JPH0690021A - Pn-junction type light emitting diode using silicon carbide - Google Patents

Pn-junction type light emitting diode using silicon carbide

Info

Publication number
JPH0690021A
JPH0690021A JP23932092A JP23932092A JPH0690021A JP H0690021 A JPH0690021 A JP H0690021A JP 23932092 A JP23932092 A JP 23932092A JP 23932092 A JP23932092 A JP 23932092A JP H0690021 A JPH0690021 A JP H0690021A
Authority
JP
Japan
Prior art keywords
silicon carbide
light emitting
emitting diode
junction type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23932092A
Other languages
Japanese (ja)
Inventor
Yoshihisa Fujii
良久 藤井
Hajime Saito
肇 斎藤
Akira Suzuki
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP23932092A priority Critical patent/JPH0690021A/en
Publication of JPH0690021A publication Critical patent/JPH0690021A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To realize a brighter pn-junction type light emitting diode of silicon carbide by laminating multiple silicon carbide semiconductor layers on a silicon carbide substrate and then providing a part of its top surface with an annular ohmic electrode. CONSTITUTION:A pn-junction type light emitting diode includes an insulating film layer 15, and a silicon carbide top face layer 14 and an electrode 16 form an ohmic contact at the periphery of insulating film layer, not at the central part of silicon carbide top face layer. With the electrode 16 provided not at the central part of element but near the end face, the light emission from the light emitting area near the end face will not be obstructed by an upper electrode, and further, that from direct under the electrode can be, with an emission path shown with an arrow, effectively taken out from the surface and end face into the outside, for a high luminance of light emitting diode. As an insulating film layer material, silicon dioxide (SiO2) or silicon nitride (Si3N4) is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素を用いたpn接
合型発光ダイオードの構造に関し、特に高輝度な青色発
光ダイオードの電極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a pn junction type light emitting diode using silicon carbide, and more particularly to an electrode structure of a high brightness blue light emitting diode.

【0002】[0002]

【従来の技術】発光ダイオードは、小型で、消費電力が
少なく、高輝度発光を安定に行い得る発光源であるた
め、各種表示装置における情報記録読み取り用の光源と
して利用されている。これまでに広く実用化されている
可視光発光ダイオードは、赤から緑色の高輝度発光が可
能である。これに対して、現在開発されている青色の可
視光の発光ダイオードは、依然として輝度が低く、広く
実用化されるまでには至っていないが、この発光ダイオ
ードの材料として炭化珪素が有望視されている。
2. Description of the Related Art A light emitting diode is used as a light source for reading and recording information in various display devices because it is a light emitting source which is small in size, consumes less power, and can stably emit high brightness light. Visible light emitting diodes that have been widely put into practical use so far can emit high-luminance red to green light. On the other hand, currently developed blue visible light emitting diodes still have low brightness and have not yet been put to practical use, but silicon carbide is regarded as a promising material for the light emitting diodes. .

【0003】一般的な発光ダイオードでは図8に示すよ
うに、基板を下側に、発光層を有する成長薄膜層を上側
にし、発光を上部より取り出す構造である。そして、電
極真下部だけでなく、チップ内のpn接合部全領域に電
流を流し、外部への光とりだし効率を高めるため成長層
最表面は低抵抗の電流拡散層を設けている。
As shown in FIG. 8, a general light emitting diode has a structure in which a substrate is on the lower side, a growth thin film layer having a light emitting layer is on the upper side, and light emission is taken out from the upper portion. Then, a current diffusion layer having a low resistance is provided on the outermost surface of the growth layer in order to flow the current not only directly under the electrode but also in the entire region of the pn junction in the chip to enhance the efficiency of extracting light to the outside.

【0004】最近本発明者らは、化学的気相成長法(C
VD法)を用いて、青色の可視光を高輝度で安定に発光
し得るpn接合型発光ダイオードを制御性及び量産性よ
く製造する方法(特願平2−129918)を発明し
た。さらに、炭化珪素材料を用いたpn接合型発光ダイ
オードにおいても、炭化珪素Si面を成長基板面に用い
ることにより、低抵抗なp型成長層が得られることを見
い出し、これを電流拡散層として用いた高輝度pn接合
型青色発光ダイオードを発明した。
Recently, the present inventors have found that chemical vapor deposition (C
VD method) was used to invent a method (Japanese Patent Application No. 2-129918) for producing a pn junction type light emitting diode capable of stably emitting blue visible light with high brightness and with good controllability and mass productivity. Furthermore, even in a pn junction type light emitting diode using a silicon carbide material, it has been found that a low resistance p-type growth layer can be obtained by using a silicon carbide Si surface as a growth substrate surface, and this is used as a current diffusion layer. Invented a high brightness pn junction type blue light emitting diode.

【0005】[0005]

【発明が解決しようとする課題】図8に示すような電流
拡散層84を有する従来の発光ダイオードでは、電極8
6真下部にも電流は流れ、発光領域は電極真下部にも存
在する。しかしながら、電極真下部からの発光は上部電
極に阻止され、素子外部には有効に取り出しにくいた
め、前記領域の電流は結局無効電流となる。このような
無効な電流が、青色発光ダイオードをより高輝度化を実
現するための大きな障害となっていた。
In the conventional light emitting diode having the current spreading layer 84 as shown in FIG.
A current also flows under 6 and the light emitting region also exists under the electrode. However, light emission from just below the electrode is blocked by the upper electrode, and it is difficult to effectively extract the light to the outside of the element. Therefore, the current in the region eventually becomes a reactive current. Such an invalid current has been a major obstacle to realizing higher brightness of the blue light emitting diode.

【0006】本発明は、かかる問題を解決し、高輝度化
に有効なpn接合型発光ダイオードの電極構造を提供す
ることを目的とするものである。
It is an object of the present invention to solve the above problems and to provide an electrode structure of a pn junction type light emitting diode which is effective for high brightness.

【0007】[0007]

【課題を解決するための手段】本発明は、炭化珪素基板
および炭化珪素半導体層を有するpn接合型発光ダイオ
ードにおいて、基板上に多層の炭化珪素半導体層を積層
した炭化珪素半導体層の最表面の一部に環状のオーミッ
ク電極を有することを特徴とする。
According to the present invention, in a pn junction type light emitting diode having a silicon carbide substrate and a silicon carbide semiconductor layer, the outermost surface of the silicon carbide semiconductor layer in which a plurality of silicon carbide semiconductor layers are laminated on the substrate is provided. It is characterized by having an annular ohmic electrode in part.

【0008】また、炭化珪素基板および炭化珪素半導体
層を有するpn接合型発光ダイオードにおいて、基板上
に多層の炭化珪素半導体層を積層した炭化珪素半導体層
の最表面の一部に絶縁性薄膜と、該薄膜上に炭化珪素半
導体層の最表面との接触面では環状であるオーミック電
極とを有し、かつ、前記絶縁性薄膜はオーミック電極よ
り前記炭化珪素半導体層の最表面を覆う面積が小さい薄
膜であることを特徴とする。
Further, in a pn junction type light emitting diode having a silicon carbide substrate and a silicon carbide semiconductor layer, an insulating thin film is formed on a part of the outermost surface of the silicon carbide semiconductor layer in which a plurality of silicon carbide semiconductor layers are laminated on the substrate. A thin film having an ohmic electrode having a ring shape on a contact surface with the outermost surface of the silicon carbide semiconductor layer on the thin film, and the insulating thin film has a smaller area covering the outermost surface of the silicon carbide semiconductor layer than the ohmic electrode. Is characterized in that.

【0009】好ましくは、炭化珪素半導体層最表面がp
型炭化珪素表面層であり、該炭化珪素半導体層とのオー
ミック電極にチタン(Ti)とアルミニウム(Al)の
積層膜を用いる。
Preferably, the outermost surface of the silicon carbide semiconductor layer is p
A layered film of titanium (Ti) and aluminum (Al) is used for the ohmic electrode with the silicon carbide semiconductor layer.

【0010】絶縁性薄膜を用いた構造では、炭化珪素半
導体層最表面とオーミック電極との間に、二酸化珪素
(SiO2)、もしくは窒化珪素(Si34)の絶縁性
材料の薄膜を用いることを特徴とする。
In the structure using an insulating thin film, a thin film of an insulating material of silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) is used between the outermost surface of the silicon carbide semiconductor layer and the ohmic electrode. It is characterized by

【0011】[0011]

【作用】以下に、本発明の機能を従来例と比較しながら
説明する。図1、図2はそれぞれ本発明によるpn接合
型発光ダイオードと、従来の一般的なpn接合型発光ダ
イオードである。図1に示す本発明のpn接合型発光ダ
イオードでは、絶縁性薄膜層15を有するため、炭化珪
素最表面層14と電極16は炭化珪素最表面層の中央部
分ではなく、絶縁性薄膜層の周辺部でオーミック接触を
形成し、図2に示す従来のpn接合型発光ダイオードで
は、素子の炭化珪素最表面層24の中央部分に形成され
た電極でオーミック接触を形成している。
The function of the present invention will be described below in comparison with the conventional example. 1 and 2 show a pn junction type light emitting diode according to the present invention and a conventional general pn junction type light emitting diode, respectively. Since the pn junction type light emitting diode of the present invention shown in FIG. 1 has the insulating thin film layer 15, the silicon carbide outermost surface layer 14 and the electrode 16 are not in the central portion of the silicon carbide outermost surface layer but in the periphery of the insulating thin film layer. 2 forms ohmic contact, and in the conventional pn junction type light emitting diode shown in FIG. 2, the ohmic contact is formed by the electrode formed in the central portion of the silicon carbide outermost surface layer 24 of the device.

【0012】図2に示す構造では、注入電流が最も有効
に働く領域は電極直下部であるが、該領域での発光は上
部電極26に阻止されて、外部へ有効に取り出せず、無
効電流となる。電極直下部以外の領域、例えばメサ端面
部は上部電極に阻止されることは少なく発光を取り出す
ことが可能だが、わずかな拡散電流が発光に寄与するの
みであるため、素子全体としての光の取り出し効率は著
しく悪くなり、高輝度化は困難となる。
In the structure shown in FIG. 2, the region where the injected current most effectively works is just below the electrode, but light emission in this region is blocked by the upper electrode 26 and cannot be effectively taken out to the outside, resulting in a reactive current. Become. Areas other than directly below the electrode, such as the end face of the mesa, can be extracted with light because they are not blocked by the upper electrode, but a small diffusion current contributes to light emission. The efficiency is remarkably deteriorated, and it is difficult to increase the brightness.

【0013】よって、電極16を図1に示すような素子
中央部ではなく、中央より端面近傍に設置することによ
り、端面付近の発光領域からの発光は、上部電極に阻止
されることは少なく、電極直下部からの発光も図中に矢
印で示すような発光経路で有効に表面や端面から外部に
取り出すことが可能となるため、発光ダイオードの高輝
度化が可能となる。
Therefore, by arranging the electrode 16 in the vicinity of the end face rather than in the center of the device as shown in FIG. 1, light emission from the light emitting region near the end face is rarely blocked by the upper electrode. The light emitted from just below the electrode can be effectively taken out from the surface or the end face through the light emitting path shown by the arrow in the figure, so that the brightness of the light emitting diode can be increased.

【0014】更に炭化珪素電流拡散層の抵抗率と膜厚を
設計することにより発光領域をチップ内のpn接合の端
面付近のみに集中させることが可能となる。
Further, by designing the resistivity and film thickness of the silicon carbide current diffusion layer, it becomes possible to concentrate the light emitting region only in the vicinity of the end face of the pn junction in the chip.

【0015】[0015]

【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0016】<実施例1>本実施例では6H型の炭化珪
素(以下、SiCと略す(禁制帯幅約3eV))基板を
用いたpn接合型の青色発光ダイオードを製作した。図
3は本発明第1の実施例のpn接合型青色発光ダイオー
ドの構造を示す断面図である。
Example 1 In this example, a pn junction type blue light emitting diode using a 6H type silicon carbide (hereinafter abbreviated as SiC (forbidden band width about 3 eV)) substrate was manufactured. FIG. 3 is a sectional view showing the structure of a pn junction type blue light emitting diode according to the first embodiment of the present invention.

【0017】本実施例のpn接合型青色発光ダイオード
は、6H型のn−SiC単結晶基板31上に、n−Si
C単結晶層32、33と、p−SiC単結晶層34とを
順次積層し、n−SiC単結晶層33とp−SiC単結
晶層34間に、pn接合を構成している。pn接合部は
メサエッチ構造となっており、p−SiC単結晶層34
の上層には二酸化珪素(SiO2 )からなる絶縁性薄膜
層35と、該層を覆い、かつ該層より面積が大きいTi
とAlの積層からなるp型オーミック電極36が設けら
れている。
The pn-junction type blue light emitting diode of the present embodiment is composed of a 6H-type n-SiC single crystal substrate 31 and n-Si.
The C single crystal layers 32 and 33 and the p-SiC single crystal layer 34 are sequentially stacked to form a pn junction between the n-SiC single crystal layer 33 and the p-SiC single crystal layer 34. The pn junction has a mesa-etched structure, and the p-SiC single crystal layer 34 is formed.
An insulating thin film layer 35 made of silicon dioxide (SiO 2 ), which is an upper layer of Ti, and Ti which covers the layer and has a larger area than the layer.
And a p-type ohmic electrode 36 made of a laminate of Al.

【0018】図4は本実施例で用いた気相成長(CV
D)装置の概略図である。該図を用いて、pn接合型青
色発光ダイオードの成長プロセスを説明する。前記気相
成長装置は、筒状の石英製の反応管100と、その開口
部に取付られたフランジ108とを有し、石英製の反応
管100の内部には、突設された支持棒102の先端に
試料台101が付設されている。試料台101及び支持
棒102は、いずれも黒鉛製で、試料台101は水平に
設置しても、適当に傾斜して設置してもよい。
FIG. 4 shows the vapor phase growth (CV) used in this embodiment.
D) Schematic of the device. The growth process of the pn junction type blue light emitting diode will be described with reference to the drawing. The vapor phase growth apparatus includes a cylindrical reaction tube 100 made of quartz and a flange 108 attached to the opening thereof, and the support rod 102 projectingly provided inside the quartz reaction tube 100. A sample table 101 is attached to the tip of the. The sample stage 101 and the support rod 102 are both made of graphite, and the sample stage 101 may be installed horizontally or appropriately inclined.

【0019】反応管100は二重管構造で、外管の外周
囲にはワークコイル103が巻回されている。試料台1
01上に設置された炭化珪素試料104は、ワークコイ
ル103に印加される高周波電流により所定の温度に加
熱される。反応管100の片側には枝管105が設けら
れており、枝管105は、原料ガス、キャリアガス、及
び不純物ガスの導入口となる。二重構造を有する反応管
100の外管の空室には枝管106、107が設けられ
ており、これらを通じて冷却水を流すことにより、反応
管100を冷却することができる。
The reaction tube 100 has a double tube structure, and a work coil 103 is wound around the outer circumference of the outer tube. Sample table 1
The silicon carbide sample 104 placed on 01 is heated to a predetermined temperature by the high frequency current applied to the work coil 103. A branch pipe 105 is provided on one side of the reaction tube 100, and the branch pipe 105 serves as an inlet for the raw material gas, the carrier gas, and the impurity gas. The outer tube of the reaction tube 100 having the double structure is provided with branch tubes 106 and 107, and the reaction tube 100 can be cooled by flowing cooling water therethrough.

【0020】反応管100の開口部は、ステンレス性の
フランジ108で閉塞され、その開口部の周縁に配設さ
れた止め板113、ボルト109、ナット110、およ
びOーリング111によりシールされている。フランジ
108の中央付近には枝管112が設けられており、枝
管105から導入された反応ガスが排出される。
The opening of the reaction tube 100 is closed by a stainless steel flange 108, and is sealed by a stopper plate 113, a bolt 109, a nut 110, and an O-ring 111 arranged on the periphery of the opening. A branch pipe 112 is provided near the center of the flange 108, and the reaction gas introduced from the branch pipe 105 is discharged.

【0021】図3に示す本実施例のpn接合型発光ダイ
オードは、前記気相成長装置を用いて、以下のように作
製された。まず、図4に示すように、試料台101上に
6H型のn−SiC単結晶基板(寸法約1cm×1c
m)試料31を載置した。基板試料31の成長面には、
その面方位が(0001)Si面方向から<11ー20
>方向へ約5度傾斜した面を用いた。
The pn junction type light emitting diode of this embodiment shown in FIG. 3 was manufactured as follows using the vapor phase growth apparatus. First, as shown in FIG. 4, a 6H-type n-SiC single crystal substrate (dimensions of about 1 cm × 1 c) was placed on the sample table 101.
m) The sample 31 was placed. On the growth surface of the substrate sample 31,
The plane orientation is <11-20 from the (0001) Si plane direction.
A surface inclined about 5 degrees in the> direction was used.

【0022】次いで、この気相成長装置内に水素ガスを
キャリアガスとして、毎分1×104ccの割合で、枝
管105から反応管100の内部へ流しながら、ワーク
コイル103に高周波電流を流して、n−SiC単結晶
基板31を1、400〜1、500℃に加熱した。そし
て、キャリアガスに原料ガスおよび不純物ガスを加える
ことにより、n−SiC単結晶基板31上にn−SiC
単結晶層32、33およびp−SiC単結晶層34を順
次成長させて、pn接合を形成した。
Then, a high frequency current is supplied to the work coil 103 while flowing from the branch pipe 105 into the reaction tube 100 at a rate of 1 × 10 4 cc / min using hydrogen gas as a carrier gas in the vapor phase growth apparatus. Then, the n-SiC single crystal substrate 31 was heated to 1,400 to 1,500 ° C. Then, by adding the source gas and the impurity gas to the carrier gas, the n-SiC single crystal substrate 31 is formed.
The single crystal layers 32 and 33 and the p-SiC single crystal layer 34 were sequentially grown to form a pn junction.

【0023】なお、本実施例では原料ガスとして、モノ
シラン(SiH4)ガスおよびプロパン(C38)ガス
を用いた。原料ガスの流量はいずれも毎分約1ccとし
た。また、不純物ガスとしては、アルミニウムアクセプ
タ添加にはトリメチルアルミニウム(Al(CH33
ガスを、窒素ドナー添加には窒素(N2)ガスを用い
た。
In this example, monosilane (SiH 4 ) gas and propane (C 3 H 8 ) gas were used as the source gas. The flow rate of the raw material gas was about 1 cc / min. Further, as an impurity gas, trimethylaluminum (Al (CH 3 ) 3 ) is added to add an aluminum acceptor.
Gas was used, and nitrogen (N 2 ) gas was used for adding the nitrogen donor.

【0024】まず、n−SiC単結晶層32は、不純物
ガスとして窒素ガスを毎分1〜5ccの割合で添加
し、、5×1017〜5×1018cm-3の範囲のキャリア
濃度のnーSiC単結晶層が得られた。膜厚として1〜
5μm程度成長させた。
First, the n-SiC single crystal layer 32 is doped with nitrogen gas as an impurity gas at a rate of 1 to 5 cc / min, and has a carrier concentration in the range of 5 × 10 17 to 5 × 10 18 cm −3 . An n-SiC single crystal layer was obtained. 1 ~ as film thickness
It was grown to about 5 μm.

【0025】次いで、窒素ガスを毎分1〜10cc、ト
リメチルアルミニウムを毎分0.05〜0.4ccの割
合で添加することにより、窒素とアルミニウムを同時に
添加した層33を成長させた。この層ではアルミニウム
より窒素の含有量の多いn型の層とし、キャリア濃度と
しては1×1016〜3×1018cm-3の範囲に設定し
た。この層は発光層となり、膜厚として3〜10μm成
長させた。
Then, nitrogen gas was added at a rate of 1 to 10 cc / min and trimethylaluminum was added at a rate of 0.05 to 0.4 cc / min to grow a layer 33 to which nitrogen and aluminum were simultaneously added. This layer was an n-type layer having a higher nitrogen content than aluminum, and the carrier concentration was set in the range of 1 × 10 16 to 3 × 10 18 cm −3 . This layer became a light emitting layer and was grown to a film thickness of 3 to 10 μm.

【0026】次いで、トリメチルアルミニウムのみを毎
分0.15〜0.5ccの割合で添加することにより、
キャリア濃度が2×1017〜5×1018cm-3のp−S
iC単結晶34を膜厚3μm成長させた。
Then, by adding only trimethylaluminum at a rate of 0.15 to 0.5 cc / min,
P-S with a carrier concentration of 2 × 10 17 to 5 × 10 18 cm -3
The iC single crystal 34 was grown to a film thickness of 3 μm.

【0027】成長後、反応管21から基板試料31を取
り出し、ドライエッチング法により、n−SiC単結晶
膜32、33及びp−SiC単結晶膜34を選択的にエ
ッチングして、図3に示すようなメサ構造を形成した。
このエッチングにより1つのpn接合部は約170μm
×170μm角となった。なお、エッチングガスとして
は、四フツ化炭素(CF4)ガスおよび酸素(O2)ガス
を用いた。
After the growth, the substrate sample 31 is taken out from the reaction tube 21, and the n-SiC single crystal films 32 and 33 and the p-SiC single crystal film 34 are selectively etched by the dry etching method, as shown in FIG. Such a mesa structure was formed.
Due to this etching, one pn junction is about 170 μm
It became × 170 μm square. As the etching gas, carbon tetrafluoride (CF 4 ) gas and oxygen (O 2 ) gas were used.

【0028】更に、単結晶上に、シランガスを用いた気
相成長法により多結晶シリコン膜を約400nm堆積
し、それをウエット酸素中1100℃で1時間熱酸化す
ることにより約1μmの厚さのSiO2 膜35を得た。
メサ中央部に100μm×100μm角のSiO2膜を
残し、他はエッチングで除去し、該膜の上部に130μ
m×130μm角のTiとAlの積層からなるp型オー
ミック電極36を形成した。
Further, a polycrystalline silicon film of about 400 nm is deposited on the single crystal by a vapor phase growth method using silane gas, and the film is thermally oxidized in wet oxygen at 1100 ° C. for 1 hour to have a thickness of about 1 μm. A SiO 2 film 35 was obtained.
The SiO 2 film of 100 μm × 100 μm square is left in the center of the mesa, and the others are removed by etching.
A p-type ohmic electrode 36 having a m × 130 μm square Ti and Al stack was formed.

【0029】最後にn−SiC単結晶基板31の裏面に
はNiからなるn側オーミック電極37を形成すること
により、図4に示すpn接合型発光ダイオードを得た。
Finally, an n-side ohmic electrode 37 made of Ni was formed on the back surface of the n-SiC single crystal substrate 31 to obtain the pn junction type light emitting diode shown in FIG.

【0030】得られた発光ダイオードに約3.2Vの動
作電圧を印加したところ、20mAの電流が流れ、ピー
ク波長が約465nmの青色発光が得られた。本実施例
で得られた発光ダイオードでは光取り出し効率が向上し
たために、従来構造に比べて明るさが約2.5倍になっ
た。
When an operating voltage of about 3.2 V was applied to the obtained light emitting diode, a current of 20 mA flowed and blue light emission with a peak wavelength of about 465 nm was obtained. In the light emitting diode obtained in this example, the light extraction efficiency was improved, so that the brightness was about 2.5 times that of the conventional structure.

【0031】<実施例2>図5は本発明第2の実施例の
pn接合青色発光ダイオードの構造を示す断面図であ
る。本実施例では6H型のSiCを用いたpn接合型の
青色発光ダイオードを製作した。本実施例では基板試料
の成長面としてその面方位が(000ー1)C面方向か
ら<11ー20>方向へ約5度傾斜した面を用いた。成
長装置、成長方法は実施例1と同様で、基板試料51上
にキャリア濃度5×1017〜5×1018cm-3の範囲の
nーSiC単結晶層53を1〜5μm程度成長させた。
<Embodiment 2> FIG. 5 is a sectional view showing the structure of a pn junction blue light emitting diode according to a second embodiment of the present invention. In this example, a pn junction type blue light emitting diode using 6H type SiC was manufactured. In this example, a plane whose plane orientation was inclined from the (000-1) C plane direction to the <11-20> direction by about 5 degrees was used as the growth surface of the substrate sample. The growth apparatus and growth method were the same as in Example 1, and an n-SiC single crystal layer 53 having a carrier concentration in the range of 5 × 10 17 to 5 × 10 18 cm −3 was grown on the substrate sample 51 to about 1 to 5 μm. .

【0032】次いで、トリメチルアルミニウムのみを添
加して、キャリア濃度が5×1015〜3×1017cm-3
のpーSiC単結晶層54を5μm程度成長させた。こ
のp型層が発光層となる。成長後、SiO2膜を形成す
る工程として、SiC単結晶膜をウエット酸素中で7時
間直接熱酸化することによって約0.6μmの厚さのS
iO2膜55を形成し、チップ中央部に100μm角の
SiO2膜を残した150μm角のコンタクト形成穴を
エッチングにて除去し、150μm角のTiとAlの積
層からなるp型オーミック電極56を形成し 図5に示
すpn接合型発光ダイオードを得た。
Then, only trimethylaluminum is added to give a carrier concentration of 5 × 10 15 to 3 × 10 17 cm -3.
Of p-SiC single crystal layer 54 of about 5 μm was grown. This p-type layer becomes a light emitting layer. After the growth, in the step of forming a SiO 2 film, the SiC single crystal film is directly subjected to thermal oxidation in wet oxygen for 7 hours to form S having a thickness of about 0.6 μm.
An iO 2 film 55 is formed, and a 150 μm square contact forming hole that leaves a 100 μm square SiO 2 film in the center of the chip is removed by etching to form a 150 μm square p-type ohmic electrode 56 made of a Ti / Al stack. A pn junction type light emitting diode shown in FIG. 5 was obtained.

【0033】得られた発光ダイオードに約3.2Vの動
作電圧を印加したところ20mAの電流が流れピーク波
長が約455nmの青色発光が得られた。本実施例で得
られた発光ダイオードは、従来構造に比べて、明るさが
約5倍になった。
When an operating voltage of about 3.2 V was applied to the obtained light emitting diode, a current of 20 mA flowed and blue light emission with a peak wavelength of about 455 nm was obtained. The light emitting diode obtained in this example has a brightness of about 5 times that of the conventional structure.

【0034】<実施例3>図6は本発明第3の実施例の
pn接合紫外発光ダイオードの構造を示す断面図であ
る。本実施例では4H型のSiCを用いたpn接合型の
紫色発光ダイオードを製作した。本実施例では、基板試
料の成長面としてその面方位が(0001)Si面方向
から<11ー20>方向へ約5度傾斜した面を用いた。
成長装置、成長方向に関しては、実施例1と同様に行
い、基板試料61上にキャリア濃度5×1016〜5×1
17cm-3の範囲のn型SiC63単結晶層を約5μm
成長させた。このn型層が発光層となる。
<Embodiment 3> FIG. 6 is a sectional view showing the structure of a pn junction ultraviolet light emitting diode according to a third embodiment of the present invention. In this example, a pn junction type violet light emitting diode using 4H type SiC was manufactured. In this example, as the growth surface of the substrate sample, a surface whose plane orientation was inclined from the (0001) Si surface direction to the <11-20> direction by about 5 degrees was used.
The growth apparatus and the growth direction were the same as in Example 1, and the carrier concentration was 5 × 10 16 to 5 × 1 on the substrate sample 61.
About 5 μm of n-type SiC63 single crystal layer in the range of 0 17 cm −3
I grew it. This n-type layer becomes a light emitting layer.

【0035】次いで、トリメチルアルミニウムのみを添
加し、キャリア濃度が5×1017〜5×1018cm-3
p型SiC単結晶層64を約4μm成長させた。成長後
絶縁膜65として、Si34をプラズマCVD法により
約1.5μmの厚さで形成したこと以外は実施例1と同
じ工程により、図6に示すようなpn接合型発光ダイオ
ードを得た。
Then, only trimethylaluminum was added to grow a p-type SiC single crystal layer 64 having a carrier concentration of 5 × 10 17 to 5 × 10 18 cm -3 by about 4 μm. A pn junction type light emitting diode as shown in FIG. 6 is obtained by the same steps as in Example 1 except that Si 3 N 4 is formed as the post-growth insulating film 65 by plasma CVD to a thickness of about 1.5 μm. It was

【0036】得られた発光ダイオードに約3.4Vの動
作電圧を印加したところ20mAの電流が流れ、ピーク
波長が約394nmの紫外発光が得られた。本実施例で
得られた発光ダイオードは従来構造に比べて約3倍の出
力が得られた。
When an operating voltage of about 3.4 V was applied to the obtained light emitting diode, a current of 20 mA flowed and ultraviolet emission having a peak wavelength of about 394 nm was obtained. The light emitting diode obtained in this example provided about three times the output as compared with the conventional structure.

【0037】<実施例4>本発明の第4の実施例のpn
接合青色発光ダイオードの構造は図3と同様の構造であ
る。本実施例においては、15R型のSiCを基板試料
71として用いた以外は、実施例1と同じ工程により、
pn接合型発光ダイオードを得た。
<Embodiment 4> The pn of the fourth embodiment of the present invention.
The structure of the junction blue light emitting diode is similar to that of FIG. In this example, the same steps as in Example 1 were carried out except that 15R type SiC was used as the substrate sample 71.
A pn junction type light emitting diode was obtained.

【0038】得られた発光ダイオードに約3.1Vの動
作電圧を印加したところ20mAの電流が流れ、ピーク
波長が約475nmの青色発光が得られた。本実施例で
得られた発光ダイオードは、従来構造に比べて明るさが
約2.5倍になった。
When an operating voltage of about 3.1 V was applied to the obtained light emitting diode, a current of 20 mA flowed and blue light emission with a peak wavelength of about 475 nm was obtained. The light emitting diode obtained in this example has a brightness about 2.5 times higher than that of the conventional structure.

【0039】上記記載の本発明の実施例1〜4はメサ形
状の構造についてのみであるが、図7に示すようなメサ
形状にしない構造についても従来構造に比べて、発光輝
度の向上が可能となった。
Although the first to fourth embodiments of the present invention described above are only for the mesa-shaped structure, the structure without the mesa-shaped structure as shown in FIG. 7 can also improve the emission luminance as compared with the conventional structure. Became.

【0040】上記記載の本発明の実施例1〜4は炭化珪
素半導体層最の表面層の一部に絶縁性薄膜を積層した
後、オーミック電極を設けているが、絶縁性薄膜を積層
せずオーミック電極を直接に、炭化珪素半導体層の最表
面層の一部に環状のオーミック電極を設ける構造でも良
い。
In Examples 1 to 4 of the present invention described above, the ohmic electrode is provided after the insulating thin film is laminated on a part of the uppermost surface layer of the silicon carbide semiconductor layer, but the insulating thin film is not laminated. The structure may be such that the ohmic electrode is directly provided and the annular ohmic electrode is provided on a part of the outermost surface layer of the silicon carbide semiconductor layer.

【0041】[0041]

【発明の効果】本発明のpn接合型発光ダイオードによ
れば、炭化珪素を用いたpn接合型発光ダイオードの高
輝度化を達成できる。
According to the pn junction type light emitting diode of the present invention, high brightness of the pn junction type light emitting diode using silicon carbide can be achieved.

【0042】これによれば例えば各種表示装置における
表示部の多色化や、発光ダイオードを光源として用いた
各種情報処理装置における情報記録読み取りの高速化及
び高密度化を可能にする。しかも、量産化が可能である
ので、発光ダイオードの応用分野が飛躍的に拡大され
る。
According to this, for example, it is possible to increase the number of colors of the display portion in various display devices and to increase the speed and density of information recording and reading in various information processing devices using light emitting diodes as light sources. Moreover, since it can be mass-produced, the application field of the light emitting diode is dramatically expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による炭化珪素pn接合型発光ダイオー
ドの発光経路を示す断面図である。
FIG. 1 is a cross-sectional view showing a light emission path of a silicon carbide pn junction type light emitting diode according to the present invention.

【図2】従来の炭化珪素pn接合型発光ダイオードの発
光経路を示す断面図である。
FIG. 2 is a cross-sectional view showing a light emitting path of a conventional silicon carbide pn junction type light emitting diode.

【図3】本発明の実施例1による炭化珪素pn接合型発
光ダイオードの断面図である。
FIG. 3 is a sectional view of a silicon carbide pn junction type light emitting diode according to Example 1 of the present invention.

【図4】本発明の炭化珪素pn接合型発光ダイオードの
製造に用いられる気相成長装置の一例を示す構成断面図
である。
FIG. 4 is a structural cross-sectional view showing an example of a vapor phase growth apparatus used for manufacturing a silicon carbide pn junction type light emitting diode of the present invention.

【図5】本発明の実施例2による炭化珪素pn接合型発
光ダイオードの断面図である。
FIG. 5 is a sectional view of a silicon carbide pn junction type light emitting diode according to Example 2 of the present invention.

【図6】本発明の実施例3による炭化珪素pn接合型発
光ダイオードの断面図である。
FIG. 6 is a sectional view of a silicon carbide pn junction type light emitting diode according to Example 3 of the present invention.

【図7】本発明の実施例4による炭化珪素pn接合型発
光ダイオードの断面図である。
FIG. 7 is a sectional view of a silicon carbide pn junction type light emitting diode according to Example 4 of the present invention.

【図8】従来の一般的な発光ダイオードの構造である。FIG. 8 is a structure of a conventional general light emitting diode.

【符号の説明】[Explanation of symbols]

11、21、31、51、61、71、81 n−炭化
珪素単結晶基板 12、22、32、33、53、63、72、73、8
2 n−炭化珪素単結晶層 13、23、34、54、64、74、83 p−炭化
珪素単結晶層 14、24、84 p−炭化珪素電流拡散層 15、35、55、65、75 絶縁性膜 16、26、36、56、66、76、86 p側オー
ミック電極 17、27、37、57、67、77、87 n側オー
ミック電極
11, 21, 31, 51, 61, 71, 81 n-silicon carbide single crystal substrate 12, 22, 32, 33, 53, 63, 72, 73, 8
2 n-silicon carbide single crystal layer 13, 23, 34, 54, 64, 74, 83 p-silicon carbide single crystal layer 14, 24, 84 p-silicon carbide current diffusion layer 15, 35, 55, 65, 75 insulation Film 16, 26, 36, 56, 66, 76, 86 p-side ohmic electrode 17, 27, 37, 57, 67, 77, 87 n-side ohmic electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素基板および炭化珪素半導体層を
有するpn接合型発光ダイオードにおいて、 基板上に多層の炭化珪素半導体層を積層した炭化珪素半
導体層の最表面の一部に環状のオーミック電極を有する
ことを特徴とするpn接合型発光ダイオード。
1. A pn junction type light emitting diode having a silicon carbide substrate and a silicon carbide semiconductor layer, wherein an annular ohmic electrode is provided on a part of an outermost surface of the silicon carbide semiconductor layer in which a plurality of silicon carbide semiconductor layers are laminated on the substrate. A pn junction type light emitting diode having.
【請求項2】 炭化珪素基板および炭化珪素半導体層を
有するpn接合型発光ダイオードにおいて、 基板上に多層の炭化珪素半導体層を積層した炭化珪素半
導体層の最表面の一部に絶縁性薄膜と、該薄膜上に炭化
珪素半導体層の最表面との接触面では環状であるオーミ
ック電極とを有し、 かつ、前記絶縁性薄膜はオーミック電極より前記炭化珪
素半導体層の最表面を覆う面積が小さい薄膜であること
を特徴とするpn接合型発光ダイオード。
2. A pn junction type light emitting diode having a silicon carbide substrate and a silicon carbide semiconductor layer, wherein an insulating thin film is provided on a part of an outermost surface of the silicon carbide semiconductor layer in which a plurality of silicon carbide semiconductor layers are laminated on the substrate. An ohmic electrode having a ring shape on the contact surface with the outermost surface of the silicon carbide semiconductor layer is formed on the thin film, and the insulating thin film has a smaller area covering the outermost surface of the silicon carbide semiconductor layer than the ohmic electrode. A pn junction type light emitting diode.
【請求項3】 炭化珪素半導体層最表面がp型炭化珪素
表面層であり、該炭化珪素半導体層とのオーミック電極
にチタン(Ti)とアルミニウム(Al)の積層膜を用
いることを特徴とする請求項1または請求項2記載のp
n接合型発光ダイオード。
3. A silicon carbide semiconductor layer outermost surface is a p-type silicon carbide surface layer, and a laminated film of titanium (Ti) and aluminum (Al) is used for an ohmic electrode with the silicon carbide semiconductor layer. P of Claim 1 or Claim 2
n-junction type light emitting diode.
【請求項4】 炭化珪素半導体層最表面がp型炭化珪素
表面層であり、該炭化珪素成長層とオーミック電極との
間の絶縁性薄膜に、二酸化珪素(SiO2)を用いるこ
とを特徴とする請求項2記載のpn接合型発光ダイオー
ド。
4. The silicon carbide semiconductor layer outermost surface is a p-type silicon carbide surface layer, and silicon dioxide (SiO 2 ) is used for an insulating thin film between the silicon carbide growth layer and the ohmic electrode. The pn junction type light emitting diode according to claim 2.
【請求項5】 炭化珪素半導体層最表面がp型炭化珪素
表面層であり、該炭化珪素成長層とオーミック電極との
間の絶縁性薄膜に、窒化珪素(Si34)を用いること
を特徴とする請求項2記載のpn接合型発光ダイオー
ド。
5. The silicon carbide semiconductor layer outermost surface is a p-type silicon carbide surface layer, and silicon nitride (Si 3 N 4 ) is used for the insulating thin film between the silicon carbide growth layer and the ohmic electrode. The pn junction type light emitting diode according to claim 2.
JP23932092A 1992-09-08 1992-09-08 Pn-junction type light emitting diode using silicon carbide Pending JPH0690021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23932092A JPH0690021A (en) 1992-09-08 1992-09-08 Pn-junction type light emitting diode using silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23932092A JPH0690021A (en) 1992-09-08 1992-09-08 Pn-junction type light emitting diode using silicon carbide

Publications (1)

Publication Number Publication Date
JPH0690021A true JPH0690021A (en) 1994-03-29

Family

ID=17042966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23932092A Pending JPH0690021A (en) 1992-09-08 1992-09-08 Pn-junction type light emitting diode using silicon carbide

Country Status (1)

Country Link
JP (1) JPH0690021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221175A (en) * 2007-06-04 2007-08-30 Toshiba Corp Semiconductor light emitting element and semiconductor light emitting device
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
JP2007221175A (en) * 2007-06-04 2007-08-30 Toshiba Corp Semiconductor light emitting element and semiconductor light emitting device
JP4625827B2 (en) * 2007-06-04 2011-02-02 株式会社東芝 Semiconductor light emitting device and semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US5243204A (en) Silicon carbide light emitting diode and a method for the same
US20090020768A1 (en) Buried contact devices for nitride-based films and manufacture thereof
JPH0821730B2 (en) Blue light emitting diode formed in silicon carbide
US5063421A (en) Silicon carbide light emitting diode having a pn junction
US5313078A (en) Multi-layer silicon carbide light emitting diode having a PN junction
JP2007326771A (en) Forming method and compound semiconductor wafer
JPH03203388A (en) Semiconductor light emitting element and its manufacture
JPS60142568A (en) Manufacture of sic field effect transistor
CN105720110A (en) SiC annular floating-point type P+ structured junction barrier Schottky diode and preparation method thereof
JP2005303259A (en) Silicon light emitting device and method of manufacturing the same
US5329141A (en) Light emitting diode
JPH06244457A (en) Manufacture of light emitting diode
JPH0690021A (en) Pn-junction type light emitting diode using silicon carbide
JP2529001B2 (en) Method for manufacturing pn junction type light emitting diode using silicon carbide
JPH06310757A (en) Pn junction led employing silicon carbide
JPH0513812A (en) Light emitting diode
US7564062B2 (en) Electrode for p-type SiC
JPH0471278A (en) Pn junction type light emitting diode using silicon carbide
JPH06104484A (en) Semiconductor element
JP2001127309A (en) SiC/Si HETORO STRUCTURE SEMICONDUCTOR SWITCH AND MANUFACTURING METHOD THEREFOR
JPH04163970A (en) Gallium nitride compound semiconductor light emitting element and manufacture thereof
JP3370350B2 (en) pn junction type light emitting diode
JPH06196753A (en) Manufacture of light emitting diode and p-n junction light emitting diode using the same
JPH06334214A (en) Pn junction light emission diode
JPH04168774A (en) P-n junction type light emitting diode using silicon carbide