JPH0690108A - Compact antenna and manufacture of the same - Google Patents

Compact antenna and manufacture of the same

Info

Publication number
JPH0690108A
JPH0690108A JP26278392A JP26278392A JPH0690108A JP H0690108 A JPH0690108 A JP H0690108A JP 26278392 A JP26278392 A JP 26278392A JP 26278392 A JP26278392 A JP 26278392A JP H0690108 A JPH0690108 A JP H0690108A
Authority
JP
Japan
Prior art keywords
antenna
matching circuit
capacitor
radiating element
electrode pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26278392A
Other languages
Japanese (ja)
Inventor
Takafumi Suzuki
尚文 鈴木
Keiichiro Ito
圭一郎 伊藤
Osamu Michigami
修 道上
Yasuhiro Nagai
靖浩 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26278392A priority Critical patent/JPH0690108A/en
Publication of JPH0690108A publication Critical patent/JPH0690108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the antenna which is miniaturized, provided with wide band performance and high reliability reducing connection. CONSTITUTION:On one substrate 4, a meandering radiator 1 and a capacitor 2 for matching circuit are simultaneously constituted so as to integrate these radiator 1 and matching circuit 2. Thus, the antenna provided with a much wider band can be provided from the characteristics of the matching circuit in a certain area smaller than a lambda/4 matching circuit composed of parallel lines and further when a superconducting thin film is used, the almost same performance as a superconducting antenna composed of a bulk material can be provided. Therefore, limit for designing the meandering radiator can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は給電系,放射素子および
インピーダンス整合回路から構成されるアンテナモジュ
ールに関し、特に小型短縮アンテナとその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna module composed of a feeding system, a radiating element and an impedance matching circuit, and more particularly to a compact shortened antenna and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、自動車,航空機,船舶などの移動
体からの通信を含めたパーソナル通信が大幅に普及しつ
つある。このため、高周波領域の通信帯域が不足しつつ
あり、通信周波数の増加が図られつつある。一方、周波
数帯域の有効利用の観点から、パーソナル通信用基地局
エリアの微小化が進められている。このため、基地局ア
ンテナの増加とともに、アンテナには小型化,高指向性
化が要求されている。従って、従来使われていたλ/2
波長アンテナをより一層小型化したアンテナが求められ
ている。
2. Description of the Related Art In recent years, personal communication including communication from mobile bodies such as automobiles, aircrafts, ships, etc. has been widely spread. For this reason, the communication band in the high frequency region is becoming insufficient, and the communication frequency is being increased. On the other hand, from the viewpoint of effective use of frequency bands, miniaturization of the personal communication base station area is being promoted. Therefore, as the number of base station antennas increases, the antennas are required to be smaller and have higher directivity. Therefore, the previously used λ / 2
There is a demand for an antenna having a smaller wavelength antenna.

【0003】従来より一般的に使用されているアンテナ
では、放射素子長を短くして小型化すると、アンテナか
ら放射されるパワーは素子長の2乗に比例して小さくな
るため、アンテナを構成する信号線の抵抗損失のため、
アンテナの利得が低下してしまうという問題があった。
また、放射パワーの低下に伴い、素子の入力インピーダ
ンスの抵抗成分が非常に小さくなるため、給電線とのイ
ンピーダンス整合も難しくなる。更に、微小ダイポー
ル,微小ループ等の非共振型放射素子では、入力インピ
ーダンスのリアクタンス成分が抵抗成分の数万〜数十万
倍と非常に大きくなるため、インピーダンス整合は一層
困難になるという問題もあった。
In an antenna generally used in the past, if the radiating element length is shortened to reduce the size, the power radiated from the antenna decreases in proportion to the square of the element length, so that the antenna is constructed. Due to the resistance loss of the signal line,
There is a problem that the gain of the antenna is reduced.
Further, as the radiation power decreases, the resistance component of the input impedance of the element becomes extremely small, which makes impedance matching with the feeder line difficult. Furthermore, in non-resonant radiating elements such as minute dipoles and minute loops, the reactance component of the input impedance becomes tens of thousands to hundreds of thousands times as large as the resistance component, which makes impedance matching even more difficult. It was

【0004】従来、これら非共振型アンテナの整合回路
には、スタブが多く用いられていたが、スタブの周波数
特性のため、狭帯域になるという問題があった。また、
スタブの構造上小型化には向いておらず、放射素子と整
合回路を合わせたアンテナ全体の寸法は必ずしも小さく
ならなかった。それ故、より損失の小さな材料による信
号線路や、広い帯域を実現できる放射素子及び整合回路
構成のアンテナが強く要求されていた。
Conventionally, many stubs have been used in the matching circuits of these non-resonant antennas, but there is a problem that the band becomes narrow due to the frequency characteristics of the stubs. Also,
Due to the structure of the stub, it was not suitable for miniaturization, and the overall size of the antenna including the radiating element and the matching circuit did not necessarily become small. Therefore, there has been a strong demand for a signal line made of a material having a smaller loss, a radiating element capable of realizing a wide band, and an antenna having a matching circuit configuration.

【0005】近年、臨界温度が液体窒素温度を越える酸
化物超伝導体の出現により、高周波領域で通常の金属に
比べて1桁以上損失の小さい超伝導体を、液体窒素温度
での使用が可能となった。これに伴い、超伝導体による
アンテナの研究が、精力的に行われてきている。
With the advent of oxide superconductors whose critical temperature exceeds the liquid nitrogen temperature in recent years, it is possible to use superconductors with a loss of one digit or more in the high-frequency region compared with ordinary metals at the liquid nitrogen temperature. Became. Along with this, research on antennas using superconductors has been vigorously carried out.

【0006】現在までに、酸化物超伝導焼結体材料によ
る、自己共振状態で使用できるノーマルモードヘリカル
素子と、平行線路によるλ/4整合回路で構成された小
型アンテナが提案されている(特開平4−216203
号)。図7にその酸化物超伝導アンテナの構成例を示
す。図7(a)及び(b)はそれぞれ放射素子をヘリカル素子
11a,メアンダ素子11bで構成した場合であり、整
合回路にはλ/4平行線路型整合回路12を使用してい
る。ここで、いずれの放射素子11a,11bの場合で
も、放射素子長lAに比べ整合回路長lBが長く、このた
めアンテナ全体の小型化に制限を受けている。なお、図
7中13は給電系を示す。
Up to now, there has been proposed a small antenna composed of a normal mode helical element made of an oxide superconducting sintered body material which can be used in a self-resonant state and a λ / 4 matching circuit made of a parallel line (special feature: Kaihei 4-216203
issue). FIG. 7 shows a configuration example of the oxide superconducting antenna. 7A and 7B show the case where the radiating element is composed of the helical element 11a and the meandering element 11b, respectively, and the λ / 4 parallel line type matching circuit 12 is used as the matching circuit. Here, in any of the radiating elements 11a and 11b, the matching circuit length l B is longer than the radiating element length l A , which limits the miniaturization of the entire antenna. In addition, 13 in FIG. 7 shows a power feeding system.

【0007】例えば、500MHz帯アンテナで、λ/
45の放射素子長lAは約13mmであるが、整合回路
長lB は約100mmになる。またこのアンテナ構造で
は、放射素子と整合回路は自己支持型のバルク材料を整
形して構成するため、整形後互いの部品を接続する必要
があり、電気的ロスや機械的強度の点での信頼性,アン
テナ全体の性能に及ぼす影響などに問題があった。
For example, with a 500 MHz band antenna, λ /
The radiating element length l A of 45 is about 13 mm, while the matching circuit length l B is about 100 mm. In addition, in this antenna structure, the radiating element and the matching circuit are formed by shaping a self-supporting bulk material, so it is necessary to connect the parts to each other after shaping, and reliability in terms of electrical loss and mechanical strength is required. However, there was a problem with the performance and the effect on the performance of the entire antenna.

【0008】これら整合回路の小型化,放射素子と整合
回路の接続点を無くすために、図8に示すように、超伝
導膜を用いたメアンダ放射素子21と平行線路による整
合回路22で構成されたメアンダ型アンテナも提案され
ている(特願平3−293868号)。なお、図8中2
3は給電系を示す。
In order to reduce the size of these matching circuits and eliminate the connection point between the radiating element and the matching circuit, a meander radiating element 21 using a superconducting film and a matching circuit 22 using a parallel line are used as shown in FIG. A meander antenna has also been proposed (Japanese Patent Application No. 3-293868). In addition, 2 in FIG.
Reference numeral 3 indicates a power feeding system.

【0009】この超伝導膜によるメアンダ型アンテナで
は、放射素子21と整合回路22の間の接続点はなくな
るが、線路幅がアンテナの損失に大きく影響する平行線
路をメアンダ状に引き回すため、線路幅をある程度以上
には細くできず、小型化に制限を受けていた。整合回路
寸法と比較して、放射素子寸法が大きくなる1/15波
長の500MHz 帯域のアンテナを例にとっても、アン
テナ全体の面積に対する整合回路が占める面積は20%
である。現在のところ、形成可能な超伝導薄膜の大きさ
には制限があるため、これらのアンテナでは、放射素子
設計時に大きさによる制約を受けるといった問題も生じ
ていた。
In this meandering antenna using a superconducting film, the connection point between the radiating element 21 and the matching circuit 22 is eliminated, but the parallel line whose line width greatly influences the loss of the antenna is laid out in a meandering shape. It could not be made thinner than a certain amount, and it was limited to miniaturization. Compared with the matching circuit size, the size of the radiating element is larger, and even if the antenna of the 500MHz band of 1/15 wavelength is taken as an example, the area occupied by the matching circuit is 20% of the total area of the antenna.
Is. At present, since the size of the superconducting thin film that can be formed is limited, these antennas also have a problem of being restricted by the size when designing the radiating element.

【0010】[0010]

【発明が解決しようとする課題】以上のように、共振型
の放射素子と平行線路による整合回路を用いた超伝導ア
ンテナでは、帯域幅やアンテナ利得の点で優れているも
のの、アンテナ全体の小型化には限界があり、図7で示
したバルク材料による超伝導アンテナでは、放射素子と
整合回路の接続という問題もあった。それゆえ、この超
伝導アンテナの性能を維持したまま、より小型化が可能
となり、しかもその接続の問題が軽減できる新しい構
造,構成が強く望まれていた。
As described above, a superconducting antenna using a matching circuit composed of a resonance type radiating element and a parallel line is excellent in band width and antenna gain, but is small in size of the entire antenna. However, there is a problem that the radiating element and the matching circuit are connected in the superconducting antenna made of the bulk material shown in FIG. Therefore, there has been a strong demand for a new structure and structure that can be further downsized while maintaining the performance of the superconducting antenna and reduce the connection problem.

【0011】本発明は以上の点に鑑み、上記のような問
題点を解決するためになされたものであり、その目的
は、小型の放射素子と簡易なインピーダンス整合回路を
一枚の基板上に形成することにより、小型でかつ広帯域
な性能を有し、しかも接続の少ない高信頼なアンテナを
提供することにある。
In view of the above points, the present invention has been made to solve the above problems, and an object thereof is to provide a small radiating element and a simple impedance matching circuit on a single substrate. By forming it, it is to provide a highly reliable antenna that is small in size, has wideband performance, and has few connections.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
め本発明は、給電系,放射素子及びインピーダンス整合
回路から構成されるアンテナモジュールにおいて、メア
ンダ型放射素子と整合回路用コンデンサ素子を一枚の基
板上に同時に構成することにより、これら放射素子と整
合回路の一体化構造を可能にすることを特徴とするもの
である。
In order to achieve the above object, the present invention provides an antenna module composed of a feeding system, a radiating element and an impedance matching circuit, which includes a meandering radiating element and a matching circuit capacitor element. It is characterized in that the radiating element and the matching circuit can be integrated with each other by simultaneously forming them on the substrate.

【0013】[0013]

【作用】本発明においては、整合回路の特性から、平行
線路によるλ/4整合回路よりも小さい面積で、はるか
に広い帯域をもつアンテナが実現でき、さらに超伝導薄
膜を使用した場合には、バルク材料で構成した超伝導ア
ンテナとほぼ同程度の性能が得られる。これにより、メ
アンダ状放射素子設計の際の制約を低減できる。
In the present invention, due to the characteristics of the matching circuit, it is possible to realize an antenna having a much wider band with a smaller area than the λ / 4 matching circuit by the parallel line. Further, when a superconducting thin film is used, It has almost the same performance as a superconducting antenna made of bulk material. This can reduce restrictions in designing the meandering radiating element.

【0014】[0014]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は本発明によるアンテナの一実施
例を示す基本構成図であり、図2はそのコンデンサ部分
の詳細図である。これらの図において、1は主偏波電界
方向の電気的な素子長が共振状態で使用する直線条半波
長ダイポール素子の電気的な長さより短いメアンダ型単
一線路による放射素子であり、例えばλ/22に短縮し
たメアンダ型放射素子である。2はこの放射素子1と給
電系3との間にその間のインピーダンスを整合させるた
めに接続された整合回路用の平行平板コンデンサであ
り、これら放射素子1,整合回路用コンデンサ2が絶縁
性基板4上に一体に形成して構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is a basic configuration diagram showing an embodiment of an antenna according to the present invention, and FIG. 2 is a detailed diagram of a capacitor portion thereof. In these figures, reference numeral 1 is a radiating element with a meandering single line whose electric element length in the main polarization electric field direction is shorter than the electric length of a straight-line half-wavelength dipole element used in a resonance state. It is a meandering radiating element shortened to / 22. Reference numeral 2 denotes a parallel plate capacitor for a matching circuit, which is connected between the radiating element 1 and the feeding system 3 to match the impedance therebetween, and the radiating element 1 and the matching circuit capacitor 2 are connected to the insulating substrate 4. It is formed integrally with the upper part.

【0015】この場合、前記平行平板コンデンサ2は、
導電性材料膜による放射素子用信号線路のパターン加工
時に同時に下部電極パターンを形成後、その下部電極パ
ターン上に、図2(a) に示すようにテフロン,アルミナ
などの誘電体を堆積して形成された誘電体スペーサ5を
介在させたのち、図2(b) に示す上部平板6を上部電極
パターンとして重ね合わせて形成される。なお、図1の
アンテナと同じ構成で、導電性材料膜に超伝導膜を用い
れば、アンテナの効率は最良ものとなる。
In this case, the parallel plate capacitor 2 is
The lower electrode pattern is formed at the same time as the patterning of the radiating element signal line with a conductive material film, and then a dielectric such as Teflon or alumina is deposited on the lower electrode pattern as shown in Fig. 2 (a). After interposing the formed dielectric spacer 5, the upper flat plate 6 shown in FIG. 2B is formed as an upper electrode pattern by superposing. It should be noted that the efficiency of the antenna will be the best if the superconducting film is used as the conductive material film in the same configuration as the antenna of FIG.

【0016】次に上記実施例の作製手順について、超伝
導膜を用いた場合を例にとって述べる。MgOなどの超
伝導膜用絶縁性基板4上に、厚膜あるいは薄膜の酸化物
超伝導膜を堆積させた後、フォトリソグラフィ技術によ
り放射素子用単一線路,整合回路用コンデンサパターン
のマスクを形成し、次いでドライエッチングにより、放
射素子1用の単一線路とコンデンサ2の下部電極パター
ンを同時に形成して、図1のような信号線路にパターン
加工する。次に、このコンデンサ2の下部電極パターン
上に、誘電体スペーサ5としてアルミナなどの無機材
料,あるいはテフロンなどの有機材料を数ミクロンから
数十ミクロン程度、スパッタあるいは塗布法にて堆積さ
せる(図2(a)参照)。
Next, the manufacturing procedure of the above embodiment will be described by taking the case of using a superconducting film as an example. After depositing a thick or thin oxide superconducting film on the insulating substrate 4 for a superconducting film such as MgO, a mask for a single line for a radiating element and a capacitor pattern for a matching circuit is formed by photolithography. Then, by dry etching, a single line for the radiating element 1 and the lower electrode pattern of the capacitor 2 are simultaneously formed, and the signal line as shown in FIG. 1 is patterned. Next, an inorganic material such as alumina or an organic material such as Teflon is deposited as a dielectric spacer 5 on the lower electrode pattern of the capacitor 2 by a sputtering method or a coating method to a thickness of several microns to several tens of microns (FIG. 2). (See (a)).

【0017】次いで、このスペーサ5上に図2(b) に示
す平行平板用上部平板6を上部電極パターンとして重ね
合わせて配置することにより、図1に示すように、メア
ンダ型放射素子1と整合回路用コンデンサ2を一体化し
た構造のアンテナ素子が得られる。この場合、前記上部
平板6と下部基板4上の放射素子用信号線路との接続に
は、スペーサ5と同じ厚さの金等の金属シートを挟み、
導電性ペースト等で接続すれば、機械的強度が高く、電
気的損失が無視できる接続が実現できる。
Next, the parallel plate upper flat plate 6 shown in FIG. 2 (b) is placed on the spacer 5 as an upper electrode pattern so as to be aligned with the meandering radiating element 1 as shown in FIG. An antenna element having a structure in which the circuit capacitor 2 is integrated is obtained. In this case, for connecting the upper flat plate 6 and the signal line for the radiating element on the lower substrate 4, a metal sheet such as gold having the same thickness as the spacer 5 is sandwiched,
If the connection is made with a conductive paste or the like, a connection having high mechanical strength and negligible electrical loss can be realized.

【0018】次に具体的な数値例をあげて説明する。
1.5GMHz 帯のアンテナを想定した場合、1波長は
200mmであり、λ/22短縮メアンダ放射素子を採
用すれば、その寸法は約10mm×16mmとなる。こ
の時の信号線間隔はλ/125である。放射素子にこの
形状を採用すると、入力抵抗(Rin)と入力リアクタン
ス(Xin)は、周波数の変化に対して図3に示すように
変化する。よって、この放射素子と給電線との間のイン
ピーダンスを整合させるには、整合条件から、入力抵抗
と入力リアクタンスの関係が(1)式を満たす状態の時に
は、(2)式から求まる容量のコンデンサを接続すればよ
い。
Next, specific numerical examples will be described.
Assuming an antenna of the 1.5 GMHz band, one wavelength is 200 mm, and if a λ / 22 shortened meander radiating element is adopted, its size is about 10 mm × 16 mm. The signal line interval at this time is λ / 125. When this shape is adopted for the radiating element, the input resistance (R in ) and the input reactance (X in ) change as shown in FIG. Therefore, in order to match the impedance between this radiating element and the power supply line, from the matching conditions, when the relationship between the input resistance and the input reactance satisfies the equation (1), the capacitor of the capacitance calculated from the equation (2) is used. Should be connected.

【0019】[0019]

【数1】 [Equation 1]

【0020】[0020]

【数2】 [Equation 2]

【0021】ここでZf ,f,πはそれぞれ給電線の特
性インピーダンス,共振周波数,円周率である。これら
の式から、コンデンサの容量は約15pF必要であるこ
とになる。平行平板コンデンサの容量は、(3)式より求
められる。
Here, Z f , f, and π are the characteristic impedance, resonance frequency, and pi of the feeder, respectively. From these equations, the capacitance of the capacitor needs to be about 15 pF. The capacitance of the parallel plate capacitor can be calculated from equation (3).

【0022】[0022]

【数3】 [Equation 3]

【0023】ここでS,d,εO,εrは平板の面積,ス
ペーサの厚さ,真空中の誘電率,スペーサの比誘電率で
ある。よって、スペーサに厚さ1μmで、誘電率9.1
のMgOを用いれば、平行平板コンデンサの面積は約
0.2mm2 となり、放射素子の面積の1/800とな
るため、アンテナ全体の大きさを大幅に縮めることが可
能となる。そのため、本発明のアンテナ構成をとれば、
超伝導膜の大きさの限界からくる放射素子設計時の制約
を緩和できる。
Here, S, d, ε O and ε r are the area of the flat plate, the thickness of the spacer, the permittivity in vacuum and the relative permittivity of the spacer. Therefore, the spacer has a thickness of 1 μm and a dielectric constant of 9.1.
If MgO is used, the area of the parallel plate capacitor will be about 0.2 mm 2 , which is 1/800 of the area of the radiating element, so that the size of the entire antenna can be significantly reduced. Therefore, with the antenna configuration of the present invention,
It is possible to relax the restrictions when designing the radiating element due to the limit of the size of the superconducting film.

【0024】図4は本発明の他の実施例を示す図1相当
の基本構成図であり、図5はそのコンデンサ部分の詳細
図である。この実施例において図1のものと異なるの
は、λ/22に短縮したメアンダ型放射素子1と給電系
3との間のインピーダンスを整合させる整合回路用コン
デンサにインターデジタル型コンデンサ7を用い、この
コンデンサ7を放射素子1と一体に基板4上に形成して
構成したことである。
FIG. 4 is a basic configuration diagram corresponding to FIG. 1 showing another embodiment of the present invention, and FIG. 5 is a detailed diagram of the capacitor portion thereof. This embodiment is different from that shown in FIG. 1 in that an interdigital capacitor 7 is used as a matching circuit capacitor for matching the impedance between the meandering radiating element 1 shortened to λ / 22 and the feeding system 3. That is, the capacitor 7 is formed integrally with the radiating element 1 on the substrate 4.

【0025】この実施例によると、インターデジタル型
コンデンサ7は、平行平板コンデンサと比べて多少大き
な面積を占めるものの、同一平面上に形成が可能なこと
から、より簡単な構造のアンテナが実現でき、放射抵抗
が大きく、コンデンサ容量が小さい場合に有利な構成と
なる。また、本実施例によるアンテナにおいても、導電
性材料膜に超伝導膜を用いれば、アンテナの効率は最良
なものになることは言うまでもない。
According to this embodiment, the interdigital capacitor 7 occupies a slightly larger area than the parallel plate capacitor, but since it can be formed on the same plane, an antenna having a simpler structure can be realized. This configuration is advantageous when the radiation resistance is large and the capacitor capacitance is small. Also in the antenna according to the present embodiment, it goes without saying that the efficiency of the antenna will be the best if a superconducting film is used as the conductive material film.

【0026】図6に本発明による構成の、900MHz
帯の小型アンテナの特性を示す。図6中のCuアンテナ
及び超伝導アンテナとは、それぞれCu及び超伝導
膜によって形成したアンテナを示す。ここで、放射素子
はλ/41に短縮した素子を採用している。整合回路用
コンデンサには比誘電率9.1のMgOをスペーサとし
た平行平板コンデンサを採用し、その容量は18pFで
ある。Cuアンテナの場合、室温で約−13dBiの
絶対利得が得られ、超伝導膜アンテナでは約−3dB
iの高い絶対利得が得られた。また、帯域幅はどちらの
アンテナでも、ヘリカル素子と平行線路によるλ/4整
合回路構成のアンテナと比較して、6倍以上になってい
る。
FIG. 6 shows a configuration of the present invention, 900 MHz.
The characteristics of a small band antenna are shown. The Cu antenna and the superconducting antenna in FIG. 6 are antennas formed of Cu and a superconducting film, respectively. Here, the radiating element employs an element shortened to λ / 41. A parallel plate capacitor using MgO having a relative dielectric constant of 9.1 as a spacer is adopted as the matching circuit capacitor, and its capacitance is 18 pF. With a Cu antenna, an absolute gain of about -13 dBi is obtained at room temperature, and with a superconducting film antenna it is about -3 dB.
A high absolute gain of i was obtained. In addition, the bandwidth of both antennas is 6 times or more as compared with the antenna having the λ / 4 matching circuit configuration with the helical element and the parallel line.

【0027】このように本発明による小型アンテナは、
整合回路の特性から、平行線路によるλ/4整合回路よ
りも小さい面積で、はるかに広い帯域をもつアンテナが
実現でき、さらに超伝導薄膜を使用した場合には、バル
ク材料で構成した超伝導アンテナとほぼ同程度の性能が
得られる。よって、メアンダ状放射素子設計の際の制約
を低減できる利点を併せ持っている。また、本アンテナ
モジュールは放射素子と整合回路を同一基板上で構成し
ているため、バルクアンテナの構成で問題となっていた
整合回路と放射素子との電気的,機械的接続の問題はな
く、高い信頼性を有したアンテナモジュールが実現でき
る。従って、将来必要となる基地局用小型アンテナシス
テムや高指向性アンテナシステムに適用することができ
る。
As described above, the small antenna according to the present invention is
Due to the characteristics of the matching circuit, it is possible to realize an antenna with a much wider band in a smaller area than a λ / 4 matching circuit using parallel lines. Furthermore, when a superconducting thin film is used, a superconducting antenna made of bulk material is used. The performance is almost the same. Therefore, it also has an advantage that restrictions in designing the meandering radiating element can be reduced. Further, since the radiating element and the matching circuit are configured on the same substrate in this antenna module, there is no problem in the electrical and mechanical connection between the matching circuit and the radiating element, which has been a problem in the configuration of the bulk antenna. An antenna module having high reliability can be realized. Therefore, the present invention can be applied to a small base station antenna system and a highly directional antenna system that will be needed in the future.

【0028】[0028]

【発明の効果】以上説明したように本発明は、単一線路
のメアンダ放射素子とコンデンサ素子による整合回路を
一枚の絶縁性基板上に一体に構成することによって、従
来より小型でしかも広帯域なアンテナモジュールを、信
頼性良く構成できる。さらに超伝導材料を使用した場合
には、広帯域で高利得といった優れた性能が得られる。
そのため、基地局用アンテナシステムで必要となる小型
アンテナや高指向性アレーアンテナの基本アンテナモジ
ュールを提供できるという利点がある。
As described above, according to the present invention, a matching circuit composed of a single-line meander radiating element and a capacitor element is integrally formed on one insulating substrate, so that it is smaller than the conventional one and has a wider bandwidth. The antenna module can be configured with high reliability. Furthermore, when a superconducting material is used, excellent performance such as wide band and high gain can be obtained.
Therefore, there is an advantage that it is possible to provide a basic antenna module for a small antenna or a highly directional array antenna required for a base station antenna system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による小型アンテナモジュールの一実施
例を示す基本構成図である。
FIG. 1 is a basic configuration diagram showing an embodiment of a small antenna module according to the present invention.

【図2】図1のコンデンサ整合回路の構造例を示す図で
ある。
FIG. 2 is a diagram showing a structural example of a capacitor matching circuit of FIG.

【図3】本発明のアンテナの入力インピーダンスの周波
数依存を示す図である。
FIG. 3 is a diagram showing frequency dependence of input impedance of the antenna of the present invention.

【図4】本発明による小型アンテナモジュールの他の実
施例を示す基本構成図である。
FIG. 4 is a basic configuration diagram showing another embodiment of the small antenna module according to the present invention.

【図5】図4のコンデンサ整合回路の構造例を示す図で
ある。
5 is a diagram showing a structural example of the capacitor matching circuit of FIG.

【図6】本発明において設計試作したCuアンテナと超
伝導アンテナの絶対利得の規格化周波数依存性を示す図
である。
FIG. 6 is a diagram showing normalized frequency dependence of absolute gains of a Cu antenna and a superconducting antenna designed and manufactured in the present invention.

【図7】従来例による超伝導バルクアンテナの構成図で
ある。
FIG. 7 is a configuration diagram of a conventional superconducting bulk antenna.

【図8】従来例による超伝導薄膜アンテナの構成図であ
る。
FIG. 8 is a configuration diagram of a conventional superconducting thin film antenna.

【符号の説明】[Explanation of symbols]

1 メアンダ放射素子 2 コンデンサ素子による整合回路 3 給電系 4 絶縁性基板 5 誘電体スペーサ 6 コンデンサの上部平板 7 インターデジタル型コンデンサ 1 Meander radiating element 2 Matching circuit by capacitor element 3 Feed system 4 Insulating substrate 5 Dielectric spacer 6 Upper plate of capacitor 7 Interdigital type capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 靖浩 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Nagai 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 給電系,放射素子及びインピーダンス整
合回路から構成されるアンテナモジュールにおいて、主
偏波電界方向の電気的な素子長が、共振状態で使用する
直線状半波長ダイポール素子の電気的な長さより短いメ
アンダ型単一線路による放射素子と、コンデンサ素子に
よる整合回路とを、絶縁性基板上に堆積させた導電性材
料による膜上に一体に形成し、これらを電気的に接続し
たことを特徴とする小型アンテナ。
1. An antenna module comprising a feeding system, a radiating element and an impedance matching circuit, wherein the electrical element length in the main polarization electric field direction is that of a linear half-wave dipole element used in a resonance state. A radiating element with a meandering single line shorter than the length and a matching circuit with a capacitor element were integrally formed on a film made of a conductive material deposited on an insulating substrate, and they were electrically connected. A characteristic small antenna.
【請求項2】 請求項1記載のアンテナモジュールにお
いて、放射素子とコンデンサ素子による整合回路は、絶
縁性基板上に堆積させた超伝導膜上に一体に形成したこ
とを特徴とする小型アンテナ。
2. The antenna module according to claim 1, wherein the matching circuit including the radiating element and the capacitor element is integrally formed on a superconducting film deposited on an insulating substrate.
【請求項3】 絶縁性基板上に導電性材料膜を堆積させ
た後、フォトリソグラフィ技術により放射素子用単一線
路,整合回路用コンデンサパターンのマスクを形成し、
次いでドライエッチングにより、単一線路とコンデンサ
の下部電極パターンを同時に形成する工程と、 前記コンデンサの下部電極パターン上に誘電体スペーサ
としてアルミナなどの無機材料,あるいはテフロン(登
録商標)などの有機材料をスパッタあるいは塗布法など
により堆積させる工程と、 前記スペーサ上に平板状のコンデンサ用上部電極パター
ンを重ね合わせて配置し、このコンデンサ用上部電極パ
ターンと前記基板上の放射素子用信号線路を、前記スペ
ーサと同じ厚さの金等の金属シートを挟み、導電性ペー
スト等で接続する工程とを少なくとも含むことを特徴と
する小型アンテナの製造方法。
3. After depositing a conductive material film on an insulative substrate, a mask of a radiating element single line and a matching circuit capacitor pattern is formed by a photolithography technique,
Then, a step of simultaneously forming a single line and a lower electrode pattern of the capacitor by dry etching, and an inorganic material such as alumina or an organic material such as Teflon (registered trademark) as a dielectric spacer is formed on the lower electrode pattern of the capacitor. A step of depositing by sputtering or a coating method, and a flat plate-shaped capacitor upper electrode pattern are arranged on the spacer so as to overlap each other, and the capacitor upper electrode pattern and the radiating element signal line on the substrate are connected to the spacer. And a step of sandwiching a metal sheet of gold or the like having the same thickness as the above and connecting with a conductive paste or the like.
JP26278392A 1992-09-07 1992-09-07 Compact antenna and manufacture of the same Pending JPH0690108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26278392A JPH0690108A (en) 1992-09-07 1992-09-07 Compact antenna and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26278392A JPH0690108A (en) 1992-09-07 1992-09-07 Compact antenna and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH0690108A true JPH0690108A (en) 1994-03-29

Family

ID=17380544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26278392A Pending JPH0690108A (en) 1992-09-07 1992-09-07 Compact antenna and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH0690108A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020578A1 (en) * 1996-11-05 1998-05-14 Samsung Electronics Co., Ltd. Small antenna for portable radio equipment
EP0814536A3 (en) * 1996-06-20 1999-10-13 Kabushiki Kaisha Yokowo Antenna and radio apparatus using same
WO2000019562A1 (en) * 1998-09-28 2000-04-06 Mitsubishi Denki Kabushiki Kaisha Antenna feeding circuit
US6166694A (en) * 1998-07-09 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Printed twin spiral dual band antenna
US6292154B1 (en) 1998-07-01 2001-09-18 Matsushita Electric Industrial Co., Ltd. Antenna device
US6329962B2 (en) 1998-08-04 2001-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Multiple band, multiple branch antenna for mobile phone
US6343208B1 (en) 1998-12-16 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
US6353443B1 (en) 1998-07-09 2002-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Miniature printed spiral antenna for mobile terminals
JP2002092576A (en) * 2000-09-19 2002-03-29 Sony Corp Antenna device and wireless card module equipped with this antenna device
EP1198027A1 (en) * 2000-10-12 2002-04-17 The Furukawa Electric Co., Ltd. Small antenna
KR100500434B1 (en) * 2002-04-10 2005-07-14 주식회사 선우커뮤니케이션 The antenna using compact size meander and planar inverted F-type in mobile communication terminals
WO2006126320A1 (en) * 2005-03-18 2006-11-30 Kyushu University, National University Corporation Communication circuit, communication apparatus, impedance matching circuit and impedance matching circuit designing method
JP2013152099A (en) * 2012-01-24 2013-08-08 Kensuke Nakajima Microwave kinetic inductance detection type terahertz wave sensor, and terahertz wave detection system
WO2014136543A1 (en) 2013-03-05 2014-09-12 三菱電機株式会社 Method for installing antenna device, and antenna device
JP2015503880A (en) * 2012-01-13 2015-02-02 サムスン エレクトロニクス カンパニー リミテッド Small antenna device and control method thereof
WO2015194254A1 (en) * 2014-06-17 2015-12-23 ソニー株式会社 Antenna device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814536A3 (en) * 1996-06-20 1999-10-13 Kabushiki Kaisha Yokowo Antenna and radio apparatus using same
US5995064A (en) * 1996-06-20 1999-11-30 Kabushiki Kaisha Yokowa, Also Trading As Yokowo Co., Ltd. Antenna having a returned portion forming a portion arranged in parallel to the longitudinal antenna direction
WO1998020578A1 (en) * 1996-11-05 1998-05-14 Samsung Electronics Co., Ltd. Small antenna for portable radio equipment
US6292154B1 (en) 1998-07-01 2001-09-18 Matsushita Electric Industrial Co., Ltd. Antenna device
US6166694A (en) * 1998-07-09 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Printed twin spiral dual band antenna
US6353443B1 (en) 1998-07-09 2002-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Miniature printed spiral antenna for mobile terminals
US6329962B2 (en) 1998-08-04 2001-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Multiple band, multiple branch antenna for mobile phone
WO2000019562A1 (en) * 1998-09-28 2000-04-06 Mitsubishi Denki Kabushiki Kaisha Antenna feeding circuit
US6204827B1 (en) 1998-09-28 2001-03-20 Mitsubishi Denki Kabushiki Kaisha Antenna feeding circuit
US6343208B1 (en) 1998-12-16 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
JP2002092576A (en) * 2000-09-19 2002-03-29 Sony Corp Antenna device and wireless card module equipped with this antenna device
EP1198027A1 (en) * 2000-10-12 2002-04-17 The Furukawa Electric Co., Ltd. Small antenna
KR100500434B1 (en) * 2002-04-10 2005-07-14 주식회사 선우커뮤니케이션 The antenna using compact size meander and planar inverted F-type in mobile communication terminals
WO2006126320A1 (en) * 2005-03-18 2006-11-30 Kyushu University, National University Corporation Communication circuit, communication apparatus, impedance matching circuit and impedance matching circuit designing method
US8106847B2 (en) 2005-03-18 2012-01-31 Kyushu University, National University Corporation Communication circuit, communication apparatus, impedance matching circuit and impedance matching circuit designing method
JP2015503880A (en) * 2012-01-13 2015-02-02 サムスン エレクトロニクス カンパニー リミテッド Small antenna device and control method thereof
US10128883B2 (en) 2012-01-13 2018-11-13 Samsung Electronics Co., Ltd. Small antenna apparatus and method for controlling the same
US10680671B2 (en) 2012-01-13 2020-06-09 Samsung Electronics Co., Ltd. Small antenna apparatus and method for controlling the same
US11031965B2 (en) 2012-01-13 2021-06-08 Samsung Electronics Co., Ltd. Small antenna apparatus and method for controlling the same
US11509340B2 (en) 2012-01-13 2022-11-22 Samsung Electronics Co., Ltd. Small antenna apparatus and method for controlling the same
JP2013152099A (en) * 2012-01-24 2013-08-08 Kensuke Nakajima Microwave kinetic inductance detection type terahertz wave sensor, and terahertz wave detection system
WO2014136543A1 (en) 2013-03-05 2014-09-12 三菱電機株式会社 Method for installing antenna device, and antenna device
US9413072B2 (en) 2013-03-05 2016-08-09 Mitsubishi Electric Corporation Method for installing antenna device, and antenna device
WO2015194254A1 (en) * 2014-06-17 2015-12-23 ソニー株式会社 Antenna device
US10177446B2 (en) 2014-06-17 2019-01-08 Sony Corporation Antenna apparatus

Similar Documents

Publication Publication Date Title
US6700539B2 (en) Dielectric-patch resonator antenna
JP4089680B2 (en) Antenna device
US6271803B1 (en) Chip antenna and radio equipment including the same
JPH0690108A (en) Compact antenna and manufacture of the same
EP0986838B1 (en) Compact spiral antenna
EP0923153B1 (en) Chip-antenna
KR100893738B1 (en) Surface-mounted antenna and communications apparatus comprising same
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US5798737A (en) Chip antenna
AU759873B2 (en) Very compact and broadband planar log-periodic dipole array antenna
EP1845586A1 (en) Antenna device and wireless communication apparatus using same
EP0762539A1 (en) Chip antenna
JPH061848B2 (en) antenna
US6819289B2 (en) Chip antenna with parasitic elements
US7136021B2 (en) Ceramic chip antenna
US20030020662A1 (en) Diversity slot antenna
EP0828310B1 (en) Antenna device
US5933116A (en) Chip antenna
KR100524347B1 (en) Ceramic chip antenna
KR100372869B1 (en) Helical Antenna
CN112821050A (en) Antenna assembly and electronic equipment
JP2002141732A (en) Two-element meandering line sleeve antenna
US7990322B1 (en) Shortened HF and VHF antennas made with concentric ceramic cylinders
JPH0697723A (en) Compact antenna
JPH0595213A (en) Oxide superconducting antenna