JPH0690971A - Production of bone implant - Google Patents

Production of bone implant

Info

Publication number
JPH0690971A
JPH0690971A JP34794091A JP34794091A JPH0690971A JP H0690971 A JPH0690971 A JP H0690971A JP 34794091 A JP34794091 A JP 34794091A JP 34794091 A JP34794091 A JP 34794091A JP H0690971 A JPH0690971 A JP H0690971A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
filled
bone implant
filling mold
implant
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34794091A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Azeyanagi
Takeo Katakura
Noboru Matsunaga
Takaaki Osawa
Ichiro Sogaishi
Yoshihisa Ueda
義久 上田
孝明 大澤
一郎 曽我石
昇 松永
健男 片倉
和好 畦柳
Original Assignee
Janome Sewing Mach Co Ltd
Terumo Corp
テルモ株式会社
蛇の目ミシン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C2043/043Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds rotating on their own axis without linear displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses

Abstract

PURPOSE:To provide a novel method which can efficiently produce the bone implant having a hollow part in a closed state. CONSTITUTION:A compd. prepd. by mixing raw material powder and a resin binder is filled into a filling mold 2 which consists of a porous material and can be split; thereafter, a gate port 3 of the filling mold 2 is sealed and this filling mold 2 is rotated and oscillated in the state of housing the filling mold into a cylindrical holder, by which the substantial amt. of the resin binder in the compd. is absorbed away into the porous material of the filling mold 2. As a result, an implant molding 8 having the hollow part 9 in the closed state is obtd. The filling mold 2 is thereafter split and the implant molding 8 is taken out of the filling mold 2 and is subjected to a binder removing treatment and sintering at a prescribed temp., by which the sintered compact of the implant is obtd.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は整形外科治療において人体内に埋め込まれる骨インプラントの製造方法に関する。 The present invention relates to a process for preparing a bone implant to be implanted into the human body in orthopedic treatment.

【0002】 [0002]

【従来の技術】人体の関節に変形、欠損、壊死等が生じた場合に関節を補綴して関節機能を再建するための人工関節(特にその人工骨頭側のステム部)や、骨幹部の骨折の場合の骨髄内釘治療に用いる髄内釘等、整形外科治療において人体内に埋め込まれる骨インプラントは、ステンレスSUS316L、Co−Cr、Co−Cr−N BACKGROUND ART variant of the human body joints, defects, artificial joints (especially stem portion of the artificial bone cephalad) for by prosthetic joint rebuilding joint function when the necrosis or the like occurs and fractures of the diaphysis intramedullary nail or the like used in the intramedullary nail treatment cases, the bone implant to be implanted into the human body in orthopedic treatment, stainless SUS316L, Co-Cr, Co-Cr-N
i、Ti−6%Al−4%V等の金属インプラント材を利用して、鋳造、鍛造、焼結等の適宜手段によって形成されるのが主流であった。 i, by using the metallic implant materials, such as Ti-6% Al-4% V, casting, forging, being formed by a suitable means such as sintering has been mainly used.

【0003】 [0003]

【発明が解決しようとする課題】ところが、金属インプラント材を利用した骨インプラントには様々な問題があり、例えば、人の皮質骨の曲げ弾性率はおよそ16GP The object of the invention is to be Solved However, there are various problems with the bone implant using a metal implant material, for example, the flexural modulus of the cortical bone of the people is about 16GP
aであるのに対し、ステンレスSUS316L、Co− While it is a, stainless steel SUS316L, Co-
Cr、Ti−6%Al−4%Vの曲げ弾性率はそれぞれ200、213、124GPaであって、骨の約8〜1 Cr, flexural modulus of Ti-6% Al-4% V is an each 200,213,124GPa, about bone 8 to 1
3倍もあるため、人工関節がたわんだり、ねじれたりすることによって局所的に応力が集中し、その応力集中部分で骨を破壊してしまう虞れがある。 Because of three times, locally concentrated stress Dari arthroplasty bent by twisting, there is a possibility that destroy the bone at the stress concentration portion.

【0004】また、アクリルベースのセメントを用いずに直接インプラントと骨を固着するセメントレス人工股関節の臨床において、骨髄腔と良く嵌合して体重や歩行等の運動による応力の作用を繰り返し受けるステム先端部では骨の増勢がみられるが、応力が作用しない部分では骨への刺激がなくなるために逆に骨組織の吸収が起こって骨量が減少するという結果が報告されている。 [0004] In addition, in clinical cementless hip prosthesis to secure the direct implant and the bone without using an acrylic-based cement, receive well-fitted to the bone marrow cavity repeat the action of the stress caused by movement such as body weight and walking stem Although momentum of bone is observed at the tip, it has been reported results that in the portion where the stress does not act to reduce the amount of bone resorption occurred in the bone tissue reversed to eliminate irritation to the bone. 則ち、応力が作用しない部分においては、骨と人工関節との嵌合にズレや緩みが増長され、人工関節を安定して保持することができなくなる虞れがある。 Sokuchi, in the portion where stress is not applied, displacement or looseness is length increasing the engagement between the bone and the artificial joint, it is stable can not be held by fear the prosthesis.

【0005】また、比重の大きな金属インプラント材による人工関節は、患者にとって挿入中の負担が大きいという問題がある。 [0005] In addition, artificial joints due to the large metal implant material of specific gravity, there is a problem that the large burden during insertion for the patient.

【0006】金属インプラント材による人工関節において、曲げ弾性率を減少させて生体骨のそれに近似させ、 [0006] In the artificial joint with metal implants material, it is close to that of the biological bone by decreasing the flexural modulus,
かつ軽量化する目的で、人工関節のステム部を中空にすることが提案されている(特開平1−148254号公報)。 And the purpose of weight reduction, it is proposed that the stem portion of the prosthesis to a hollow (JP-A-1-148254). しかし、この発明では、中空とされたステム部の内部空間は、一部分開放されて外部と連通するようになっているため、ステム部の内部空間に大量の出血した血液やその他の体液が貯留し、患部の治癒を遅延させ、また細菌の繁殖による感染が生じるという欠点がある。 However, in this invention, the internal space of the stem portion which is a hollow, since it is partially opened so that the communication with the outside, a large amount of bleeding blood or other body fluid to the inner space of the stem portion is stored delays the healing of the affected area, also it has the disadvantage that infection with bacterial growth occurs.

【0007】したがって、閉状態の中空部、則ち外部と連通しない中空部を有するステム部とすることが望まれる。 Accordingly, the hollow portion of the closed state, be a stem portion having a hollow portion Sokuchi not outside communication is desired.

【0008】このような閉状態の中空部を有するステム部は、金属やセラミックの粉体とバインダーとからなるコンパウンドを成形型内に充填して粉体焼結を行う際に、形成すべき中空部に対応する形状の中子を成形型内に配置することによって、製造することが可能である。 [0008] The stem portion, a compound consisting of a metal or ceramic powder and a binder is filled into the mold when making sintered powder, hollow to be formed with a hollow portion of such a closed state by placing in a mold the core of a shape corresponding to parts, it can be produced.

【0009】しかしながら、このような方法によるときは、焼結後、例えば薬品での洗浄により中子を溶解除去し、更に、中子の支持棒が挿通された孔を溶接等の適宜手段により封止しなければならず、製造工程が複雑となってしまう。 However, when using such a method, after sintering, the core was dissolved and removed for example by washing with chemicals, further sealing the hole supporting rod of the core is inserted by an appropriate means such as welding must be stopped, the manufacturing process becomes complicated.

【0010】本発明は、上記従来技術の問題点に鑑みて、閉状態の中空部を有する骨インプラントを効率的に製造することのできる新規な方法を提供することを目的とする。 [0010] The present invention is, in view of the problems of the prior art, and an object thereof is to provide a novel method capable of efficiently producing a bone implant having a hollow portion in the closed state.

【0011】 [0011]

【課題を解決するための手段】上記目的を達成するために創案された本発明による骨インプラントの製造方法は、多孔質材料よりなる充填型に、この充填型のゲート口より、原料粉末と樹脂バインダーとを混合したコンパウンドを充填し、充填型のゲート口を封止した後、充填型に所要の運動を与えることにより、コンパウンドにおける樹脂バインダーのうちの相当量を充填型の多孔質材料に吸収除去せしめ、その後、成形体を充填型から取り出して、この成形体を所定温度にて脱バインダー処理し、更に粉体焼結を行って、樹脂バインダーの吸収除去量に相当する閉状態の中空部を有する焼結体を得ることを特徴とする。 Means for Solving the Problems A method of manufacturing a bone implant according to the present invention was invented in order to achieve the above object, the filled composed of a porous material, the gate port of the filled raw material powder and a resin a compound obtained by mixing a binder filled absorption after sealing the filled gate opening, by providing the required movement to the filled, a substantial amount of the resin binder in the compound to the porous materials filled removal allowed, then removed the molded article from the filled, and debinding the molded body at a predetermined temperature, further subjected to powder sintering, a hollow portion of the closed state corresponding to the absorption removal amount of the resin binder characterized in that to obtain a sintered body having a.

【0012】原料粉末としては、任意の金属材料やセラミックス材料を選択して用いることができ、複数の材料を混合した混合原料粉末としても良い。 [0012] As the raw material powder, can be used to select any metal material or a ceramic material, may be a mixed raw material powder obtained by mixing a plurality of materials.

【0013】充填型は、ガラスフリット、焼結金属、石膏または多孔性セラミックス等の多孔質材料よりなる。 [0013] filling type, consisting of a porous material of a glass frit, sintered metal, gypsum or porous ceramics.

【0014】成形後の脱バインダー処理は、溶媒または熱分解法により、大気または窒素あるいはアルゴン中にて、毎時3〜100℃の昇温速度にて300〜700℃ [0014] debinder treatment after molding, by solvent or thermal decomposition method, at atmospheric or nitrogen or argon, 300 to 700 ° C. at a heating rate per hour 3 to 100 ° C.
の温度範囲で行うことができる。 It can be carried out at a temperature range.

【0015】粉体焼結は、真空や水素等の非酸化性雰囲気にて、1000〜1400℃の温度範囲で行うことができる。 The sintered powder is in a non-oxidizing atmosphere such as vacuum or hydrogen, may be carried out in a temperature range of 1000 to 1400 ° C..

【0016】充填型の運動は、一般に、充填型を収容固定する筒状ホルダーを回転および/または揺動することによって与えることができる。 The filling-kinematic can generally be provided by rotating and / or rocking a cylindrical holder accommodating fixing the filled. この際の運動は適宜プログラムすることができ、その運動方向および/または速度を調整し、同一条件の運動を繰り返し、あるいは異なる条件の運動を組み合わせることによって、中空成形体を均一な層厚を有するものとし、あるいは部分的に偏肉を有するものとすることができる。 Movement at this time can be programmed as appropriate, to adjust the direction of movement and / or speed, repeating the movement of the same conditions, or by combining movements of the different conditions, it has a uniform layer thickness of the hollow molded body and things, or it can be made to have a partially uneven thickness.

【0017】 [0017]

【実施例】粒径45μm以下のチタン微粉末と、粒径4 EXAMPLES and following fine titanium powder particle size 45 [mu] m, particle size 4
5μ以下のアルミニウム60wt%−バナジウム40w 5μ following aluminum 60 wt% - Vanadium 40w
t%の母合金粉末とを、重量比で9:1として機械的に混合し、得られたTi−6wt%Al−4wt%Vの混合粉を原料粉末として用いる。 And t% of the mother alloy powder, 9 weight ratio: mechanically mixed as 1, a mixed powder of the resulting Ti-6wt% Al-4wt% V used as the raw material powder.

【0018】バインダーとしてはアルギン酸アンモニウム1%水溶液を用い、上記原料粉末と混練して、粘度1 [0018] Using ammonium alginate 1% aqueous solution as a binder, and the raw material powder and kneaded, viscosity 1
500〜2000cpのコンパウンドを調製する。 The preparation of a compound of 500~2000cp.

【0019】このコンパウンド1を、図1に示すように、特級石膏を使用した分割可能な筒状充填型2(図2)にそのゲート口3より注入し、キャビティー内に完全に充填した後、ゲート口3を、充填型2と同一材料である特級石膏よりなる栓4にて密封する。 [0019] The compound 1, as shown in FIG. 1, after the injected from the gate opening 3, was completely filled into the cavity in a special grade gypsum can be divided using tubular filled 2 (FIG. 2) the gate opening 3 is sealed by filling type 2 consisting of special grade gypsum of the same material as the plug 4.

【0020】次に、この充填型2を筒状ホルダー5に固定状態に収納し、モータ6により筒状ホルダー5をその軸心のまわりに遠心力が働くよう50〜300rpmの速度で回転させ(図3)、更に、サーボモータ7により180°の角度範囲に亙って筒状ホルダー5を交互に逆方向に揺動させる(図4)。 Next, housed in a fixed state this filled 2 in tubular holder 5, by rotating the tubular holder 5 at a rate of 50~300rpm to centrifugal force acts around its axis by a motor 6 ( 3), further, it is swung in the opposite direction to the tubular holder 5 over an angular range of 180 ° by the servo motor 7 alternately (Fig. 4). これによって、充填型2のキャビティー内の粒子には図5に示すような動きが与えられる。 Thus, the particles in the cavity filled 2 movement is given as shown in FIG.

【0021】充填型2のキャビティー内に充填された状態のコンパウンド1においては、原料粉末同志の間には、付着力、凝集力、バインダーの浮力等の様々な力が働いているが、これらの力に比べて原料粉末の粒子に働く重力が十分に大きければ、粒子は力学的に最も安定な状態に並ぼうとする。 [0021] In Compound 1 in a state of being filled in the cavity filled 2 between the raw material powder comrades, adhesion, cohesive strength, although worked various forces of buoyancy or the like of the binder, these compared to the force if is sufficiently large gravity acting on the particles of the raw material powder, the particles will try line up in the most stable state dynamics.

【0022】しかしながら、前記した筒状ホルダー5の回転運動による遠心力が働き、原料粉末は充填型2のキャビティー内周面に均一に押しつけられ、同時に相当量のバインダーが型2を形成する石膏材料の無数の小孔内に吸収除去される。 [0022] However, the centrifugal force acts due to the rotational movement of the cylindrical holder 5 described above, the raw material powder is uniformly pressed against the cavity inner circumferential surface of the filled 2, gypsum considerable amount of the binder to form a mold 2 at the same time absorption is removed in a myriad of pores of the material.

【0023】かくして、静止後の充填型2においてキャビティー内に成形される成形体8は、図6に示すように、石膏材料の小孔内に吸収除去されたバインダー分に相当する閉状態の中空部9が形成されている。 [0023] Thus, the molded body 8 to be molded into the cavity in the filling type 2 after stationary, as shown in FIG. 6, in the closed state corresponding to a binder component which is absorbed and removed in the ostium of the gypsum material hollow portion 9 is formed.

【0024】このような成形体8を、充填型2を分割して取り出した後、アルゴン雰囲気中で毎時50℃の昇温速度で700℃まで上げ、この温度に3時間保持して脱バインダー処理し、次に真空中(1×10 −5 tor [0024] Such a molded body 8, after removal by dividing the filled 2, raised to 700 ° C. at a heating rate per hour 50 ° C. in an argon atmosphere, 3 hour hold to remove the binder at this temperature and then in vacuo (1 × 10 -5 tor
r)で1300℃にて3時間焼結することにより、閉状態の中空部を有し、しかも外殻部の相対密度が95%と高密度の、チタン製の人工股関節ステム部が製造される。 By 3 hours sintered at 1300 ° C. in r), has a hollow portion in the closed state, yet the relative density of the outer shell portion of 95% and a high density, the hip stem of titanium is produced .

【0025】 [0025]

【発明の効果】本発明方法によれば、外部と連通しない閉状態の中空部を有する骨インプラントを効率的に製造することができる。 According to the present invention a method according to the present invention, it is possible to produce a bone implant having a hollow portion in the closed state without external communication with efficiently. 本発明方法は遠心力を利用して中空部を形成するので、原料粉末が型内キャビティーの内周面に高密度に集中するため、成形体の外殻部は高密度高強度に形成される。 The present invention is therefore to form a hollow portion by utilizing the centrifugal force, since the raw material powder is concentrated at a high density on the inner peripheral surface of the mold cavity, the outer shell of the molded body is formed in a high density high strength that.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明方法の一実施例に用いられる充填型およびそのキャビティー内の充填コンパウンドを示す縦断面図である。 1 is a longitudinal sectional view showing a filling compound filling type and in that cavity used in one embodiment of the present invention method.

【図2】図1の充填型を示す斜視図である。 2 is a perspective view of a filled in FIG.

【図3】図1の充填型を回転揺動させるための装置構成例を示す平面図である。 3 is a plan view showing an apparatus configuration example for rotating swing filled in FIG.

【図4】図3の装置構成例を示す正面図である。 4 is a front view showing a device configuration example of FIG.

【図5】回転揺動される充填型内の原料粉体の動きを示す説明図である。 5 is an explanatory diagram showing the movement of the raw material powder in the filled rotated swing.

【図6】回転揺動後の静止状態の充填型およびそのキャビティー内の成形体を示す縦断面図である。 6 is a longitudinal sectional view showing a molded body in the filled and its cavity stationary state after rotating the swing.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 コンパウンド 2 充填型 3 ゲート口 4 栓 5 筒状ホルダー 6 モータ 7 サーボモータ 8 成形体 9 閉状態の中空部 1 Compound 2 filled third gate opening 4 plug 5 cylindrical holder 6 motor 7 a servomotor 8 molded body 9 hollow portion of the closed

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我石 一郎 東京都中央区京橋3丁目1番1号 蛇の目 ミシン工業株式会社内 (72)発明者 片倉 健男 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 大澤 孝明 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 上田 義久 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Soga stone Ichiro, Chuo-ku, Tokyo Kyobashi 3-chome No. 1 No. 1 Janome Sewing Machine industry Co., Ltd. in the (72) inventor Takeo KATAKURA Kanagawa Prefecture ashigarakami district Nakai-cho, Inokuchi 1500 address Terumo Corporation the inner (72) inventor Osawa Kanagawa Prefecture ashigarakami district Nakai-cho, Inokuchi 1500 address Terumo within the Corporation Takaaki (72) inventor Yoshihisa Ueda Kanagawa Prefecture ashigarakami district Nakai-cho, Inokuchi 1500 address Terumo within the Corporation

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 多孔質材料よりなる充填型に、この充填型のゲート口より、原料粉末と樹脂バインダーとを混合したコンパウンドを充填し、前記充填型のゲート口を封止した後、前記充填型に所要の運動を与えることにより、前記コンパウンドにおける前記樹脂バインダーの相当量を前記充填型の多孔質材料に吸収除去せしめ、その後、成形体を前記充填型から取り出して、この成形体を所定温度にて脱バインダー処理し、更に粉体焼結を行って、前記樹脂バインダーの吸収除去量に相当する閉状態の中空部を有する焼結体を得ることを特徴とする骨インプラントの製造方法。 To 1. A porous packing type made of a material, the gate port of the filled, the mixed compound and a raw material powder and a resin binder filled, after sealing the filled gate opening, the filling by providing the required movement to the mold, a substantial amount of the resin binder in the compound allowed absorb and remove the porous material of the filled, then removed the molded article from the filled, predetermined temperature the molded body at to binder removal treatment, further subjected to powder sintering method for producing a bone implant, characterized in that to obtain a sintered body having a hollow portion in the closed state corresponding to the absorption removal amount of the resin binder.
  2. 【請求項2】 前記充填型の多孔質材料が、ガラスフリット、焼結金属、石膏または多孔性セラミックスのいずれかよりなることを特徴とする、請求項1の骨インプラントの製造方法。 Wherein the porous material of the filling type, glass frit, and wherein the more becomes that one of sintered metal, gypsum or porous ceramics, a manufacturing method of the bone implant of claim 1.
  3. 【請求項3】 前記脱バインダー処理を、溶媒または熱分解法により、大気または窒素あるいはアルゴン中にて、毎時3〜100℃の昇温速度にて300〜700℃ The method according to claim 3, wherein said debinding treatment, by solvent or thermal decomposition method, at atmospheric or nitrogen or argon, at a Atsushi Nobori rate per hour 3 to 100 ° C. 300 to 700 ° C.
    の温度範囲で行うことを特徴とする、請求項1の骨インプラントの製造方法。 And carrying out at the temperature range, method for producing a bone implant of claim 1.
  4. 【請求項4】 前記粉体焼結を、非酸化性雰囲気にて、1000〜1400℃の温度範囲で行うことを特徴とする、請求項1の骨インプラントの製造方法。 The method according to claim 4, wherein said sintered powder, in a non-oxidizing atmosphere, and carrying out in a temperature range of 1000 to 1400 ° C., the manufacturing method of the bone implant of claim 1.
JP34794091A 1991-12-03 1991-12-03 Production of bone implant Pending JPH0690971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34794091A JPH0690971A (en) 1991-12-03 1991-12-03 Production of bone implant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34794091A JPH0690971A (en) 1991-12-03 1991-12-03 Production of bone implant
US07985833 US5336465A (en) 1991-12-03 1992-12-03 Method of making bone-implants
EP19920311060 EP0545718A3 (en) 1991-12-03 1992-12-03 Method of making bone-implants

Publications (1)

Publication Number Publication Date
JPH0690971A true true JPH0690971A (en) 1994-04-05

Family

ID=18393639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34794091A Pending JPH0690971A (en) 1991-12-03 1991-12-03 Production of bone implant

Country Status (1)

Country Link
JP (1) JPH0690971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503317A (en) * 2004-06-22 2008-02-07 テグ ホールディング エス.エー. Curing substance manufacturing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503317A (en) * 2004-06-22 2008-02-07 テグ ホールディング エス.エー. Curing substance manufacturing equipment
JP4891900B2 (en) * 2004-06-22 2012-03-07 ボーン サポート アクチボラゲット Curing substance manufacturing equipment

Similar Documents

Publication Publication Date Title
Kao et al. A review of bone substitutes
Link et al. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles
US6808561B2 (en) Biocompatible cement containing reactive calcium phosphate nanoparticles and methods for making and using such cement
Ishikawa et al. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement
US6051247A (en) Moldable bioactive compositions
Friedman et al. BoneSource™ hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction
US6224635B1 (en) Implantation of surgical implants with calcium sulfate
US4859383A (en) Process of producing a composite macrostructure of organic and inorganic materials
US4259072A (en) Ceramic endosseous implant
US4849285A (en) Composite macrostructure of ceramic and organic biomaterials
US3981736A (en) Biocompatible glass ceramic material
Dorozhkin Calcium orthophosphate cements for biomedical application
US6905516B1 (en) Calcium phosphate bone substitute
US5958314A (en) Process for the preparation of porous material
US4164794A (en) Prosthetic devices having coatings of selected porous bioengineering thermoplastics
US5296026A (en) Phosphate glass cement
US4278630A (en) Method for the preparation of implants, and implants
US4756862A (en) Prosthetic devices having coatings of selected porous bioengineering thermoplastics
US6018095A (en) Method for preparing an implantable composite material, resulting material, implant including said material, and kit therefor
US4629464A (en) Porous hydroxyapatite material for artificial bone substitute
US4362681A (en) Prosthetic devices having coatings of selected porous bioengineering thermoplastics
US4599085A (en) Bone implant member for prostheses and bone connecting elements and process for the production thereof
US5077132A (en) Biocompatible composite material and a method for producing the same
Asaoka et al. Mechanical properties and biomechanical compatibility of porous titanium for dental implants
US4605415A (en) Bioreactive materials