JPH0691941B2 - Wet removal method of nitrogen oxides in various combustion exhaust gas - Google Patents

Wet removal method of nitrogen oxides in various combustion exhaust gas

Info

Publication number
JPH0691941B2
JPH0691941B2 JP1024369A JP2436989A JPH0691941B2 JP H0691941 B2 JPH0691941 B2 JP H0691941B2 JP 1024369 A JP1024369 A JP 1024369A JP 2436989 A JP2436989 A JP 2436989A JP H0691941 B2 JPH0691941 B2 JP H0691941B2
Authority
JP
Japan
Prior art keywords
exhaust gas
chlorine
absorption
solution
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1024369A
Other languages
Japanese (ja)
Other versions
JPH02203921A (en
Inventor
重則 鬼塚
利雄 濱
晃生 広常
利治 小林
善介 井上
尚夫 伊藤
實 澤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1024369A priority Critical patent/JPH0691941B2/en
Publication of JPH02203921A publication Critical patent/JPH02203921A/en
Publication of JPH0691941B2 publication Critical patent/JPH0691941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、各種ボイラ、各種加熱炉、さらにはごみ焼
き炉などから排出される燃焼排ガス中の窒素酸化物(NO
x)、とりわけ一酸化窒素(NO)を効果的に除去し、も
って環境の改善に資するものである。
Description: TECHNICAL FIELD The present invention relates to nitrogen oxides (NO) in combustion exhaust gas discharged from various boilers, various heating furnaces, and dust-burning furnaces.
x), especially nitric oxide (NO) is effectively removed, which contributes to the improvement of the environment.

従来技術およびその問題点 従来、この種の排ガス中のNOx除去技術としては、触媒
還元脱硝法、無触媒還元脱硝法などの乾式脱硝法が多く
採用されている。周知のとおり、触媒還元法は、反応温
度300〜400℃でチタン・バナジウム系の触媒を用い、還
元剤としてアンモニアを注入する方式である。この方式
では脱硝率90%以上が得られ、数多くの実績もある。し
かしこの方式は、触媒費も含め設備費が高くつき、また
高度な制御系を必要とするなどの問題を有する。そのた
め、これは比較的大容量の排ガス処理に多く用いられ、
中少量の排ガス処理の例は少ない。
Conventional technology and its problems Conventionally, as a NOx removal technology for this kind of exhaust gas, dry denitration methods such as catalytic reduction denitration method and non-catalytic reduction denitration method have been widely adopted. As is well known, the catalytic reduction method is a method in which a titanium / vanadium catalyst is used at a reaction temperature of 300 to 400 ° C. and ammonia is injected as a reducing agent. With this method, a denitrification rate of 90% or more was obtained, and there are many actual results. However, this system has problems that the equipment cost including the catalyst cost is high, and that a sophisticated control system is required. Therefore, it is often used for treating large-volume exhaust gas,
There are few examples of medium- and small-volume exhaust gas treatment.

他方、無触媒還元脱硝法は1000℃程度の燃焼炉もしくは
煙道にアンモニアを注入する方式であって、特にごみ焼
き炉での実績が多い。しかし、この方式では脱硝率は50
%以下程度と低く、その用途は制限される。
On the other hand, the non-catalytic reduction denitration method is a method of injecting ammonia into a combustion furnace or a flue at about 1000 ° C., and it has a lot of results especially in a dust-burning furnace. However, the denitrification rate is 50 with this method.
%, Which is as low as about 10% or less and its use is limited.

上記乾式脱硝法に対し、湿式脱硝法は、反応温度が低
く、比較的設備費が安価であり、運転操作も容易である
ため、脱硝可能な適当なプロセスが開発されさえすれ
ば、中少量の排ガス処理を対象とした脱硝法として極め
て好ましい方法となり得る。
In contrast to the above-mentioned dry denitration method, the wet denitration method has a low reaction temperature, relatively low equipment cost, and easy operation. It can be a very preferable method as a denitration method for treating exhaust gas.

以上の状況に鑑み、本発明者らは先に、排ガスを臭素イ
オンを含む酸化剤含有水溶液で処理する方法(特願昭63
−24146号)、同じく排ガスをアンモニウムイオンを含
む酸化剤含有液、またはアンモニウムイオンと臭素イオ
ンとを含む酸化剤含有液で処理する方法(特願昭63−14
7606号)を提案した。
In view of the above situation, the present inventors have previously proposed a method of treating exhaust gas with an oxidizing agent-containing aqueous solution containing bromine ions (Japanese Patent Application No.
-24146), a method of treating exhaust gas with an oxidizing agent-containing liquid containing ammonium ions or an oxidizing agent-containing liquid containing ammonium ions and bromine ions (Japanese Patent Application No. 63-14).
7606) was proposed.

本発明は、上記特許出願の発明の延長上にあるものであ
って、より効果的なNOx除去法を追求した結果、処理す
べき排ガス中に予め塩素を添加しておき、その後アンモ
ニウムイオンおよび臭素イオンを含む苛性ソーダ水溶液
よりなる吸収液に、上記塩素含有排ガスを接触させるこ
とが、脱硝に顕著な効果を示すことを見い出し、完成す
るに至ったものである。
The present invention is an extension of the invention of the above-mentioned patent application, and as a result of pursuing a more effective NOx removal method, chlorine is added to the exhaust gas to be treated in advance, and then ammonium ions and bromine are added. The inventors have found that bringing the above chlorine-containing exhaust gas into contact with an absorbent containing an aqueous caustic soda solution containing ions has a remarkable effect on denitration, and have completed the invention.

問題点の解決手段 この発明による排ガス中のNOx除去方法は、排ガスを湿
式処理するに当たり、処理すべき排ガス中に予め塩素を
添加しておき、その後アンモニウムイオン(NH4 +)およ
び臭素イオン(Br-)を含む苛性ソーダ(NaOH)水溶液
よりなる吸収液に、上記塩素含有排ガスを接触させるこ
とを特徴とする。
In the method for removing NOx from exhaust gas according to the present invention, when wet processing the exhaust gas, chlorine is previously added to the exhaust gas to be treated, and then ammonium ion (NH 4 + ) and bromine ion (Br 4 - ) Containing an aqueous solution of caustic soda (NaOH) containing the chlorine-containing exhaust gas.

この発明による方法は、NOxのうち特に一酸化窒素(N
O)の吸収除去に顕著な効果を示す。これに対して、NOx
の一部を占める二酸化窒素(NO2)の吸収は余り顕著で
なく、NOの吸収に比較すれば少ない。各種燃焼排ガス中
のNOxはNOとNO2によって構成されるが、通常NOの割合が
非常に高く、95%以上はNOと見られている。したがっ
て、本発明の方法は、この観点からも各種燃焼排ガス中
のNOxの吸収除去法として優れた方法である。
The method according to the invention is particularly suitable for NOx, especially nitric oxide (N
O) has a remarkable effect on absorption and removal. In contrast, NOx
The absorption of nitrogen dioxide (NO 2 ), which accounts for a part of NO2, is not so remarkable and is small compared to the absorption of NO. NOx in various flue gas is composed of NO and NO 2 , but the proportion of NO is usually very high, and 95% or more is considered to be NO. Therefore, the method of the present invention is an excellent method as a method for absorbing and removing NOx in various combustion exhaust gas from this viewpoint as well.

排ガス中に添加する塩素の量は、Cl2/NOモル比として、
好ましくは1〜3である。排ガス中への塩素の添加方法
としては、ボンベ詰め塩素ガスを直接注入拡散させる方
法などが採用できる。
The amount of chlorine added to the exhaust gas is Cl 2 / NO molar ratio,
It is preferably 1 to 3. As a method of adding chlorine to the exhaust gas, a method of directly injecting and diffusing a cylinder-filled chlorine gas can be adopted.

また、NOx吸収段の前流側に排ガス洗浄段を設け、その
洗浄液として、次亜塩素酸ソーダ(NaClO)を溶解しか
つ鉱酸によってpHを強酸性たとえば3以下に調整した液
を用い、この洗浄液に排ガスを接触させる方法も採用で
きる。この操作によって、発生する塩素ガスが排ガス中
に添加されることになる。この反応は次式のとおりであ
る。
Further, an exhaust gas cleaning stage is provided on the upstream side of the NOx absorption stage, and as the cleaning liquid, a solution in which sodium hypochlorite (NaClO) is dissolved and whose pH is adjusted to a strong acidity of, for example, 3 or less with a mineral acid is used. A method of bringing the exhaust gas into contact with the cleaning liquid can also be adopted. By this operation, the generated chlorine gas is added to the exhaust gas. This reaction is as follows:

NaClO+2H+→ Na++1/2Cl2+H2O NaClOは工業薬品として多量にかつ安価に市販されてい
るので、これをそのまま使用することができる。また、
食塩水の電解によって塩素ガスを現地で容易に供給する
こともできる。さらに、ごみ焼き炉の洗煙排水中には通
常多量の食塩が含まれているため、その排水を隔膜を用
いないで電解することによってもNaClOを含有する水溶
液を得ることができる。この排水を使用する効果は主と
して経済的な面にあり、塩素の発生機構、さらには後流
段でのNOx除去率の向上などの反応面にはない。
NaClO + 2H + → Na + + 1 / 2Cl 2 + H 2 O NaClO is commercially available as a large amount at low cost as an industrial chemical, so it can be used as it is. Also,
It is also possible to easily supply chlorine gas locally by electrolysis of saline solution. Furthermore, since a large amount of salt is usually contained in the smoke washing wastewater of the dust-burning furnace, an aqueous solution containing NaClO can be obtained by electrolyzing the wastewater without using a diaphragm. The effect of using this effluent is mainly on the economic side, and it is not on the reaction side such as the chlorine generation mechanism and the improvement of the NOx removal rate in the downstream stage.

NOxの吸収液は基本的にはNaOH水溶液であり、吸収塔入
口における同水溶液のpHは3〜9が望ましい。このpHは
NOxの吸収除去率に影響を与えるのは勿論であるが、さ
らにアルカリ側の吸収液は上流側で添加される塩素のう
ち反応に過剰な分を吸収除去し、浄化後の処理ガス中の
残留塩素の問題を解決する役割を果たす。
The absorption liquid of NOx is basically an aqueous solution of NaOH, and the pH of the aqueous solution at the inlet of the absorption tower is preferably 3-9. This pH is
Not only does it affect the rate of absorption and removal of NOx, but the absorption liquid on the alkaline side also absorbs and removes excess of the chlorine added on the upstream side to the reaction, and it remains in the treated gas after purification. It plays a role in solving chlorine problems.

NOx吸収水溶液中にNH4 +およびBr-が存在すれば、NOxの
吸収効率が向上することは、先に提案した特許出願(特
願昭63−24146号、同63−147606号)において、吸収液
にこれらイオンとNaClOが同時に含まれている場合につ
いて述べた。この吸収では、下記反応式で示すように、
NOがNaClOによって酸化されてNO2となりこれが吸収され
るが、Br-はこの酸化反応の触媒として作用し、NH4 +
液中に吸収されたNO2の中和剤として作用するものと考
えられた。
The presence of NH 4 + and Br − in the NOx absorbing aqueous solution improves the NOx absorption efficiency, which is shown in the previously proposed patent applications (Japanese Patent Application Nos. 63-24146 and 63-147606). The case where the liquid contains these ions and NaClO at the same time is described. In this absorption, as shown in the following reaction formula,
It is considered that NO is oxidized by NaClO and becomes NO 2 , which is absorbed, but Br acts as a catalyst for this oxidation reaction, and NH 4 + acts as a neutralizing agent for NO 2 absorbed in the liquid. Was given.

NaClO+NO→NO2+NaCl 2NO2+2NH4OH→ NH4NO3+NH4NO2+H2O 本発明者らは、上記反応系について、脱硝率向上のため
に鋭意実験研究を進めた結果、その吸収機構に関して新
しい知見が得られると共に、大幅な脱硝率の向上を達成
することができた。
NaClO + NO → NO 2 + NaCl 2 NO 2 + 2NH 4 OH → NH 4 NO 3 + NH 4 NO 2 + H 2 O The inventors of the present invention conducted extensive studies to improve the denitration rate, and as a result, the absorption mechanism. In addition to obtaining new findings, we were able to achieve a significant improvement in the denitration rate.

既に述べたように、本発明の特徴とするところは、処理
すべき排ガスに予め塩素を添加しておき、その後NH4 +
Br-を含むNaOH水溶液を吸収液とし、同吸収液に排ガス
を接触させる点にある。ここにおいて、NH4 +の供給源と
しては、NH3(ガス)、NH4OH(水溶液)が使用できるこ
とは勿論であるが、工業的にはアンモニウム塩たとえば
硫酸アンモニウム((NH4)2SO4)、塩化アンモニウム
(NH4Cl)などが、経済的にかつ反応面での問題なく使
用できる。またBr-供給源としてはHBrのほか、実用上は
臭化カリウムさらには臭化アンモニウムなどの塩が使用
できる。この方法において、排ガス中に予め添加される
塩素は、NOxに直接作用するのではなく、下記反応式で
示すように、後流段の吸収液中のBr-をガス化する働き
をする。
As described above, the feature of the present invention is that chlorine is added to the exhaust gas to be treated in advance, and then NH 4 + is added.
Br - aqueous NaOH solution and absorbent solution containing, in terms of contacting the flue gas in the absorption liquid. Here, as the NH 4 + sources, NH 3 (gas), although of course it can be used is NH 4 OH (aq), the industrial ammonium salts such as ammonium sulfate ((NH 4) 2 SO 4 ) , Ammonium chloride (NH 4 Cl), etc. can be used economically and without any problems in terms of reaction. In addition to HBr as a Br supply source, practically salts such as potassium bromide and ammonium bromide can be used. In this method, chlorine added in advance in the exhaust gas does not act directly on NOx, but acts to gasify Br in the absorption liquid in the downstream stage, as shown in the following reaction formula.

1/2Cl2+Br-→ 1/2Br2+Cl- そして、このBr2がNOx、特にNOと反応する。1 / 2Cl 2 + Br → 1 / 2Br 2 + Cl And this Br 2 reacts with NOx, especially NO.

NO+1/2Br2→NOBr このNOBrは非常に反応性に富み、水溶液に吸収され易
い。
NO + 1 / 2Br 2 → NOBr This NOBr is very reactive and easily absorbed by aqueous solution.

NOBr+H2O→HNO2+HBr この反応で臭素は再び水溶液中にBr-として戻るため、
臭素はこの一連の反応では触媒的作用をしていることに
なる。
NOBr + H 2 O → HNO 2 + HBr In this reaction, bromine returns to the aqueous solution as Br ,
Bromine acts as a catalyst in this series of reactions.

吸収液中のNH4 +は上記反応で生成するHNO2の中和剤とし
て作用すると考えられるが、実験的には単に中和剤とし
ての働きだけでなく、NOBrの吸収液への吸収速度を高め
る働きをしているように認められた。
NH 4 + in the absorbing solution is considered to act as a neutralizing agent for HNO 2 produced in the above reaction, but experimentally, it not only acts as a neutralizing agent, but also the absorption rate of NOBr into the absorbing solution. It was recognized as working to enhance.

HNO2+NH4 +→ NH4NO2+H+ 以上のように、本発明によるNOxの吸収は、従来言われ
ていたようにNOのNO2への酸化と化学吸収によるもので
はなく、中間体として反応性の高いNOBrの生成によるも
のと考えられる。以上の反応は、中間体の分析などの方
法によって確認された訳ではないが、下記のような実験
的な現象によって推定したものである。
HNO 2 + NH 4 + → NH 4 NO 2 + H + As described above, the absorption of NOx according to the present invention is not due to the oxidation of NO to NO 2 and chemical absorption as described above, but as an intermediate. This is probably due to the formation of highly reactive NOBr. The above reaction is not confirmed by a method such as analysis of an intermediate, but it is estimated by the following experimental phenomenon.

1)塩素を添加しないと、NO除去率が極めて低かった。1) When chlorine was not added, the NO removal rate was extremely low.

2)塩素を添加しない系で排ガス中に直接臭素ガスを添
加した実験で高い脱硝率が得られた。
2) A high denitration rate was obtained in an experiment in which bromine gas was directly added to the exhaust gas in a system containing no chlorine.

3)処理の結果、NOは除去されたが、NO2はほとんど除
去されなかった。
3) As a result of the treatment, NO was removed, but NO 2 was hardly removed.

4)NOの除去率は排ガス中の酸素濃度の影響を受けず、
酸素濃度0%でもNOは有効に除去された。
4) NO removal rate is not affected by oxygen concentration in exhaust gas,
Even when the oxygen concentration was 0%, NO was effectively removed.

5)Br-濃度0mg/lの場合は若干のNO除去率が認められた
が、NH4 +0mg/lの場合NO除去率はほぼ0%であった。
5) A slight NO removal rate was observed when the Br concentration was 0 mg / l, but the NO removal rate was almost 0% when NH 4 + 0 mg / l.

6)吸収塔出口の吸収液中にNO2 -およびNO3 -が検出され
た(NO2 -濃度>NO3 -濃度)。
6) the absorbing solution in the absorption tower outlet NO 2 - and NO 3 - is detected (NO 2 - concentration> NO 3 - concentration).

以上、いずれにしても本発明のNOxの湿式吸収法によっ
て、従来認められなかった高い脱硝率を達成できるよう
になった。また、本発明の重要な効果として、従来のNa
ClOを用いた1段吸収塔方式では、高い脱硝率を維持す
るためには吸収液のpHを下げねばならなかったが、pHを
下げると吸収塔出口側に塩素の漏洩が発生する。塩素の
漏洩を抑制するようにすると、達成可能な脱硝率に限界
が生じるようになる。これに対して、本発明方法の如き
2段方式によると、吸収液の入口のpHはアルカリサイド
にすることができるため、たとえ過剰の塩素が吸収塔に
導入されても、過剰分は完全に吸収除去され、問題を発
生することがない。
As described above, in any case, the NOx wet absorption method of the present invention can achieve a high denitrification rate that has not been heretofore recognized. Also, as an important effect of the present invention, conventional Na
In the one-stage absorption tower system using ClO, the pH of the absorbing solution had to be lowered in order to maintain a high denitration rate, but when the pH was lowered, chlorine leakage occurred at the outlet side of the absorption tower. If chlorine leakage is suppressed, the achievable denitration rate will be limited. On the other hand, according to the two-stage system such as the method of the present invention, the pH of the inlet of the absorption liquid can be on the alkaline side, so that even if excess chlorine is introduced into the absorption tower, the excess is completely removed. It is absorbed and removed without causing any problems.

また、この脱硝方式をごみ焼き炉の排ガス処理に適用し
た場合には、この吸収液には当然のことながらNaClOが
存在するため、排ガス中の水銀の除去も同時に行なわれ
る。
Further, when this denitration system is applied to the exhaust gas treatment of a dust-burning furnace, since NaClO naturally exists in this absorbing solution, mercury in the exhaust gas is also removed at the same time.

つぎに、本発明を実施する場合の重要な反応条件とし
て、排ガス中の塩素添加量、吸収液中のBr-含有量およ
びNH4 +含有量さらには吸収液のpH(NaOHによって調整)
を以下に示す。
Next, as important reaction conditions when carrying out the present invention, chlorine addition amount in the exhaust gas, Br - content and NH 4 + content in the absorption liquid, and further the pH of the absorption liquid (adjusted by NaOH)
Is shown below.

1)塩素添加量:Cl2/NOモル比=1以上 2)Br-含有量:Br-/NOモル比=1以上 3)NH4 +含有量:NH4 +/NOモル比=1以上 4)吸収液入口のpH:3〜9 本発明の方法の実施に使用される洗浄塔および吸収塔の
装置形式としては、従来から知られているラシヒリング
充填塔、スプレー塔、棚段塔などが適宜使用可能であ
る。そして、これらの吸収塔の運転条件、すなわち、液
ガス比、ガス空塔速度などは希望する脱硝率との関係に
おいて決定されるべきものである。
1) Chlorine amount: Cl 2 / NO molar ratio = 1 or 2) Br - content: Br - / NO molar ratio = 1 or 3) NH 4 + content: NH 4 + / NO molar ratio = 1 or 4 ) PH of absorption liquid inlet: 3 to 9 As a device type of the washing tower and the absorption tower used for carrying out the method of the present invention, conventionally known Raschig ring packed tower, spray tower, plate tower, etc. are appropriately used. It can be used. The operating conditions of these absorption towers, that is, the liquid gas ratio, the gas superficial velocity, etc., should be determined in relation to the desired denitration rate.

発明の効果 本発明の湿式NOx除去法によれば、吸収液による排ガス
処理の前に予め排ガスに塩素を添加しておくので、従来
の1段方式による湿式吸収法ではほとんど除去不可能で
あったNOxを極めて効果的に除去することができる。各
種燃焼排ガスにおいては、NOxはほとんどNOであるた
め、本発明の方法はこの意味において極めて効果的なNO
x除去方法であるといえる。また、本発明の方法によれ
ば、浄化後の処理ガス中に塩素などの有害な物質を全く
残存させることがない。さらに、本発明の方法をごみ焼
き炉の排ガス処理に適用した場合には、排ガス中の水銀
も同時に除去することができる。
EFFECTS OF THE INVENTION According to the wet NOx removal method of the present invention, chlorine is added to exhaust gas in advance before the exhaust gas is treated with an absorption liquid, and thus it is almost impossible to remove by the conventional one-stage wet absorption method. NOx can be removed very effectively. Since NOx is almost NO in various combustion exhaust gases, the method of the present invention is very effective in this sense.
It can be said that this is a removal method. Further, according to the method of the present invention, no harmful substances such as chlorine are left in the treated gas after purification. Furthermore, when the method of the present invention is applied to the treatment of exhaust gas in a dust-burning furnace, mercury in exhaust gas can be simultaneously removed.

実施例 次に本発明を実施例と比較例をもって説明する。Examples Next, the present invention will be described with reference to Examples and Comparative Examples.

実施例1 第1図に示すように、洗浄塔(1)および吸収塔(3)
を備えた実験装置を用いて、NO除去実験を実施した。同
図において、洗浄塔(1)は直径30mm×高さ510mmのも
のであって、温水ジャケット(2)を外装し、内部には
平均直径2mmの球形ガラスビーズが高さ331mmまで充填さ
れている。吸収塔(3)も洗浄塔(1)と全く同じ形式
および大きさを有し、温水ジャケット(4)を外装して
いる。洗浄塔(1)および吸収塔(3)の内部温度は各
温水ジャケット(2)(4)によって所定温度(通常70
℃)に維持されている。また、本図には試験用調製排ガ
スおよび処理ガスの各ガス組成、ならびに液組成を分析
するための分析系統も示してある。
Example 1 As shown in FIG. 1, a washing tower (1) and an absorption tower (3)
An NO removal experiment was carried out using an experimental apparatus equipped with. In the figure, the washing tower (1) has a diameter of 30 mm and a height of 510 mm, is covered with a hot water jacket (2), and is filled with spherical glass beads having an average diameter of 2 mm up to a height of 331 mm. . The absorption tower (3) also has exactly the same type and size as the washing tower (1), and is equipped with a hot water jacket (4). The internal temperature of the washing tower (1) and the absorption tower (3) is controlled by the hot water jackets (2) and (4) to a predetermined temperature (usually 70
℃) is maintained. In addition, this figure also shows an analysis system for analyzing each gas composition of the prepared exhaust gas for treatment and the treated gas, and the liquid composition.

本実験において採用した共通の標準的な条件を第1表に
示す。また実験結果を第2図および第3図に示す。これ
らの実験では、塩素の添加は、洗浄塔(1)にNaClO水
溶液を注入し、これを塩酸にてpH1〜2に調整すること
によって行なった。
Table 1 shows the common standard conditions adopted in this experiment. The experimental results are shown in FIGS. 2 and 3. In these experiments, chlorine was added by injecting an aqueous NaClO solution into the washing tower (1) and adjusting the pH to 1-2 with hydrochloric acid.

第2図は液中のNH4 +を10mg/lと一定にし、Br-の添加に
よる効果を調べたものである。同図から明らかなよう
に、NO除去率はBr-25mg/lまで上昇し、それ以上の濃度
では一定となる。なお、Br-25mg/lは本実験においてはB
r-/NOモル比1に相当する。
FIG. 2 shows the effect of Br addition with NH 4 + in the solution kept constant at 10 mg / l. As is clear from the figure, the NO removal rate rises up to Br - 25 mg / l and becomes constant at higher concentrations. In addition, Br - 25 mg / l was used in this experiment.
Corresponds to an r / NO molar ratio of 1.

第3図は、Br-を50mg/lと一定にし、NH4 +濃度の影響を
見たものである。同図から明らかなように、NH4 +濃度0m
g/lではNOはほとんど除去されないが、NH4 +濃度の上昇
と共にNO除去率の急激な向上が認められる。NO除去率が
最大となるNH4 +濃度は10mg/lであり、この値は本実験に
おいてはほぼNH4 +/NOモル比1.5に相当する。なお、実施
例の全実験を通じて洗浄塔出口の塩素は0ppmであった。
FIG. 3 shows the effect of NH 4 + concentration with Br kept constant at 50 mg / l. As is clear from the figure, the NH 4 + concentration is 0 m.
Although g / l hardly removes NO, a sharp increase in NO removal rate is observed as the NH 4 + concentration increases. The NH 4 + concentration at which the NO removal rate is maximum is 10 mg / l, and this value corresponds to an NH 4 + / NO molar ratio of 1.5 in this experiment. The chlorine at the outlet of the washing tower was 0 ppm throughout the experiments of the examples.

比較例1 実施例1で示した第1図の実験装置において、洗浄塔
(1)の供給水溶液にBr-とNH4 +を各々50mg/l濃度にな
るよう添加し、液のpHを9に調整して、同液に調製排ガ
スを接触させ、NO除去率を測定した。なお、この時、吸
収塔での操作は実施しなかった。この操作は、言わば実
施例1の洗浄塔と吸収塔の2段の操作を1段にした場合
に相当するので、これは従来技術に属する。測定された
NO除去率は30%であった。
Comparative Example 1 In the experimental apparatus shown in FIG. 1 shown in Example 1, Br and NH 4 + were added to the aqueous solution supplied to the washing tower (1) so that the concentration of each was 50 mg / l, and the pH of the solution was adjusted to 9. After adjusting, the prepared exhaust gas was brought into contact with the same solution, and the NO removal rate was measured. At this time, the operation in the absorption tower was not performed. This operation corresponds to a case where the two-stage operation of the washing tower and the absorption tower of Example 1 is so-called, so that it belongs to the prior art. Measured
The NO removal rate was 30%.

比較例2 実施例1の実験において、NH4 +10mg/lとBr-50mg/lを含
む吸収液を用い、調製排ガスを洗浄塔(1)に通さず直
接吸収塔(3)へ導入した。この実験は排ガス中に予め
塩素ガスを添加しなかった場合に相当する。この時のNO
除去率は0%であった。
Comparative Example 2 In the experiment of Example 1, an absorbing solution containing NH 4 + 10 mg / l and Br - 50 mg / l was used, and the prepared exhaust gas was directly introduced into the absorption tower (3) without passing through the washing tower (1). This experiment corresponds to the case where chlorine gas was not previously added to the exhaust gas. NO at this time
The removal rate was 0%.

実施例2 実施例1の実験において、NH4 +10mg/lとBr-50mg/lを含
む吸収液を用い、調製排ガスを洗浄塔(1)に通さず直
接吸収塔(3)へ導入した。ただし、この実験において
は排ガスに予め所定量の塩素ガスを注入した。実験結果
を第2表に示す。同表から明らかなように、吸収塔入口
のCl2濃度約100ppm以上で、高いNO除去率が得られた。
Example 2 In the experiment of Example 1, an absorption liquid containing NH 4 + 10 mg / l and Br - 50 mg / l was used, and the prepared exhaust gas was directly introduced into the absorption tower (3) without passing through the washing tower (1). However, in this experiment, a predetermined amount of chlorine gas was previously injected into the exhaust gas. The experimental results are shown in Table 2. As is clear from the table, a high NO removal rate was obtained when the Cl 2 concentration at the inlet of the absorption tower was about 100 ppm or more.

実施例3 実施例1で示した第1図の実験装置を用いて、NOおよび
NO2の除去率を求めた。反応条件、得られたNO除去率お
よびNO2除去率を第3表に示す。なお、これらの実験で
はNOおよびNO2はいずれも、窒素で希釈したボンベガス
を、実験装置へ導入する直前でさらに空気で希釈したも
のを用いた。同表に見られるとおり、NOは高効率で除去
されたが、NO2はほとんど除去されなかった。
Example 3 Using the experimental apparatus of FIG. 1 shown in Example 1, NO and
The removal rate of NO 2 was calculated. Table 3 shows the reaction conditions, the obtained NO removal rate and NO 2 removal rate. In these experiments, both NO and NO 2 used were bomb gas diluted with nitrogen and further diluted with air immediately before being introduced into the experimental apparatus. As shown in the table, NO was removed with high efficiency, but NO 2 was hardly removed.

実施例4 吸収液に吸収された排ガス中のNOの形態を見るために、
調製排ガス中のNO濃度を高くし、実施例1で示した第1
図の装置を用いて実験を行ない、吸収液中のNO2およびN
O3 -を分析した。調製排ガスの条件および吸収液分析結
果をそれぞれ第4表および第5表に示す。除去されたNO
量と液中換算NO量の一致性が若干よくないが、液中には
NO2 -とNO3 -が検出され、NO2 ->NO3 -であった。
Example 4 In order to see the form of NO in the exhaust gas absorbed in the absorption liquid,
By increasing the NO concentration in the prepared exhaust gas, the first concentration shown in Example 1
Experiments were conducted using the equipment shown in the figure, and NO 2 and N
O 3 was analyzed. The conditions of the prepared exhaust gas and the results of the absorption liquid analysis are shown in Tables 4 and 5, respectively. NO removed
The amount and the equivalent NO amount in the liquid do not match well, but in the liquid
NO 2 and NO 3 were detected, and NO 2 > NO 3 .

実施例5 排ガス中のNOが酸化反応吸収であるのか、無酸素反応吸
収であるのかを調べるために、雰囲気ガスを窒素にした
場合と空気にした場合とについて、実施例1で示した第
1図の装置を用いて実験を行なった。その結果を第6表
に示す。雰囲気ガス中の酸素の影響は認められず、共に
高いNO除去率が得られた。
Example 5 In order to investigate whether NO in the exhaust gas is an oxidation reaction absorption or an anoxic reaction absorption, the first example shown in Example 1 was used when the atmosphere gas was nitrogen and when it was air. An experiment was conducted using the apparatus shown in the figure. The results are shown in Table 6. No effect of oxygen in the atmosphere gas was observed, and both high NO removal rates were obtained.

実施例6 ごみ焼き炉排ガスを処理するNOx吸収装置(排ガス処理
量6万Nm2/時)のフローを第4図に示す。本装置にお
いて、上記排ガスを洗浄塔(11)に導入し、ついで吸収
塔(13)に通し、さらにその上の減湿塔(14)に通し
た。洗浄塔(11)は並流ベンチュリー塔型のものであ
り、吸収塔(13)および減湿塔(14)はいずれも向流充
填塔型のものである。洗浄塔(11)では、排ガスに予め
塩素を添加するために、洗浄塔循環液にNaClOを注入し
た。この洗浄塔循環液は排ガス中の塩酸によって強酸性
になるが、NaOHを別途添加することによってpH3を維持
するようにした。
Example 6 FIG. 4 shows a flow of the NOx absorber (exhaust gas treatment amount 60,000 Nm 2 / hour) for treating exhaust gas from a refuse burning furnace. In this apparatus, the exhaust gas was introduced into the washing tower (11), then passed through the absorption tower (13), and then passed through the dehumidification tower (14). The washing tower (11) is a co-current Venturi tower type, and the absorption tower (13) and the dehumidifying tower (14) are both countercurrent packed tower types. In the cleaning tower (11), NaClO was injected into the circulating liquid of the cleaning tower in order to add chlorine to the exhaust gas in advance. Although the circulating fluid of this washing tower becomes strongly acidic due to the hydrochloric acid in the exhaust gas, pH3 was maintained by adding NaOH separately.

排ガス中のNO濃度は約50ppmであったが、NaClOの添加量
はこのNO量の理論モル比(Cl2/NOモル比)2以上にし
た。NH4 +およびBr-は吸収塔循環液に添加した。この
時、NH4 +供給源としては硫酸アンモニウムを、Br-源と
しては臭化カリウムを用い、その添加量は各々NO量のモ
ル比1以上とした。減湿塔(14)では、水槽(15)から
冷却塔(16)を経て来る冷却水によって、排ガスを減湿
し、ついで同ガスを系外へ放出した。
The NO concentration in the exhaust gas was about 50 ppm, but the amount of NaClO added was adjusted to a theoretical molar ratio of this NO amount (Cl 2 / NO molar ratio) of 2 or more. NH 4 + and Br were added to the absorption tower circulation liquid. At this time, ammonium sulfate was used as the NH 4 + supply source, and potassium bromide was used as the Br source, and the addition amounts thereof were each at a molar ratio of NO amount of 1 or more. In the dehumidifying tower (14), the exhaust gas was dehumidified by the cooling water coming from the water tank (15) through the cooling tower (16), and then the same gas was discharged to the outside of the system.

以上の処理によって得られたNO除去率は、80%であっ
た。
The NO removal rate obtained by the above treatment was 80%.

【図面の簡単な説明】[Brief description of drawings]

第1図および第4図は本発明の実施例を示すフローシー
ト、第2図はBr-濃度とNO除去率の関係を示すグラフ、
第3図はNH4 +濃度とNO除去率の関係を示すグラフであ
る。
1 and 4 are flow sheets showing an embodiment of the present invention, FIG. 2 is a graph showing the relationship between Br concentration and NO removal rate,
FIG. 3 is a graph showing the relationship between the NH 4 + concentration and the NO removal rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 広常 晃生 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 小林 利治 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 井上 善介 大阪府羽曳野市埴生野1014―43 (72)発明者 伊藤 尚夫 兵庫県西宮市上ケ原10―6―16 (72)発明者 澤地 實 奈良県奈良市南紀寺町3―316 A―102 (56)参考文献 特開 平1−315320(JP,A) 特公 昭58−34174(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Hirotsuna 1-6-14 Edobori, Nishi-ku, Osaka-shi, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Toshiharu Kobayashi 1-6-14 Edobori, Nishi-ku, Osaka-shi, Osaka Within Hitachi Shipbuilding Co., Ltd. (72) Zensuke Inoue, 10-14-43 Hanyuno, Habikino-shi, Osaka (72) Inventor, Nao Ito 10-6-16, Uegahara, Nishinomiya-shi, Hyogo (72) Inventor, Minoru Sawaji, Nara, Nara 3-316 A-102, Nankiji-cho, Tochigi, Japan (56) Reference Japanese Patent Laid-Open No. 1-315320 (JP, A) JP 58-34174 (JP, B2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】各種燃焼排ガス中の窒素酸化物を吸収液に
よって吸収除去するに当たり、該排ガス中に予め塩素を
添加しておき、その後アンモニウムイオンおよび臭素イ
オンを含む苛性ソーダ水溶液よりなる吸収液に、上記塩
素含有排ガスを接触させることを特徴とする、各種燃焼
排ガス中の窒素酸化物の湿式除去法。
1. When absorbing and removing nitrogen oxides from various combustion exhaust gases with an absorption liquid, chlorine is added to the exhaust gas in advance, and then the absorption liquid is formed of an aqueous caustic soda solution containing ammonium ions and bromine ions, A wet removal method of nitrogen oxides in various combustion exhaust gases, which comprises contacting the chlorine-containing exhaust gases.
【請求項2】排ガス中に塩素を添加するために、窒素酸
化物吸収段の前流側に排ガス洗浄段を設け、洗浄液とし
て、次亜塩素酸ソーダ水溶液を強酸性に調整した液を用
い、この洗浄液に排ガスを接触させることを特徴とする
請求項(1)記載の方法。
2. In order to add chlorine to the exhaust gas, an exhaust gas cleaning stage is provided on the upstream side of the nitrogen oxide absorption stage, and a solution prepared by adjusting the aqueous solution of sodium hypochlorite to a strong acid is used as the cleaning solution. The method according to claim 1, wherein exhaust gas is brought into contact with the cleaning liquid.
【請求項3】食塩水もしくは洗煙排水を隔膜を用いない
で電解することによって得られる次亜塩素酸ソーダ水溶
液を用いることを特徴とする請求項(2)記載の方法。
3. The method according to claim 2, wherein an aqueous solution of sodium hypochlorite obtained by electrolyzing a saline solution or a smoke washing waste water without using a diaphragm is used.
【請求項4】吸収液のpHを3〜9に調整することを特徴
とする請求項(1)記載の方法。
4. The method according to claim 1, wherein the pH of the absorbing solution is adjusted to 3-9.
JP1024369A 1989-02-01 1989-02-01 Wet removal method of nitrogen oxides in various combustion exhaust gas Expired - Fee Related JPH0691941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024369A JPH0691941B2 (en) 1989-02-01 1989-02-01 Wet removal method of nitrogen oxides in various combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024369A JPH0691941B2 (en) 1989-02-01 1989-02-01 Wet removal method of nitrogen oxides in various combustion exhaust gas

Publications (2)

Publication Number Publication Date
JPH02203921A JPH02203921A (en) 1990-08-13
JPH0691941B2 true JPH0691941B2 (en) 1994-11-16

Family

ID=12136277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024369A Expired - Fee Related JPH0691941B2 (en) 1989-02-01 1989-02-01 Wet removal method of nitrogen oxides in various combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPH0691941B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729025B2 (en) * 1989-03-02 1995-04-05 日立造船株式会社 Method for simultaneous removal of sulfur oxides and nitrogen oxides
CN106995682B (en) * 2017-02-15 2018-12-04 长安大学 A kind of method and device using incineration of refuse flyash preparation Road Snow Agent
CN116873867B (en) * 2023-09-08 2023-11-10 珙县华洁危险废物治理有限责任公司成都分公司 Harmless treatment method and system for high-purity bromine

Also Published As

Publication number Publication date
JPH02203921A (en) 1990-08-13

Similar Documents

Publication Publication Date Title
US6638485B1 (en) Process for treating exhaust gas and exhaust gas treating equipment
RU2429900C1 (en) Method and device for treating flue gas
EP1511555B1 (en) PROCESS FOR REDUCING THE LEVEL OF NOXx IN WASTE GAS STREAMS USING SODIUM CHLORITE
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
JPH0691941B2 (en) Wet removal method of nitrogen oxides in various combustion exhaust gas
CN106345246A (en) Method for removing nitric oxide and application of method
CN111359398B (en) Method for denitration and whitening of flue gas
CN112169573B (en) Flue gas desulfurization and denitrification process
KR100406510B1 (en) Method and system for removing nitrogen oxide using oxidation catalyst
CN113368676B (en) Flue gas desulfurization and denitrification integrated treatment method
JPS62213825A (en) Method for simultaneously performing desulfurizing and denitrating treatment of combustion flue gas and drainage treatment
JPH0729025B2 (en) Method for simultaneous removal of sulfur oxides and nitrogen oxides
RU2008078C1 (en) Method of scrubbing gas exhaust against nitrogen monoxide
JPH0691942B2 (en) Wet flue gas denitration method
JPS5834174B2 (en) Chitsusosankabutsunojiyokiyohouhou
JPH11128676A (en) Purification of harmful gas
JPH0649133B2 (en) Method for removing nitrogen oxides in exhaust gas
Han et al. An investigation on NO removal by wet scrubbing using NaClO
BR112018012267B1 (en) PROCESS FOR REMOVING CONTAMINANTS FROM A GAS EFFLUENT FLOW FROM AN INDUSTRIAL PROCESS
KR20030053331A (en) Wet Scrubbing method of dust, sulfur oxides and nitrogen oxides from flue gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees