JPH0690971A - Production of bone implant - Google Patents

Production of bone implant

Info

Publication number
JPH0690971A
JPH0690971A JP34794091A JP34794091A JPH0690971A JP H0690971 A JPH0690971 A JP H0690971A JP 34794091 A JP34794091 A JP 34794091A JP 34794091 A JP34794091 A JP 34794091A JP H0690971 A JPH0690971 A JP H0690971A
Authority
JP
Japan
Prior art keywords
filling mold
filling
mold
bone implant
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34794091A
Other languages
Japanese (ja)
Inventor
Noboru Matsunaga
昇 松永
Kazuyoshi Azeyanagi
和好 畦柳
Ichiro Sogaishi
一郎 曽我石
Takeo Katakura
健男 片倉
Takaaki Osawa
孝明 大澤
Yoshihisa Ueda
義久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Janome Corp
Original Assignee
Terumo Corp
Janome Sewing Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Janome Sewing Machine Co Ltd filed Critical Terumo Corp
Priority to JP34794091A priority Critical patent/JPH0690971A/en
Priority to EP19920311060 priority patent/EP0545718A3/en
Priority to US07/985,833 priority patent/US5336465A/en
Publication of JPH0690971A publication Critical patent/JPH0690971A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C2043/043Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds rotating on their own axis without linear displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To provide a novel method which can efficiently produce the bone implant having a hollow part in a closed state. CONSTITUTION:A compd. prepd. by mixing raw material powder and a resin binder is filled into a filling mold 2 which consists of a porous material and can be split; thereafter, a gate port 3 of the filling mold 2 is sealed and this filling mold 2 is rotated and oscillated in the state of housing the filling mold into a cylindrical holder, by which the substantial amt. of the resin binder in the compd. is absorbed away into the porous material of the filling mold 2. As a result, an implant molding 8 having the hollow part 9 in the closed state is obtd. The filling mold 2 is thereafter split and the implant molding 8 is taken out of the filling mold 2 and is subjected to a binder removing treatment and sintering at a prescribed temp., by which the sintered compact of the implant is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は整形外科治療において人
体内に埋め込まれる骨インプラントの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bone implant to be implanted in the human body in orthopedic treatment.

【0002】[0002]

【従来の技術】人体の関節に変形、欠損、壊死等が生じ
た場合に関節を補綴して関節機能を再建するための人工
関節(特にその人工骨頭側のステム部)や、骨幹部の骨
折の場合の骨髄内釘治療に用いる髄内釘等、整形外科治
療において人体内に埋め込まれる骨インプラントは、ス
テンレスSUS316L、Co−Cr、Co−Cr−N
i、Ti−6%Al−4%V等の金属インプラント材を
利用して、鋳造、鍛造、焼結等の適宜手段によって形成
されるのが主流であった。
2. Description of the Related Art Artificial joints (particularly, the stem portion on the side of the artificial femur) and fractures of the diaphysis for repairing the joint function by prosthesing the joint when the human body is deformed, missing, or necrotic. Bone implants to be implanted in the human body during orthopedic treatment, such as intramedullary nails used for intramedullary nail treatment in the case of, are made of stainless steel SUS316L, Co-Cr, Co-Cr-N.
i, Ti-6% Al-4% V, etc. were mainly used, and formed by appropriate means such as casting, forging, and sintering.

【0003】[0003]

【発明が解決しようとする課題】ところが、金属インプ
ラント材を利用した骨インプラントには様々な問題があ
り、例えば、人の皮質骨の曲げ弾性率はおよそ16GP
aであるのに対し、ステンレスSUS316L、Co−
Cr、Ti−6%Al−4%Vの曲げ弾性率はそれぞれ
200、213、124GPaであって、骨の約8〜1
3倍もあるため、人工関節がたわんだり、ねじれたりす
ることによって局所的に応力が集中し、その応力集中部
分で骨を破壊してしまう虞れがある。
However, bone implants using metal implant materials have various problems. For example, the bending elastic modulus of human cortical bone is about 16 GP.
a, stainless steel SUS316L, Co-
The bending elastic moduli of Cr and Ti-6% Al-4% V are 200, 213 and 124 GPa, respectively, which is about 8 to 1 of bone.
Since it is three times as large, stress may be locally concentrated due to bending or twisting of the artificial joint, and the bone may be destroyed at the stress concentrated portion.

【0004】また、アクリルベースのセメントを用いず
に直接インプラントと骨を固着するセメントレス人工股
関節の臨床において、骨髄腔と良く嵌合して体重や歩行
等の運動による応力の作用を繰り返し受けるステム先端
部では骨の増勢がみられるが、応力が作用しない部分で
は骨への刺激がなくなるために逆に骨組織の吸収が起こ
って骨量が減少するという結果が報告されている。則
ち、応力が作用しない部分においては、骨と人工関節と
の嵌合にズレや緩みが増長され、人工関節を安定して保
持することができなくなる虞れがある。
Further, in the clinical practice of a cementless artificial hip joint in which an implant and bone are directly fixed to each other without using an acrylic-based cement, a stem that is well fitted with a bone marrow cavity and is repeatedly subjected to stress due to exercise such as weight and walking. It has been reported that the bone mass is reduced in the tip part, but bone is resorbed in the part where stress is not applied and the bone is not stimulated in the part where the stress is not applied, so that the bone mass is decreased. That is, in a portion where no stress is applied, displacement or looseness is increased in fitting of the bone and the artificial joint, and there is a possibility that the artificial joint cannot be stably held.

【0005】また、比重の大きな金属インプラント材に
よる人工関節は、患者にとって挿入中の負担が大きいと
いう問題がある。
Further, the artificial joint made of a metal implant material having a large specific gravity has a problem that the burden on the patient during insertion is large.

【0006】金属インプラント材による人工関節におい
て、曲げ弾性率を減少させて生体骨のそれに近似させ、
かつ軽量化する目的で、人工関節のステム部を中空にす
ることが提案されている(特開平1−148254号公
報)。しかし、この発明では、中空とされたステム部の
内部空間は、一部分開放されて外部と連通するようにな
っているため、ステム部の内部空間に大量の出血した血
液やその他の体液が貯留し、患部の治癒を遅延させ、ま
た細菌の繁殖による感染が生じるという欠点がある。
In an artificial joint using a metal implant material, the bending elastic modulus is reduced to approximate that of living bone,
In addition, for the purpose of weight reduction, it has been proposed to hollow the stem portion of the artificial joint (Japanese Patent Laid-Open No. 1-148254). However, in the present invention, the hollow internal space of the stem portion is partially opened to communicate with the outside, so that a large amount of bleeding blood or other body fluid is stored in the internal space of the stem portion. However, there are drawbacks that the healing of the affected part is delayed and infection is caused by the propagation of bacteria.

【0007】したがって、閉状態の中空部、則ち外部と
連通しない中空部を有するステム部とすることが望まれ
る。
Therefore, it is desired to use a stem portion having a closed hollow portion, that is, a hollow portion that does not communicate with the outside.

【0008】このような閉状態の中空部を有するステム
部は、金属やセラミックの粉体とバインダーとからなる
コンパウンドを成形型内に充填して粉体焼結を行う際
に、形成すべき中空部に対応する形状の中子を成形型内
に配置することによって、製造することが可能である。
The stem portion having a hollow portion in such a closed state is a hollow portion to be formed when powder is sintered by filling a molding die with a compound consisting of powder of metal or ceramic and a binder. It is possible to manufacture by arranging a core having a shape corresponding to the part in the molding die.

【0009】しかしながら、このような方法によるとき
は、焼結後、例えば薬品での洗浄により中子を溶解除去
し、更に、中子の支持棒が挿通された孔を溶接等の適宜
手段により封止しなければならず、製造工程が複雑とな
ってしまう。
However, in the case of such a method, after sintering, the core is dissolved and removed by, for example, washing with a chemical, and the hole in which the support rod of the core is inserted is sealed by an appropriate means such as welding. It must be stopped, which complicates the manufacturing process.

【0010】本発明は、上記従来技術の問題点に鑑み
て、閉状態の中空部を有する骨インプラントを効率的に
製造することのできる新規な方法を提供することを目的
とする。
In view of the above problems of the prior art, it is an object of the present invention to provide a novel method capable of efficiently manufacturing a bone implant having a hollow portion in a closed state.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に創案された本発明による骨インプラントの製造方法
は、多孔質材料よりなる充填型に、この充填型のゲート
口より、原料粉末と樹脂バインダーとを混合したコンパ
ウンドを充填し、充填型のゲート口を封止した後、充填
型に所要の運動を与えることにより、コンパウンドにお
ける樹脂バインダーのうちの相当量を充填型の多孔質材
料に吸収除去せしめ、その後、成形体を充填型から取り
出して、この成形体を所定温度にて脱バインダー処理
し、更に粉体焼結を行って、樹脂バインダーの吸収除去
量に相当する閉状態の中空部を有する焼結体を得ること
を特徴とする。
The method for manufacturing a bone implant according to the present invention, which was conceived to achieve the above object, comprises a filling die made of a porous material, a raw material powder and a resin from a gate opening of the filling die. After filling the compound mixed with the binder and sealing the gate opening of the filling die, by giving the required movement to the filling die, a considerable amount of the resin binder in the compound is absorbed by the filling type porous material. After that, the molded body is taken out of the filling mold, the molded body is debindered at a predetermined temperature, and further, powder sintering is performed to obtain a hollow portion in a closed state corresponding to the absorption and removal amount of the resin binder. It is characterized by obtaining a sintered body having.

【0012】原料粉末としては、任意の金属材料やセラ
ミックス材料を選択して用いることができ、複数の材料
を混合した混合原料粉末としても良い。
As the raw material powder, any metal material or ceramic material can be selected and used, and a mixed raw material powder obtained by mixing a plurality of materials may be used.

【0013】充填型は、ガラスフリット、焼結金属、石
膏または多孔性セラミックス等の多孔質材料よりなる。
The filling mold is made of a porous material such as glass frit, sintered metal, gypsum or porous ceramics.

【0014】成形後の脱バインダー処理は、溶媒または
熱分解法により、大気または窒素あるいはアルゴン中に
て、毎時3〜100℃の昇温速度にて300〜700℃
の温度範囲で行うことができる。
The debinding process after molding is carried out by a solvent or a thermal decomposition method in the air, nitrogen or argon at a temperature rising rate of 3 to 100 ° C. per hour at 300 to 700 ° C.
Can be performed in the temperature range of.

【0015】粉体焼結は、真空や水素等の非酸化性雰囲
気にて、1000〜1400℃の温度範囲で行うことが
できる。
The powder sintering can be performed in a temperature range of 1000 to 1400 ° C. in a non-oxidizing atmosphere such as vacuum or hydrogen.

【0016】充填型の運動は、一般に、充填型を収容固
定する筒状ホルダーを回転および/または揺動すること
によって与えることができる。この際の運動は適宜プロ
グラムすることができ、その運動方向および/または速
度を調整し、同一条件の運動を繰り返し、あるいは異な
る条件の運動を組み合わせることによって、中空成形体
を均一な層厚を有するものとし、あるいは部分的に偏肉
を有するものとすることができる。
The movement of the filling mold can be generally given by rotating and / or rocking a cylindrical holder for housing and fixing the filling mold. The movement at this time can be programmed appropriately, and by adjusting the movement direction and / or speed, repeating the movement under the same conditions, or combining the movements under different conditions, the hollow molded article can have a uniform layer thickness. It can be made to have a partial thickness unevenness.

【0017】[0017]

【実施例】粒径45μm以下のチタン微粉末と、粒径4
5μ以下のアルミニウム60wt%−バナジウム40w
t%の母合金粉末とを、重量比で9:1として機械的に
混合し、得られたTi−6wt%Al−4wt%Vの混
合粉を原料粉末として用いる。
EXAMPLE Titanium fine powder having a particle size of 45 μm or less, and a particle size of 4
Aluminum less than 5μ 60wt% -vanadium 40w
Mechanically mixed with t% of mother alloy powder at a weight ratio of 9: 1, and the obtained mixed powder of Ti-6 wt% Al-4 wt% V is used as a raw material powder.

【0018】バインダーとしてはアルギン酸アンモニウ
ム1%水溶液を用い、上記原料粉末と混練して、粘度1
500〜2000cpのコンパウンドを調製する。
A 1% aqueous solution of ammonium alginate was used as a binder, and the raw material powder was kneaded to obtain a viscosity of 1
Prepare 500-2000 cp compound.

【0019】このコンパウンド1を、図1に示すよう
に、特級石膏を使用した分割可能な筒状充填型2(図
2)にそのゲート口3より注入し、キャビティー内に完
全に充填した後、ゲート口3を、充填型2と同一材料で
ある特級石膏よりなる栓4にて密封する。
As shown in FIG. 1, this compound 1 was poured into a separable cylindrical filling mold 2 (FIG. 2) using a special grade gypsum through its gate port 3 to completely fill the cavity. The gate opening 3 is sealed with a plug 4 made of special grade gypsum which is the same material as the filling mold 2.

【0020】次に、この充填型2を筒状ホルダー5に固
定状態に収納し、モータ6により筒状ホルダー5をその
軸心のまわりに遠心力が働くよう50〜300rpmの
速度で回転させ(図3)、更に、サーボモータ7により
180°の角度範囲に亙って筒状ホルダー5を交互に逆
方向に揺動させる(図4)。これによって、充填型2の
キャビティー内の粒子には図5に示すような動きが与え
られる。
Next, the filling mold 2 is housed in a cylindrical holder 5 in a fixed state, and the cylindrical holder 5 is rotated by a motor 6 at a speed of 50 to 300 rpm so that a centrifugal force is exerted around its axis ( 3) Furthermore, the cylindrical holder 5 is alternately swung in the opposite direction by the servomotor 7 over an angle range of 180 ° (FIG. 4). As a result, the particles in the cavity of the filling mold 2 are caused to move as shown in FIG.

【0021】充填型2のキャビティー内に充填された状
態のコンパウンド1においては、原料粉末同志の間に
は、付着力、凝集力、バインダーの浮力等の様々な力が
働いているが、これらの力に比べて原料粉末の粒子に働
く重力が十分に大きければ、粒子は力学的に最も安定な
状態に並ぼうとする。
In the compound 1 in the state of being filled in the cavity of the filling mold 2, various forces such as adhesive force, cohesive force, and buoyancy of the binder work between the raw material powders. If the gravitational force acting on the particles of the raw material powder is sufficiently larger than the force of, the particles tend to be in the most mechanically stable state.

【0022】しかしながら、前記した筒状ホルダー5の
回転運動による遠心力が働き、原料粉末は充填型2のキ
ャビティー内周面に均一に押しつけられ、同時に相当量
のバインダーが型2を形成する石膏材料の無数の小孔内
に吸収除去される。
However, due to the centrifugal force generated by the rotational movement of the cylindrical holder 5 described above, the raw material powder is uniformly pressed against the inner peripheral surface of the cavity of the filling mold 2, and at the same time, a considerable amount of binder forms the gypsum 2. It is absorbed and removed in the myriad of small pores in the material.

【0023】かくして、静止後の充填型2においてキャ
ビティー内に成形される成形体8は、図6に示すよう
に、石膏材料の小孔内に吸収除去されたバインダー分に
相当する閉状態の中空部9が形成されている。
Thus, as shown in FIG. 6, the molded body 8 molded in the cavity of the stationary filling mold 2 is in a closed state corresponding to the binder component absorbed and removed in the small holes of the gypsum material. A hollow portion 9 is formed.

【0024】このような成形体8を、充填型2を分割し
て取り出した後、アルゴン雰囲気中で毎時50℃の昇温
速度で700℃まで上げ、この温度に3時間保持して脱
バインダー処理し、次に真空中(1×10−5tor
r)で1300℃にて3時間焼結することにより、閉状
態の中空部を有し、しかも外殻部の相対密度が95%と
高密度の、チタン製の人工股関節ステム部が製造され
る。
After such a molded body 8 was taken out by dividing the filling mold 2, the temperature was raised to 700 ° C. at a temperature rising rate of 50 ° C./hour in an argon atmosphere, and this temperature was maintained for 3 hours to remove the binder. Then, in vacuum (1 × 10 −5 torr)
Sintering at 1300 ° C. for 3 hours under r) produces a titanium artificial hip joint stem portion having a closed hollow portion and a high relative density of the outer shell portion of 95%. .

【0025】[0025]

【発明の効果】本発明方法によれば、外部と連通しない
閉状態の中空部を有する骨インプラントを効率的に製造
することができる。本発明方法は遠心力を利用して中空
部を形成するので、原料粉末が型内キャビティーの内周
面に高密度に集中するため、成形体の外殻部は高密度高
強度に形成される。
According to the method of the present invention, it is possible to efficiently manufacture a bone implant having a closed hollow portion that does not communicate with the outside. In the method of the present invention, the hollow portion is formed by utilizing the centrifugal force, so that the raw material powder is concentrated on the inner peripheral surface of the in-mold cavity at a high density, so that the outer shell portion of the molded body is formed with high density and high strength. It

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例に用いられる充填型およ
びそのキャビティー内の充填コンパウンドを示す縦断面
図である。
FIG. 1 is a longitudinal sectional view showing a filling mold used in an embodiment of the method of the present invention and a filling compound in a cavity thereof.

【図2】図1の充填型を示す斜視図である。FIG. 2 is a perspective view showing the filling mold of FIG.

【図3】図1の充填型を回転揺動させるための装置構成
例を示す平面図である。
FIG. 3 is a plan view showing a device configuration example for rotating and rocking the filling mold of FIG.

【図4】図3の装置構成例を示す正面図である。FIG. 4 is a front view showing an example of the apparatus configuration of FIG.

【図5】回転揺動される充填型内の原料粉体の動きを示
す説明図である。
FIG. 5 is an explanatory view showing the movement of the raw material powder in the filling mold that is rotationally rocked.

【図6】回転揺動後の静止状態の充填型およびそのキャ
ビティー内の成形体を示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing a stationary filling mold after rotation and rocking and a molded body in its cavity.

【符号の説明】[Explanation of symbols]

1 コンパウンド 2 充填型 3 ゲート口 4 栓 5 筒状ホルダー 6 モータ 7 サーボモータ 8 成形体 9 閉状態の中空部 1 Compound 2 Filling Type 3 Gate Port 4 Plug 5 Cylindrical Holder 6 Motor 7 Servo Motor 8 Molded Body 9 Closed Hollow Portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我石 一郎 東京都中央区京橋3丁目1番1号 蛇の目 ミシン工業株式会社内 (72)発明者 片倉 健男 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 大澤 孝明 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 上田 義久 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Soga 3-1-1 Kyobashi, Chuo-ku, Tokyo Within Jamme Sewing Machinery Co., Ltd. (72) Inventor Takaaki Osawa 1500 Inoguchi, Nakai-cho, Ashigarashami-gun, Kanagawa Terumo Co., Ltd. (72) Inventor Yoshihisa Ueda 1500 Inoguchi, Nakai-cho, Ashigarakami-gun, Kanagawa Terumo Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質材料よりなる充填型に、この充
填型のゲート口より、原料粉末と樹脂バインダーとを混
合したコンパウンドを充填し、前記充填型のゲート口を
封止した後、前記充填型に所要の運動を与えることによ
り、前記コンパウンドにおける前記樹脂バインダーの相
当量を前記充填型の多孔質材料に吸収除去せしめ、その
後、成形体を前記充填型から取り出して、この成形体を
所定温度にて脱バインダー処理し、更に粉体焼結を行っ
て、前記樹脂バインダーの吸収除去量に相当する閉状態
の中空部を有する焼結体を得ることを特徴とする骨イン
プラントの製造方法。
1. A filling mold made of a porous material is filled with a compound in which a raw material powder and a resin binder are mixed through the gate opening of the filling mold, the gate opening of the filling mold is sealed, and then the filling is performed. By applying a required motion to the mold, a considerable amount of the resin binder in the compound is absorbed and removed by the porous material of the filling mold, and then the molded product is taken out of the filling mold and the molded product is heated to a predetermined temperature. The method for producing a bone implant, wherein the binder is debindered in step 1, and further powder sintering is performed to obtain a sintered body having a hollow portion in a closed state corresponding to the absorption and removal amount of the resin binder.
【請求項2】 前記充填型の多孔質材料が、ガラスフ
リット、焼結金属、石膏または多孔性セラミックスのい
ずれかよりなることを特徴とする、請求項1の骨インプ
ラントの製造方法。
2. The method for manufacturing a bone implant according to claim 1, wherein the filling-type porous material is made of glass frit, sintered metal, gypsum or porous ceramics.
【請求項3】 前記脱バインダー処理を、溶媒または
熱分解法により、大気または窒素あるいはアルゴン中に
て、毎時3〜100℃の昇温速度にて300〜700℃
の温度範囲で行うことを特徴とする、請求項1の骨イン
プラントの製造方法。
3. The debindering treatment is carried out by a solvent or a thermal decomposition method in the atmosphere or in nitrogen or argon at a temperature rising rate of 3 to 100 ° C. per hour at 300 to 700 ° C.
The method for producing a bone implant according to claim 1, wherein the method is performed in the temperature range of.
【請求項4】 前記粉体焼結を、非酸化性雰囲気に
て、1000〜1400℃の温度範囲で行うことを特徴
とする、請求項1の骨インプラントの製造方法。
4. The method for producing a bone implant according to claim 1, wherein the powder sintering is performed in a temperature range of 1000 to 1400 ° C. in a non-oxidizing atmosphere.
JP34794091A 1991-12-03 1991-12-03 Production of bone implant Pending JPH0690971A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP34794091A JPH0690971A (en) 1991-12-03 1991-12-03 Production of bone implant
EP19920311060 EP0545718A3 (en) 1991-12-03 1992-12-03 Method of making bone-implants
US07/985,833 US5336465A (en) 1991-12-03 1992-12-03 Method of making bone-implants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34794091A JPH0690971A (en) 1991-12-03 1991-12-03 Production of bone implant

Publications (1)

Publication Number Publication Date
JPH0690971A true JPH0690971A (en) 1994-04-05

Family

ID=18393639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34794091A Pending JPH0690971A (en) 1991-12-03 1991-12-03 Production of bone implant

Country Status (1)

Country Link
JP (1) JPH0690971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503317A (en) * 2004-06-22 2008-02-07 ボーン サポート アクチボラゲット Curing substance manufacturing equipment
WO2011080953A1 (en) 2009-12-28 2011-07-07 ナカシマメディカル株式会社 Shock absorbing structure and method of manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503317A (en) * 2004-06-22 2008-02-07 ボーン サポート アクチボラゲット Curing substance manufacturing equipment
JP4891900B2 (en) * 2004-06-22 2012-03-07 ボーン サポート アクチボラゲット Curing substance manufacturing equipment
WO2011080953A1 (en) 2009-12-28 2011-07-07 ナカシマメディカル株式会社 Shock absorbing structure and method of manufacturing same

Similar Documents

Publication Publication Date Title
US6221477B1 (en) Material and process for producing the same
US5370692A (en) Rapid, customized bone prosthesis
JP5014544B2 (en) Resorbable bone substitute materials and bone constituent materials
US4917702A (en) Bone replacement material on the basis of carbonate and alkali containing calciumphosphate apatites
EP1178769B1 (en) Polymer re-inforced anatomically accurate bioactive prostheses
JP2003513711A (en) Resorbable bone implant material and method for producing the same
GB2210363A (en) Ceramics composites and production process thereof
US5336465A (en) Method of making bone-implants
JPS5913211B2 (en) Porous biotechnological thermoplastic prosthesis and manufacturing method
CN100508914C (en) Prosthesis fixation with mechanically compacted biocompatible granules
JP2008539938A (en) Molded products and materials and methods for producing the same
BR102020011004A2 (en) OSSEOINTEGRABLE IMPLANTS AND SCREWS WITH STRUCTURALLY POROUS SURFACE, PROCESS FOR PREPARATION OF SAID IMPLANTS AND SCREWS AND USES OF SAID IMPLANTS
JPH0690971A (en) Production of bone implant
WO2005120399A1 (en) Porous material for use as implant, bone replacement and in general as material
JP3837502B2 (en) Biological porous composite, method for producing the same, and use thereof
JPH0215221B2 (en)
JP2740071B2 (en) Method for producing sintered metal body for implant
JP2002320667A (en) Material buried in living body and its manufacturing method
EP3071140B1 (en) Macroporous granules of alkaline earth phosphates obtained with cement technology and gas evolving porogen
JPH0690972A (en) Bone implant and its production
El-Saies et al. Titanium foam for dental implant applications: a review
JP3289140B2 (en) High biocompatible implant and method for producing the same
JPH0690974A (en) Bone implant and its production
JP3401552B2 (en) Plastic ceramics and method for producing the same
JPS61242978A (en) Vital body substitute ceramic material