JPH0692191B2 - Method for manufacturing optical recording thin film medium - Google Patents

Method for manufacturing optical recording thin film medium

Info

Publication number
JPH0692191B2
JPH0692191B2 JP57111549A JP11154982A JPH0692191B2 JP H0692191 B2 JPH0692191 B2 JP H0692191B2 JP 57111549 A JP57111549 A JP 57111549A JP 11154982 A JP11154982 A JP 11154982A JP H0692191 B2 JPH0692191 B2 JP H0692191B2
Authority
JP
Japan
Prior art keywords
thin film
layer
light
recording
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57111549A
Other languages
Japanese (ja)
Other versions
JPS592880A (en
Inventor
彰 森中
茂 及川
弘次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57111549A priority Critical patent/JPH0692191B2/en
Priority to FR8309208A priority patent/FR2527822B1/fr
Priority to DE19833319738 priority patent/DE3319738A1/en
Publication of JPS592880A publication Critical patent/JPS592880A/en
Priority to US06/703,453 priority patent/US4585722A/en
Publication of JPH0692191B2 publication Critical patent/JPH0692191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は熱記録ヘッド等の直接加熱手段を用いることな
く記録光の照射により記録を行なう光記録薄膜媒体の製
造方法に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing an optical recording thin film medium for performing recording by irradiation of recording light without using a direct heating means such as a thermal recording head.

〔発明の技術的背景とその問題点〕 感熱記録方式は現像・定着の不要な直接記録方式であ
り、操作性・保守性の良さを生かしてプリンタ,ファク
シミリ等の簡易端末器の記録方式の主流を占める。しか
し、発熱ヘッド、発熱ペン等の発熱体が直接接触するた
め、スティッキング現象を起こし、解像度の低下を引き
起こすことがあった。
[Technical background of the invention and its problems] The thermal recording method is a direct recording method that does not require development and fixing, and is the mainstream recording method for simple terminals such as printers and facsimiles, making good use of operability and maintainability. Occupy However, since a heating element such as a heating head or a heating pen is in direct contact with the heating element, a sticking phenomenon may occur and the resolution may be degraded.

このような、欠点を解決するために、感熱記録紙をXe-
フラッシュ等の光源により発色させて記録に用いる方法
が提案されている。
In order to solve such a defect, Xe-
A method has been proposed in which color is developed by a light source such as a flash and used for recording.

例えば第1図に示したように、基板11と発色剤12が積層
された記録材下部に原図例えば記録転写用原稿13を重ね
光源16からの光で露光し、感熱記録材の発色部15を感熱
発色させる方式が考えられる。しかし、この記録方法で
は原図の光吸収部14で発生した熱の拡散が大きく、記録
画像周辺のにじみ・ボケが生じ解像度の低下が生じてい
た。
For example, as shown in FIG. 1, an original drawing, for example, a recording transfer original 13 is overlaid on a lower portion of a recording material on which a substrate 11 and a color-developing agent 12 are laminated and exposed by light from a light source 16 to expose a coloring portion 15 of the thermosensitive recording material. A method of developing a heat-sensitive color is conceivable. However, in this recording method, the heat generated in the light absorbing portion 14 of the original drawing is largely diffused, causing blurring and blurring around the recorded image, resulting in a reduction in resolution.

上述のような原図を重ねるかわりに、感熱発色材中に、
露光する光の波長を吸収する色素を分散させ、これに吸
収された光を熱に変換することによって記録する試みも
ある。しかしながら、この用途に用いられた色素はメチ
レンブルー,ローダミンB等の可視光吸収色素であって
吸収剤自身が着色を持ち記録後のコントラストが悪いと
いう問題点があった。また最近、近赤外吸収色素を分散
マイクロカプセル化して塗布した光記録材料も検討され
つつあるが、上述の場合と同様に分散の不均一性のため
に発色部の均一性に問題を残していた。例えば、分散系
感熱記録紙に光吸収剤を添加した材料系では20本/mm程
度の解像度が最高値である。
Instead of overlaying the original drawings as described above, in the thermosensitive coloring material,
There are also attempts to record by dispersing a dye that absorbs the wavelength of the exposing light and converting the absorbed light into heat. However, the dye used for this purpose is a visible light absorbing dye such as methylene blue and rhodamine B, and there is a problem that the absorber itself is colored and the contrast after recording is poor. In addition, recently, an optical recording material in which a near-infrared absorbing dye is dispersed in microcapsules and applied is being studied, but as in the case described above, there remains a problem in the uniformity of the color-developed portion due to the nonuniformity of the dispersion. It was For example, in a material system in which a light absorbing agent is added to a dispersion type thermal recording paper, a resolution of about 20 lines / mm is the highest value.

また、分散コロイド,マイクロカプセルが不均一にバイ
ンダ中に分散させられたこれまでの材料系では、記録部
が不透明(白色)になるために、記録用光源の光エネル
ギーは発色剤厚さ方向に散乱等で強度のロスが大きく感
度的にも不利であった。
Moreover, in the conventional material system in which the disperse colloid and the microcapsules are non-uniformly dispersed in the binder, the light energy of the recording light source is in the thickness direction of the coloring agent because the recording part becomes opaque (white). There was a large loss of intensity due to scattering, etc., which was also disadvantageous in terms of sensitivity.

従って、このような光記録媒体の構成として、発色剤,
光吸収剤及び顕色剤が、記録面方向に均一で厚さ方向に
分散している構成が最も適している。このような考え方
を基礎として、感熱発色剤,光吸収剤をポリマー中に均
一溶解させ、スピンコート塗布によって積層させた光記
録媒体が考案された。しかし、この媒体では、ポリマー
をバインダとして溶解させるために、薄膜層中の発色剤
濃度が低下する。このために、発色剤と顕色剤が反応す
る、ロイコ系染料の場合は、反応速度つまり感度の低下
は避けがたい。
Therefore, as a structure of such an optical recording medium, a color former,
It is most suitable that the light absorber and the color developer are uniform in the recording surface direction and dispersed in the thickness direction. Based on such a concept, an optical recording medium was devised in which a thermosensitive color developing agent and a light absorbing agent were uniformly dissolved in a polymer and laminated by spin coating. However, in this medium, the concentration of the color former in the thin film layer is lowered because the polymer is dissolved as a binder. For this reason, in the case of a leuco dye in which a color former and a developer react, it is unavoidable that the reaction rate, that is, the sensitivity, decreases.

発色剤濃度をあげると、ポリマ・マトリックス中に均一
に溶解しなくなり、積層薄膜に発色剤の微結晶化が起こ
り薄膜は白濁化して、前述した分散系に似た欠点を示し
てしまう。
When the concentration of the color former is increased, the colorant is not uniformly dissolved in the polymer matrix, and the colorant is microcrystallized in the laminated thin film to cause the thin film to become cloudy, exhibiting a defect similar to the above-mentioned dispersion system.

更に大きな問題は、スピンコート塗布溶媒の既コート薄
膜の溶解で、既にコートされた薄膜に影響を与えず、ス
ピンコート薄膜を数層重ねることは非常に困難であっ
た。
A more serious problem is the dissolution of the already-coated thin film in the spin-coating solvent, which does not affect the already-coated thin film, and it was very difficult to superimpose several spin-coated thin films.

以上説明した様に、非接触式光感熱型記録媒体におい
て、高い発色剤濃度を保つ薄膜の作製、積層が、真空蒸
着等の溶媒を用いないプロセスで作製されることが待ち
望まれていた。
As described above, in the non-contact type photothermographic recording medium, it has been long awaited that a thin film that maintains a high concentration of the color former be formed and laminated by a process that does not use a solvent such as vacuum deposition.

〔発明の目的〕[Object of the Invention]

本発明は、上記のような光記録媒体の欠点を解決するた
めに、近赤外光等の照射により、記録が可能な薄膜材料
を真空蒸着により積層多重化することにより高感度かつ
高コントラストな光記録薄膜媒体の製造方法を提供する
ことを目的とするものである。
In order to solve the drawbacks of the optical recording medium as described above, the present invention provides high sensitivity and high contrast by stacking and multiplexing a thin film material capable of recording by vacuum evaporation by irradiation with near infrared light or the like. It is an object of the present invention to provide a method for manufacturing an optical recording thin film medium.

〔発明の実施例〕Example of Invention

本発明による光記録薄膜媒体の基本構成を第2図に示
す。第2図において、21は基板、22は発色剤層、23は光
吸収剤層、24は発色剤層、25は記録用照明光の方向であ
る。この基本構成を本製造方法によって少くとも1組以
上積層することによって多重発色が可能な光記録薄膜媒
体を作製することができる。
The basic structure of the optical recording thin film medium according to the present invention is shown in FIG. In FIG. 2, 21 is a substrate, 22 is a color former layer, 23 is a light absorber layer, 24 is a color former layer, and 25 is the direction of recording illumination light. An optical recording thin film medium capable of multiple color development can be manufactured by laminating at least one set of this basic structure by the present manufacturing method.

第2図に示した構成を実現するには、基板21上に感熱発
色材料の2成分と光吸収剤を蒸着することによって行な
う。従って第2図の各層はバルクに近くかなり高い発色
剤濃度の固体が積層されることになる。
To realize the structure shown in FIG. 2, two components of the thermosensitive coloring material and a light absorber are vapor-deposited on the substrate 21. Therefore, each layer in FIG. 2 is close to a bulk, and solids having a considerably high color former concentration are laminated.

この方法の利点は(1)真空蒸着という均一性、膜厚コ
ントロールの容易な作製方法を用いている。(2)積層
が蒸着源を切り替える操作のみで行なわれスピンコート
等の方法に比べ下層に与える上層積層の影響が小さい。
(3)溶媒に溶解したバインダ及び発色剤や色素をスピ
ンコートする方法に対して各層中の材料の有効濃度が高
く、発色感度、速度、コントラストが良くなることであ
る。上記の基板としてはプラスチックシート、プラスチ
ック板(アクリル,ポリカーボネート)及びガラス板等
の光透過材料を用いることができる。反射光読み出し形
として用いる時は基板として上質紙や高熱伝導率物質の
金属板(アルミニウム等)の不透明材料も用いることが
できる。
The advantage of this method is that (1) a vacuum evaporation method is used, which is a manufacturing method with which uniformity and film thickness can be easily controlled. (2) Since the stacking is performed only by switching the vapor deposition source, the influence of the stacking of the upper layer on the lower layer is smaller than that of a method such as spin coating.
(3) The effective concentration of the material in each layer is high, and the color developing sensitivity, speed, and contrast are improved as compared with the method of spin coating the binder and the color developing agent or the dye dissolved in the solvent. As the substrate, a light transmitting material such as a plastic sheet, a plastic plate (acrylic, polycarbonate), a glass plate or the like can be used. When used as a reflected light readout type, an opaque material such as a high quality paper or a metal plate (aluminum or the like) of a high thermal conductivity material can be used as the substrate.

感熱発色剤としてはNCRタイプと呼ばれる一部のロイコ
染料と顕色剤の組み合わせを用いる。具体的なロイコ染
料としてはクリスタルバイオレットラクトン(紫青)、
ベンゾイルロイコメチレンブルー(青)、RED-DCF
(赤、保土ケ谷化学製)、TH-107(黒、保土ケ谷化学
製)、マラカイトロイコグリーン(緑)、3-クロロ‐6
ミクロヘキシルアミノフルオラン(黄橙)リアクト・イ
エロー(BASFジヤパン製)が上げられる。顕色剤として
はビスフェノールA(ビスフェノールZ)、4-ヒドロキ
シフェノキシド等を用いることができる。
A combination of some leuco dyes called NCR type and a color developer is used as the heat-sensitive color former. Specific leuco dyes include crystal violet lactone (purple blue),
Benzoyl leuco methylene blue (blue), RED-DCF
(Red, Hodogaya Chemical Co., Ltd.), TH-107 (black, Hodogaya Chemical Co., Ltd.), Malachite Troico Green (green), 3-chloro-6
Microhexyl aminofluoran (yellow orange) React Yellow (manufactured by BASF Japan) is raised. As the developer, bisphenol A (bisphenol Z), 4-hydroxyphenoxide or the like can be used.

光吸収剤としては蒸着可能な色素を発色剤の吸収域に重
ならないようにして用いることができる。具体的例とし
てフタロシアニンブルー,フルオレッセン,ローダミン
6GC.I.Disperse Yellow5(スミカロン イエロ 5GE住友
化学製)等の真空蒸着が可能な可視光域染料を用いるこ
とができる。また、近赤外光吸収剤を用いた場合は、可
視光の吸収に重ならないため、比較的容易に多重発色化
が可能となる。この領域に吸収を持つ近赤外吸収色素と
してはジエチルアミノナフトールスクアリリウム、ジメ
チルアミノナフトールスクアリリウム等のスクアリリウ
ム色素、NKX-113(日本感光色素(株)製)を用いるこ
とができる。更にビス‐〔ミス1,2トルイハ〕エチレン
‐1,2ジチオレートニッケル、ビス‐(1クロロ3,4ジチ
オフェノレート)ニッケル等の金属錯体塩も用いること
ができる。具体的例としては上記金属錯体塩として三井
東圧ファイン(株)製近赤外吸収剤PA-1001(1100nm),
PA-1002(895nm),PA-1003(850nm)、PA-1005(850n
m),PA-1006(870nm)及びこれらの吸収剤から安定塩を
処理して取り除いたものを利用することができる。()
内の数字は吸収波長を示す。
As the light absorber, a dye that can be vapor-deposited can be used so as not to overlap the absorption region of the color former. Specific examples are phthalocyanine blue, fluorescein, rhodamine.
A visible light region dye capable of vacuum deposition such as 6GC.I.Disperse Yellow 5 (Sumikaron Yellow 5GE Sumitomo Chemical Co., Ltd.) can be used. Further, when a near-infrared light absorbing agent is used, since it does not overlap the absorption of visible light, it is possible to form multiple colors relatively easily. As the near-infrared absorbing dye having absorption in this region, squarylium dyes such as diethylaminonaphthol squarylium and dimethylaminonaphthol squarylium, and NKX-113 (manufactured by Japan Photosensitive Dye Co., Ltd.) can be used. Further, metal complex salts of bis- [miss 1,2 tolujha] ethylene-1,2 dithiolate nickel, bis- (1 chloro 3,4 dithiophenolate) nickel and the like can also be used. As a specific example, as the above-mentioned metal complex salt, a near infrared absorber PA-1001 (1100 nm) manufactured by Mitsui Toatsu Fine Co., Ltd.,
PA-1002 (895nm), PA-1003 (850nm), PA-1005 (850n
m), PA-1006 (870 nm), and those obtained by treating and removing stable salts from these absorbents can be used. ()
The numbers inside indicate the absorption wavelength.

こうした近赤外吸収剤は可視部(400〜700nm)の領域で
は吸収波長極大域(近赤外部)の1/100程度の吸収係数
しか有さず可視光部を実質的に透明に保ったまま近赤外
領域の光を吸収することができる。
These near-infrared absorbers have an absorption coefficient of only about 1/100 of the maximum absorption wavelength region (near-infrared region) in the visible region (400-700 nm), while keeping the visible region substantially transparent. It can absorb light in the near infrared region.

次に本発明の光記録薄膜媒体の製造方法を説明する。Next, a method for manufacturing the optical recording thin film medium of the present invention will be described.

上記発色材料を基板上に真空蒸着する。次に光吸収剤層
を真空蒸着し積層した後、発色剤を更に真空蒸着して積
層する。この方法で、透明な均質の蒸着膜を作ることが
できるが、発色剤の性質によっては、例えばビスフェノ
ールAの様に真空蒸着を行なっても、微結晶が析出し、
透明な薄膜を得難い場合がある。前述した発色剤の2成
分の内でも顕色剤にこの現象が著しい。これを防ぐため
に次の方法を発見した。このような結晶化を起こし易い
顕色剤に適量の芳香族及び脂肪族アミドを分散混合した
蒸着用原料を調整する。この材料を蒸着ボート内から真
空蒸着すると脂肪族アミドと顕色剤アミドの固溶体状の
薄膜が生成し、顕色剤単体の蒸着膜と比べ透明性、表面
均一性のすぐれた薄膜を作製することができる。第3図
には上記の方法で得た顕色剤層光透過率と顕色剤単位で
の透過率を比較して示す。すなわち、31は顕色剤単体蒸
着膜の透過率を示し、32はアミド類・顕色剤混合物蒸着
膜の透過率を示す。多重発色の場合は以上の操作を繰り
返して行なうことによって、同様に積層膜の作製が可能
である。
The above coloring material is vacuum-deposited on the substrate. Next, the light absorber layer is vacuum deposited and laminated, and then the color former is further vacuum deposited and laminated. By this method, a transparent homogeneous vapor-deposited film can be formed, but depending on the nature of the color former, even if vacuum vapor-deposition such as bisphenol A is performed, fine crystals are deposited,
It may be difficult to obtain a transparent thin film. This phenomenon is remarkable in the color developer among the above-mentioned two components of the color developer. We found the following method to prevent this. A raw material for vapor deposition is prepared by dispersing and mixing an appropriate amount of an aromatic amide and an aliphatic amide in a color developer that easily causes such crystallization. When this material is vacuum-deposited from the vapor deposition boat, a solid solution thin film of aliphatic amide and developer amide is generated, and a thin film with excellent transparency and surface uniformity is prepared compared to the vapor deposition film of the developer alone. You can FIG. 3 shows a comparison between the light transmittance of the developer layer obtained by the above method and the transmittance of each developer unit. That is, 31 represents the transmittance of the vapor deposited film of the developer alone, and 32 represents the transmittance of the vapor deposited film of the amide / developer mixture. In the case of multiple color development, a laminated film can be similarly produced by repeating the above operation.

以下に、本発明の実施例を説明する。Examples of the present invention will be described below.

(実施例1) 以下の原料をTaボート上に各々入れて、1×10-5Torr以
下の真空槽内で加熱して、ガラス基板上に蒸着し、各薄
膜を積層した。
(Example 1) The following raw materials were placed in a Ta boat, respectively, heated in a vacuum chamber of 1 x 10 -5 Torr or less, vapor-deposited on a glass substrate, and each thin film was laminated.

こうして得た光記録薄膜の吸収特性を第4図に示す。41
は光照射前の薄膜の透過率、42は光照射後の薄膜の透過
率を示す。450nm近辺の吸収はフルオレセインの吸収に
基づくものである。この薄膜に波長488nmのArレーザ光
(10mW)を10μmφのスポットに絞って100nsec照射し
た所第4図の破線で示すように青色に着色された。金属
パタンのマスクを密着させてレーザ光を広げて照射した
場合5μmのラインアンドスペースが解像できた。
The absorption characteristics of the optical recording thin film thus obtained are shown in FIG. 41
Indicates the transmittance of the thin film before light irradiation, and 42 indicates the transmittance of the thin film after light irradiation. The absorption around 450 nm is based on the absorption of fluorescein. When this thin film was irradiated with Ar laser light (10 mW) having a wavelength of 488 nm at a spot of 10 μmφ and irradiated for 100 nsec, it was colored blue as shown by the broken line in FIG. When the mask of the metal pattern was brought into close contact and the laser beam was spread and irradiated, a line and space of 5 μm could be resolved.

(実施例2) 実施例1と同様以下の原料を順次Taボート上からアクリ
ル板上に真空蒸着して薄膜を積層した。この薄膜上にマ
イラーフイルムを圧着ラミネートして記録用薄膜とし
た。
(Example 2) Similar to Example 1, the following raw materials were sequentially vacuum-deposited from an Ta boat on an acrylic plate to form thin films. A Mylar film was pressure-bonded and laminated on this thin film to form a recording thin film.

こうして得た光記録薄膜にアクリル板側から波長830nm
の半導体レーザ光を照射した。レーザ光出力6mW,1.6μ
mφスポット径の条件で30nsecのパルス光で、赤色に発
色した。記録感度として約20mJ/cm2であった。
A wavelength of 830 nm was applied to the optical recording thin film thus obtained from the acrylic plate side.
Was irradiated with the semiconductor laser light. Laser light output 6mW, 1.6μ
It was colored red by pulsed light of 30 nsec under the condition of mφ spot diameter. The recording sensitivity was about 20 mJ / cm 2 .

(実施例3) 以下の原料をMo蒸着ボート上からマイラーフィルム上に
真空蒸着して積層を行ない光記録薄膜を作製した。第5
図にこの記録用薄膜の構成を示した。第5図において、
51は基板、52は発色剤層(I)、53は光吸収剤層
(I)、54は顕色剤層、55は光吸収剤層(II)、56は発
色剤層(II)である。
(Example 3) The following raw materials were vacuum-deposited on a Mylar film from a Mo vapor deposition boat to perform lamination to prepare an optical recording thin film. Fifth
The structure of this recording thin film is shown in the figure. In FIG.
51 is a substrate, 52 is a color former layer (I), 53 is a light absorber layer (I), 54 is a developer layer, 55 is a light absorber layer (II), and 56 is a color former layer (II). .

この記録用薄膜を波長850nmの半導体レーザで露光する
と青発色が起こり、波長1100nmで露光すると赤発色が起
こった。この薄膜を用いると2色の多重発色記録が行な
えた。記録感度は、各々約20mJ/cm2であった。
When this recording thin film was exposed to a semiconductor laser having a wavelength of 850 nm, blue color was generated, and when exposed to a wavelength of 1100 nm, red color was generated. By using this thin film, multiple color recording of two colors could be performed. The recording sensitivity was about 20 mJ / cm 2 .

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明を用いることにより、サー
マルヘッド等の直接加熱方式を用いることなく、半導体
レーザ等の光照射によって、高解像度の高コントラスト
記録を行なう媒体を作製することができる。また、作製
された光記録薄膜媒体は発色剤層が透明薄膜で均一かつ
発色剤濃度もバインダ分散系に比べると非常に高いため
に、発色剤の積層が多重に行なわれた多重発色構成時も
光のロスが少なく、また発色感度も高くなる利点を持っ
ている。更に、解像度の点でも、バインダ分散系マイク
ロカプセル分散系の感熱発色剤に比べ極めて改良されて
いる利点を有する。また、低熱伝導率の有機物薄膜で、
光吸収剤が基板から熱的に隔離されているため照射光の
光エネルギーが集中的に薄膜に吸収されるので非常に高
感度となり、また、反射光読み出し形として用いる時は
基板として金属を用いることができるので高熱伝導率物
質を使える利点も有している。従って、本発明による光
記録薄膜媒体の製造方法は、高コントラスト、高速多色
記録を実現可能とし、波長多重光ディスク媒体、カラー
マイクロフィルムに応用することが好適な記録材料とな
る。更に(実施例2)の様に透明体でサンドイッチにし
た構造では、従来の発色剤に比べ、耐溶剤性、耐湿性も
格段に向上させることができる。
As described above, by using the present invention, it is possible to manufacture a medium for performing high-contrast recording with high resolution by irradiation with light such as a semiconductor laser without using a direct heating method such as a thermal head. In addition, in the produced optical recording thin film medium, since the color former layer is a transparent thin film and is uniform and the color former concentration is much higher than that of the binder dispersion system, even when the color formers are laminated in multiple layers, It has the advantages of low light loss and high color development sensitivity. Further, in terms of resolution, there is an advantage that it is extremely improved as compared with a binder dispersion type microcapsule dispersion type thermosensitive color developing agent. In addition, it is an organic thin film with low thermal conductivity,
Since the light absorber is thermally isolated from the substrate, the light energy of the irradiation light is intensively absorbed by the thin film, resulting in extremely high sensitivity. When using the reflected light readout type, a metal is used as the substrate. Therefore, it has an advantage that a high thermal conductivity material can be used. Therefore, the method for producing an optical recording thin film medium according to the present invention makes it possible to realize high-contrast, high-speed multicolor recording, and is a recording material suitable for application to a wavelength multiplexing optical disc medium and a color microfilm. Further, in the structure of sandwiching a transparent body as in (Example 2), solvent resistance and moisture resistance can be remarkably improved as compared with the conventional color former.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の光感熱記録媒体を示す構成説明図、第2
図は本発明に係る光記録薄膜媒体の基本構成の一例を示
す断面図、第3図は本発明に係る顕色剤層の光透過率特
性の一例を示す図、第4図は本発明に係る光記録薄膜媒
体の特性の一例を示す図、第5図は本発明に係る多重発
色記録用薄膜の構成の一例を示す断面図である。 11……基板、12……発色剤、13……記録転写用原稿、14
……原稿の光吸収部、15……発色部、16……光源、21…
…基板、22……発色剤層、23……光吸収剤層、24……発
色剤層、25……記録用照射光の方向、31……顕色剤単体
蒸着膜の透過率、32……アミド類・顕色剤混合物蒸着膜
の透過率、41……光照射前の薄膜の透過率(実線)、42
……光照射後の薄膜の透過率(破線)、51……基板、52
……発色剤層(I)、53……光吸収剤層(I)、54……
顕色剤層、55……光吸収剤層(II)、56……発色剤層
(II)。
FIG. 1 is a structural explanatory view showing a conventional photothermographic recording medium, and FIG.
FIG. 3 is a cross-sectional view showing an example of the basic constitution of an optical recording thin film medium according to the present invention, FIG. 3 is a view showing an example of light transmittance characteristics of a color developer layer according to the present invention, and FIG. FIG. 5 is a diagram showing an example of the characteristics of such an optical recording thin film medium, and FIG. 5 is a sectional view showing an example of the configuration of the multiple color recording thin film according to the present invention. 11 …… Substrate, 12 …… Coloring agent, 13 …… Record transfer original, 14
...... Original light absorption part, 15 ...... Coloring part, 16 ...... Light source, 21 ...
… Substrate, 22 …… Coloring agent layer, 23 …… Light absorbing agent layer, 24 …… Coloring agent layer, 25 …… Direction of recording irradiation light, 31 …… Transmittance of developer developer vapor deposition film, 32 …… … Transmittance of vapor deposition film of amide / developer mixture, 41 …… Transmittance of thin film before light irradiation (solid line), 42
…… Transmittance of thin film after light irradiation (broken line), 51 …… Substrate, 52
…… Color former layer (I), 53 …… Light absorber layer (I), 54 ……
Developer layer 55, light absorber layer (II), 56 color former layer (II).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上にロイコ染料層を真空蒸着を用いて
積層して後、前記ロイコ染料層上に可視光域吸収剤もし
くは近赤外光域吸収剤よりなる光吸収剤層を真空蒸着を
用いて積層し、その後前記光吸収剤層上に芳香族もしく
は脂肪族アミドを分散混合した顕色剤層を真空蒸着を用
いて積層し、前記ロイコ染料層と前記顕色剤層を組み合
わせて感熱発色剤層を形成することを特徴とする光記録
薄膜媒体の製造方法。
1. A leuco dye layer is laminated on a substrate by vacuum vapor deposition, and then a light absorber layer comprising a visible light region absorber or a near infrared light region absorber is vacuum deposited on the leuco dye layer. And then laminated using a vacuum deposition a developer layer in which an aromatic or aliphatic amide is dispersed and mixed on the light absorber layer, by combining the leuco dye layer and the developer layer. A method for producing an optical recording thin film medium, which comprises forming a thermosensitive color former layer.
JP57111549A 1982-05-31 1982-06-30 Method for manufacturing optical recording thin film medium Expired - Lifetime JPH0692191B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57111549A JPH0692191B2 (en) 1982-06-30 1982-06-30 Method for manufacturing optical recording thin film medium
FR8309208A FR2527822B1 (en) 1982-05-31 1983-05-30
DE19833319738 DE3319738A1 (en) 1982-05-31 1983-05-31 OPTICAL RECORDING MEDIUM AND METHOD FOR PRODUCING THE SAME
US06/703,453 US4585722A (en) 1982-05-31 1985-02-20 Optical recording media with thermal coloration and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111549A JPH0692191B2 (en) 1982-06-30 1982-06-30 Method for manufacturing optical recording thin film medium

Publications (2)

Publication Number Publication Date
JPS592880A JPS592880A (en) 1984-01-09
JPH0692191B2 true JPH0692191B2 (en) 1994-11-16

Family

ID=14564195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111549A Expired - Lifetime JPH0692191B2 (en) 1982-05-31 1982-06-30 Method for manufacturing optical recording thin film medium

Country Status (1)

Country Link
JP (1) JPH0692191B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230796A (en) * 1986-03-31 1987-10-09 Seiko Epson Corp Bis(dithiolene)metal complex compound
DE69213578T2 (en) * 1991-06-24 1997-04-17 Jujo Paper Co Ltd Transparent recording material
EP0737722B1 (en) * 1995-04-14 2001-07-04 Nippon Paper Industries Co., Ltd. New indoaniline metal complex, process for their production, and transparent recording medium and optical recording medium by use thereof

Also Published As

Publication number Publication date
JPS592880A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
US5219703A (en) Laser-induced thermal dye transfer with bleachable near-infrared absorbing sensitizers
US4585722A (en) Optical recording media with thermal coloration and process for producing same
US5686383A (en) Method of making a color filter array by colorant transfer and lamination
EP0769991B1 (en) Methods for preparing integral black matrix/color filter elements
CA2018040A1 (en) Infrared absorbing bis (chalcogenopyrylo) polymethine dyes for dye-donor element used in laser-induced thermal dye transfer
JPH0125715B2 (en)
US3811773A (en) Thermographic copying
JP2763205B2 (en) Image forming method using thermal recording material
US5183798A (en) Multiple pass laser printing for improved uniformity of a transferred image
JPH0692191B2 (en) Method for manufacturing optical recording thin film medium
US5576265A (en) Color filter arrays by stencil printing
US5891602A (en) Dye donor binder for laser-induced thermal dye transfer
US4392141A (en) Image forming method
JPH0152192B2 (en)
JP2592206B2 (en) Method for manufacturing color filter array element
US3405265A (en) Thermographic copying method and apparatus having means for uniformly pre-heating the copy sheet
JPH03114003A (en) Making of non-transparent grid ray for color filter array element by thermal transfer
JPS61237685A (en) Photothermal color forming method and photothermal color forming medium
US5800960A (en) Uniform background for color transfer
JPS61252501A (en) Manufacture of multicolor color filter
US5578549A (en) Single-sheet process for obtaining multicolor image using dye-containing beads
JP2637688B2 (en) Multicolor dye-donor element for laser-induced thermal dye transfer
JPH02253988A (en) Thermal transfer sheet for laser recording and image recording method using the same sheet
US3418149A (en) Thermographic copy process
US3717093A (en) Thermographic method of spirit duplication and transfer sheet for use therein