金属Bイ
オンが、それぞれ1価と5価、2価と4価または3価と
3価の組合せとなるような、2種類の金属を用いること
が必要である。
In the method of the present invention, it is necessary to select a metal whose t falls within the range of 0.75 to 1.0. Further, the sum of the oxidation numbers of the metal A and the metal B maintains the electrical neutrality of the crystal as a whole,
Since it must be +6, it is necessary to use two kinds of metal such that the metal A ion and the metal B ion have a combination of monovalent and pentavalent, divalent and tetravalent, or trivalent and trivalent, respectively. Is.

これらの条件に合致した2種の金属酸化物あるいは塩
を、それぞれ原子比が1対1になるように乳ばちで混合
し、これを空気中またはヘリウム気流中で1000〜1500
℃、好ましくは、1100〜1300℃の温度で1〜30時間、好
ましくは5〜10時間焼成する。本操作によって得られた
焼成物を室温まで冷却したあと、粉砕し粉末X線回折分
析により、ペロブスカイト構造またはイルメナイト構造
を有していることを確認した上で、以下の操作により触
媒を調製する。
Two kinds of metal oxides or salts that meet these conditions are mixed in a beaver so that the atomic ratio becomes 1: 1 respectively, and this is 1000 to 1500 in air or helium flow.
C., preferably 1100 to 1300.degree. C. for 1 to 30 hours, preferably 5 to 10 hours. The calcined product obtained by this operation is cooled to room temperature, then pulverized and confirmed by powder X-ray diffraction analysis to have a perovskite structure or an ilmenite structure, and then a catalyst is prepared by the following operation.

すなわち、得られたペロブスカイト型またはイルメナイ
ト型複合金属酸化物を、ハロゲン化アルカリ金属の水溶
液中に懸濁し、この懸濁液をかき混ぜながら100〜200℃
に加熱して蒸発乾固すると本発明の触媒が得られる。こ
のとき、ハロゲン化アルカリ金属は、ペロブスカイト型
またはイルメナイト型複合金属酸化物を構成する金属A
に対し、アルカリ金属が原子比で0.05〜1.0、好ましく
は、0.1〜0.3になるように担持させる。ハロゲン化アル
カリ金属としては、フッ素、塩素、臭素、ヨウ素のハロ
ゲン元素と、リチウム、ナトリウム、カリウム、ルビジ
ウムなどのアルカリ金属元素のいずれかの組合せも用い
ることができるが、好ましくはフッ化ナトリウム、塩化
リチウム、塩化ナトリウム、塩化カリウム、臭化リチウ
ム、臭化ナトリウムおよび臭化カリウムの中からいずれ
か一種を選んで用いる。
That is, the obtained perovskite type or ilmenite type mixed metal oxide is suspended in an aqueous solution of an alkali metal halide, and the suspension is stirred at 100 to 200 ° C.
When heated to evaporate to dryness, the catalyst of the present invention is obtained. At this time, the alkali metal halide is the metal A constituting the perovskite type or ilmenite type composite metal oxide.
On the other hand, the alkali metal is supported in an atomic ratio of 0.05 to 1.0, preferably 0.1 to 0.3. As the alkali metal halide, any combination of a halogen element such as fluorine, chlorine, bromine and iodine and an alkali metal element such as lithium, sodium, potassium and rubidium can be used, but sodium fluoride and chloride are preferable. Any one selected from lithium, sodium chloride, potassium chloride, lithium bromide, sodium bromide and potassium bromide is used.

このようにして得られた触媒は、粉砕し、100メッシュ
以上の粉末として用いることもできるが、必要に応じて
圧縮成型機により成型したあと、さらに粉砕し、好まし
くは16〜32メッシュの粒状体として用いることもでき
る。また、これらの触媒を担体上で用いることもでき
る。
The catalyst thus obtained can be crushed and used as a powder of 100 mesh or more, but if necessary, after being molded by a compression molding machine, further crushed, preferably 16 to 32 mesh granules Can also be used as Also, these catalysts can be used on a carrier.

上記の触媒を用いて、メタンの酸化カップリング反応を
行なうに際して、メタンと酸素は、CH4/O2(モル比)=
1〜10、好ましくは、1.5〜3で混合して用いる。この
とき、希釈剤としてヘリウム、アルゴンまたは窒素等の
不活性ガスを共存させてもよい。これらの混合ガスを、
触媒を充填した反応管に供給し、通常600〜1000℃、好
ましくは700〜850℃で気相反応を行なう。反応は通常、
大気圧下で行なうが、必要に応じて加圧下において行な
ってもよい。
When the oxidative coupling reaction of methane is carried out using the above catalyst, methane and oxygen are converted into CH 4 / O 2 (molar ratio) =
1 to 10, preferably 1.5 to 3 are used as a mixture. At this time, an inert gas such as helium, argon or nitrogen may coexist as a diluent. These mixed gas,
It is supplied to a reaction tube filled with a catalyst, and the gas phase reaction is usually carried out at 600 to 1000 ° C, preferably 700 to 850 ° C. The reaction is usually
Although it is carried out under atmospheric pressure, it may be carried out under pressure if necessary.

反応には、通常天然ガスから分離したメタンを用いる
が、石炭その他の物質から製造されたメタンを用いても
よい。さらに、メタンを含む天然ガスそのものを原料と
して用いることもできる。酸素は、空気から深冷分離さ
れたものや、ガス分離膜により濃縮されたものを用いる
ことができる。さらに、空気中の酸素をそのまま用いる
ことみ可能である。
Methane separated from natural gas is usually used for the reaction, but methane produced from coal or other substances may be used. Furthermore, natural gas itself containing methane can also be used as a raw material. Oxygen that has been cryogenicly separated from air or that has been concentrated by a gas separation membrane can be used. Furthermore, it is possible to use oxygen in the air as it is.

また、本発明において触媒は、固定床、移動床もしくは
流動床のいずれかの態様でも用いることができる。
In the present invention, the catalyst can be used in any of a fixed bed, a moving bed and a fluidized bed.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明するが、本発明は
これに限定されるものではない。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto.

実施例1 (1) 触媒の調製 炭酸ナトリウム(試薬特級)0.80gと五酸化ニオブ(試
薬特級)2.00g(金属イオン比1:1)を乳ばちで混合し、
空気中、電気炉で1100℃、10時間焼成した。焼成物はX
線回折測定により、ペロブスカイト構造を持つNaNbO3
あることを確認した。次に、塩化ナトリウム0.094gを10
mlの蒸留水に溶解し、NaNbO31gを加えて水蒸気浴中で蒸
発乾固した。
Example 1 (1) Preparation of catalyst 0.80 g of sodium carbonate (special grade reagent) and 2.00 g of niobium pentoxide (special grade reagent) (metal ion ratio 1: 1) were mixed with a pestle,
It was baked in an electric furnace at 1100 ° C. for 10 hours in the air. Fired product is X
It was confirmed by line diffraction measurement that it was NaNbO 3 having a perovskite structure. Next, add 0.094 g of sodium chloride to 10
It was dissolved in ml of distilled water, 1 g of NaNbO 3 was added, and the mixture was evaporated to dryness in a steam bath.

(2) 反応試験 上記触媒1gをアルミナ製の反応管に充填し、780℃、大
気圧下、CH4:O2:He=10:5:85の混合ガスを100ml/minの
流速で流し、反応させた。
(2) Reaction test 1 g of the above catalyst was filled in an alumina reaction tube, and a mixed gas of CH 4 : O 2 : He = 10: 5: 85 was flowed at a flow rate of 100 ml / min at 780 ° C. and atmospheric pressure. It was made to react.

以上の操作によって得られた反応生成物を、反応管出口
に取り付けたサンプリングループを用いてガスクロマト
グラフに導入し分析した。分析結果を第1表に示す。第
1表において、メタン転化率および酸素転化率は、反応
したメタンおよび酸素の割合、選択率は、反応生成物で
あるCO,CO2,C2H4,C2H6の生成割合、さらに、C2収率は目
的とする生成物であるC2H4,C2H6の収率の合計量を表わ
す。
The reaction product obtained by the above operation was introduced into a gas chromatograph for analysis using a sampling loop attached to the outlet of the reaction tube. The analysis results are shown in Table 1. In Table 1, the methane conversion rate and the oxygen conversion rate are the ratios of reacted methane and oxygen, the selectivity is the generation ratio of reaction products CO, CO 2 , C 2 H 4 , and C 2 H 6 , and , C 2 yield represents the total yield of the desired products C 2 H 4 and C 2 H 6 .

比較例1 実施例1(1)記載の方法でNaNbO3を合成し、これに塩
化ナトリウム等のアルカリ金属のハロゲン化物を担持せ
ず、NaNbO31gをそのまま用いて、反応温度を800℃とし
た以外は実施例1と同様の条件で反応試験を行なった。
結果を第1表に示す。
Comparative Example 1 NaNbO 3 was synthesized by the method described in Example 1 (1), 1 g of NaNbO 3 was used as it was without supporting an alkali metal halide such as sodium chloride, and the reaction temperature was 800 ° C. A reaction test was conducted under the same conditions as in Example 1 except for the above.
The results are shown in Table 1.

実施例2 (1) 触媒の調製 金属鉛(試薬特級)30gと、酸化チタン(試薬特級)11.
58gを乳ばちで混合し、実施例1と同様の条件で焼成し
た。焼成物は、X線回折測定によりペロブスカイト構造
のPbTiO3であることを確認した。次に、塩化ナトリウム
2.34gを100mlの蒸留水に溶解し、PbTiO330gを加えて水
蒸気浴中で蒸発乾固した。
Example 2 (1) Preparation of catalyst 30 g of metallic lead (special grade reagent) and titanium oxide (special grade reagent) 11.
58 g of the mixture was mixed with a dairy drum and baked under the same conditions as in Example 1. It was confirmed by X-ray diffraction measurement that the fired product was PbTiO 3 having a perovskite structure. Then sodium chloride
2.34 g was dissolved in 100 ml of distilled water, 30 g of PbTiO 3 was added, and the mixture was evaporated to dryness in a steam bath.

(2) 反応試験 上記触媒1gを用い、CH4:O2:He=10:5:85の混合ガスを10
0ml/minの流速で流し、反応させた。結果を第1表に示
す。
(2) Reaction test Using 1 g of the above catalyst, a mixed gas of CH 4 : O 2 : He = 10: 5: 85 was used for 10 times.
The reaction was carried out by flowing at a flow rate of 0 ml / min. The results are shown in Table 1.

比較例2 実施例2(1)記載の方法でPbTiO31gを合成し、これに
塩化ナトリウム等のアルカリ金属のハロゲン化物を担持
せず、PbTiO31gをそのま用まいて、反応温度を800℃と
した以外は実施例2と同様の条件で反応試験を行なっ
た。結果を第1表に示す。
Comparative Example 2 Example 2 (1) was synthesized PbTiO 3 1 g in the description of the method, this without carrying alkali metal halides such as sodium chloride, and seeded for Sonoma a PbTiO 3 1 g, the reaction temperature of 800 A reaction test was conducted under the same conditions as in Example 2 except that the temperature was changed to ° C. The results are shown in Table 1.

実施例3 実施例2(1)で調製した触媒30gを用い、CH4:O2:He=
10:5:85の混合ガスを135ml/minの流速で流し、反応させ
た。結果を第1表に示す。
Example 3 Using 30 g of the catalyst prepared in Example 2 (1), CH 4 : O 2 : He =
A mixed gas of 10: 5: 85 was caused to flow and reacted at a flow rate of 135 ml / min. The results are shown in Table 1.

実施例4 (1) 触媒の調製 炭酸バリウム(試薬特級)1gと酸化チタン(試薬特級)
0.405gを乳ばちで混合し、実施例1と同様の条件で焼成
した。焼成物は、X線回折測定によりペロブスカイト構
造のBaTiO3であることを確認した。次に、塩化ナトリウ
ム0.05gを蒸留水10mlに溶解し、BaTiO31gを加えて水蒸
気浴中で蒸発乾固した。
Example 4 (1) Preparation of catalyst 1 g of barium carbonate (special grade reagent) and titanium oxide (special grade reagent)
0.405 g was mixed with a dairy drum and baked under the same conditions as in Example 1. It was confirmed by X-ray diffraction measurement that the fired product was BaTiO 3 having a perovskite structure. Next, 0.05 g of sodium chloride was dissolved in 10 ml of distilled water, 1 g of BaTiO 3 was added, and the mixture was evaporated to dryness in a steam bath.

(2) 反応試験 反応温度を800℃とした以外は、実施例1と同様の条件
で反応を行なった。結果を第1表に示す。
(2) Reaction test The reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 800 ° C. The results are shown in Table 1.

実施例5 (1) 触媒の調製 炭酸カリウム(試薬特級)5.2gと五酸化ニオブ(試薬特
級)10gを用い、実施例1と同様にして、KNbO3を合成し
た。0.325gの塩化ナトリウムを実施例1と同様にしてKN
bO35gに担持した。
Example 5 (1) Preparation of catalyst KNbO 3 was synthesized in the same manner as in Example 1 using 5.2 g of potassium carbonate (special grade reagent) and 10 g of niobium pentoxide (special grade reagent). 0.325 g of sodium chloride was added to KN in the same manner as in Example 1.
Supported on 5 g of bO 3 .

(2) 反応試験 上記触媒5gを用い、実施例1と同様の条件で反応試験を
行なった。結果を第1表に示す。
(2) Reaction test Using 5 g of the above catalyst, a reaction test was conducted under the same conditions as in Example 1. The results are shown in Table 1.

実施例6 (1) 触媒の調製 実施例2(1)記載の方法でPbTiO3を合成した。次に、
塩化リチウム0.42gを蒸留水30mlに溶解し、これにPbTiO
33gを加えて水蒸気浴中で蒸発乾固した。
Example 6 (1) Preparation of catalyst PbTiO 3 was synthesized by the method described in Example 2 (1). next,
Dissolve 0.42g of lithium chloride in 30ml of distilled water and add PbTiO
In addition to the 3 3g and evaporated to dryness in a steam bath.

(2) 反応試験 上記触媒3gを用い、反応温度を700℃とした以外は実施
例1と同様の条件で反応試験を行なった。結果を第1表
に示す。
(2) Reaction test A reaction test was conducted under the same conditions as in Example 1 except that 3 g of the above catalyst was used and the reaction temperature was 700 ° C. The results are shown in Table 1.

実施例7 (1) 触媒の調製 炭酸リチウム(試薬特級)0.67gと酸化タンタル(試薬
特級)4gを乳ばちで混合し、空気中、電気炉で1100℃、
10時間焼成した。焼成物はX線回折測定により、イルメ
ナイト構造を持つLiTaO3であることを確認した。次に、
塩化ナトリウム0.05gを10mlの蒸留水に溶解し、LiTaO31
gを加えて水蒸気浴中で蒸発乾固した。
Example 7 (1) Preparation of catalyst 0.67 g of lithium carbonate (special grade reagent) and 4 g of tantalum oxide (special grade reagent) were mixed with a pestle, and the mixture was heated to 1100 ° C. in an electric furnace in the air.
It was baked for 10 hours. It was confirmed by X-ray diffraction measurement that the fired product was LiTaO 3 having an ilmenite structure. next,
Dissolve 0.05 g of sodium chloride in 10 ml of distilled water, and add LiTaO 3 1
g was added and evaporated to dryness in a steam bath.

(2) 反応試験 上記触媒1gを用い、反応温度を750℃とした以外は実施
例1と同様の条件で反応試験を行なった。結果を第1表
に示す。
(2) Reaction test A reaction test was conducted under the same conditions as in Example 1 except that 1 g of the above catalyst was used and the reaction temperature was 750 ° C. The results are shown in Table 1.

実施例8 (1) 触媒の調製 実施例2(1)記載の方法でPbTiO3を合成した。次に、
塩化カリウム0.246gを蒸留水30mlに溶解し、これにPbTi
O35gを加えて水蒸気浴中で蒸発乾固した。
Example 8 (1) Preparation of catalyst PbTiO 3 was synthesized by the method described in Example 2 (1). next,
0.246 g of potassium chloride is dissolved in 30 ml of distilled water, and PbTi is added to this.
O 3 5 g was added and the mixture was evaporated to dryness in a steam bath.

(2) 反応試験 上記触媒1gを用い、反応温度を800℃とした以外は実施
例1と同様の条件で反応試験を行なった。結果を第1表
に示す。
(2) Reaction test A reaction test was conducted under the same conditions as in Example 1 except that 1 g of the above catalyst was used and the reaction temperature was 800 ° C. The results are shown in Table 1.

実施例9 (1) 触媒の調製 実施例2(1)記載の方法でPbTiO3を合成した。次に、
フッ化ナトリウム0.139gを蒸留水30mlに溶解し、これに
PbTiO35gを加えて水蒸気浴中で蒸発乾固した。
Example 9 (1) Preparation of catalyst PbTiO 3 was synthesized by the method described in Example 2 (1). next,
Dissolve 0.139 g of sodium fluoride in 30 ml of distilled water.
5 g of PbTiO 3 was added and evaporated to dryness in a steam bath.

(2) 反応試験 上記触媒1gを用い、実施例8と同様の条件で反応試験を
行なった。結果を第1表に示す。
(2) Reaction test Using 1 g of the above catalyst, a reaction test was conducted under the same conditions as in Example 8. The results are shown in Table 1.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、メタンの酸化カップリング反応
においてC2化合物の収率が高く、その工業的価値は大き
い。
According to the method of the present invention, the yield of C 2 compound is high in the oxidative coupling reaction of methane, and its industrial value is great.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 2/84 11/04 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C07C 2/84 11/04 // C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】触媒としての金属酸化物の存在下に、600
〜1000℃において、メタンまたはメタンを含む天然ガス
を酸素または含酸素ガスで一部分酸化することによっ
て、エタンおよびエチレンを製造する方法において、触
媒としてアルカリ金属のハロゲン化物を担持した、2種
の金属からなるペロブスカイト型およびイルメナイト型
複合酸化物であって、その複合酸化物を構成する2種の
金属が、1A族,2A族,4B族金属イオンのいずれか1と4A
族,5A族金属イオンのいずれか1種であり、 (複合酸化物を構成する2種の金属をAおよびBとする
と、式中Ra,Rbは金属AおよびBのイオン半径(Å)、R
oは酸素のイオン半径(Å)、但しtは0.75〜1.0であ
る)を許容する複合酸化物を使用することを特徴とす
る、メタンの部分酸化によるエタン、エチレンの製造方
法。
1. In the presence of a metal oxide as a catalyst, 600
In a method for producing ethane and ethylene by partially oxidizing methane or a natural gas containing methane with oxygen or an oxygen-containing gas at ˜1000 ° C., from two kinds of metals carrying an alkali metal halide as a catalyst. Which is a perovskite-type and ilmenite-type composite oxide, wherein the two kinds of metals constituting the composite oxide are 1A group, 2A group, and 4B group metal ions 1 and 4A.
Group 1 or any one of 5A group metal ions, (Assuming that the two metals that make up the complex oxide are A and B, in the formula, Ra and Rb are the ionic radii (Å) of the metals A and B, R
A method for producing ethane and ethylene by partial oxidation of methane, characterized in that a complex oxide which allows o an ionic radius (Å) of oxygen, but t is 0.75 to 1.0 is used.
【請求項2】複合金属酸化物が、ペロブスカイト型構造
を有する、PbTiO3,BaTiO3,SrTiO3,NaNbO3,KNbO3,NaTaO3
である、請求項1記載のメタンの部分酸化によるエタ
ン、エチレンの製造方法。
2. A composite metal oxide has a perovskite structure, PbTiO 3, BaTiO 3, SrTiO 3, NaNbO 3, KNbO 3, NaTaO 3
The method for producing ethane and ethylene by partial oxidation of methane according to claim 1, which is
【請求項3】複合金属酸化物が、イルメナイト型構造を
有する、LiNbO3,LiTaO3である請求項1記載のメタンの
部分酸化によるエタン、エチレンの製造方法。
3. The method for producing ethane and ethylene by partial oxidation of methane according to claim 1, wherein the complex metal oxide is LiNbO 3 or LiTaO 3 having an ilmenite type structure.
JP2154000A 1990-06-14 1990-06-14 Process for producing ethane and ethylene by partial oxidation of methane Expired - Lifetime JPH0692322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2154000A JPH0692322B2 (en) 1990-06-14 1990-06-14 Process for producing ethane and ethylene by partial oxidation of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2154000A JPH0692322B2 (en) 1990-06-14 1990-06-14 Process for producing ethane and ethylene by partial oxidation of methane

Publications (2)

Publication Number Publication Date
JPH0446130A JPH0446130A (en) 1992-02-17
JPH0692322B2 true JPH0692322B2 (en) 1994-11-16

Family

ID=15574726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2154000A Expired - Lifetime JPH0692322B2 (en) 1990-06-14 1990-06-14 Process for producing ethane and ethylene by partial oxidation of methane

Country Status (1)

Country Link
JP (1) JPH0692322B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2427722C (en) * 2003-04-29 2007-11-13 Ebrahim Bagherzadeh Preparation of catalyst and use for high yield conversion of methane to ethylene
JP5176399B2 (en) * 2007-06-08 2013-04-03 株式会社村田製作所 Hydrocarbon production method and methane oxidative coupling catalyst used therefor
JP5499669B2 (en) * 2009-12-04 2014-05-21 株式会社明電舎 Process for producing lower hydrocarbon and aromatic compound and production catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267243A (en) * 1986-05-15 1987-11-19 Idemitsu Kosan Co Ltd Production of hydrocarbon
GB8724373D0 (en) * 1987-10-17 1987-11-18 British Petroleum Co Plc Chemical process

Also Published As

Publication number Publication date
JPH0446130A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
US4988660A (en) Double perovskite catalysts for oxidative coupling
KR100780562B1 (en) Processes for converting ethylene to vinyl chloride and catalysts useful for use in the process
US20060155157A1 (en) Catalyst direct conversion of methane to ethane and ethylene
WO1991010632A1 (en) Double perovskite catalysts for oxidative coupling
CA2025614A1 (en) High ethylene to ethane process for oxidative coupling
JP2004528386A (en) Oxidative halogenation and optional dehydrogenation of C3 + hydrocarbons
CA2025595A1 (en) Low temperature catalysts for oxidative coupling processes
CN102197011A (en) Oxidative mono-halogenation of methane
US5105053A (en) High surface area oxide compositions with a pyrochlore structure, methods for their preparation, and conversion processes utilizing same
JPH0692322B2 (en) Process for producing ethane and ethylene by partial oxidation of methane
EP0333926B1 (en) Process for preparing vinylidene fluoride by the direct fluorination of vinylidene chloride
JPH10128111A (en) Bismuth oxide compound-containing catalyst, use of this catalyst in oxidation or dehydrogenation reaction under action of heterogeneous catalyst, preparation of chlorine by using this catalyst, barium bismuth oxide compound and preparation of this compound
CN106316781B (en) A kind of method that methylene chloride prepares trichloro ethylene
US5051390A (en) Chemical process and catalyst to be used therein
CN104402669B (en) The method of vinyl chloride monomer prepared by a kind of methyl chloride
JP3147474B2 (en) Process for producing halogenated hydrocarbon compounds
JPH0710782A (en) Production of isobutylene and methacrolein
EP0452695B1 (en) Production of a catalyst and its use for producing phenol
JP3788530B2 (en) Catalyst regeneration method
CN1121844A (en) Catalyst for preparing ethylene by oxidation and dehydrogenation of ethane and process thereof
JP3230243B2 (en) Phenol production catalyst and phenol production method
JPH0134208B2 (en)
JP3715774B2 (en) Catalyst for producing carbonate ester, process for producing the same, and process for producing carbonate ester using the catalyst
CN106278777A (en) A kind of method preparing ethylene and Vinyl Chloride Monomer
US5260497A (en) Catalytic system for converting methane into higher hydrocarbons