JPH068926B2 - Surface position detection method - Google Patents

Surface position detection method

Info

Publication number
JPH068926B2
JPH068926B2 JP59176462A JP17646284A JPH068926B2 JP H068926 B2 JPH068926 B2 JP H068926B2 JP 59176462 A JP59176462 A JP 59176462A JP 17646284 A JP17646284 A JP 17646284A JP H068926 B2 JPH068926 B2 JP H068926B2
Authority
JP
Japan
Prior art keywords
wafer
image
optical system
projection
image height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59176462A
Other languages
Japanese (ja)
Other versions
JPS6153615A (en
Inventor
道生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59176462A priority Critical patent/JPH068926B2/en
Publication of JPS6153615A publication Critical patent/JPS6153615A/en
Publication of JPH068926B2 publication Critical patent/JPH068926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、物体に対する投影光学系の像面位置を検出す
る面位置検出方法に関し、特に半導体焼付け装置のウエ
ハに対する投影光学系の像面位置を検出する面位置検出
方法に関する。
The present invention relates to a surface position detecting method for detecting an image plane position of a projection optical system with respect to an object, and particularly to an image plane position of the projection optical system with respect to a wafer of a semiconductor printing apparatus. The present invention relates to a surface position detection method for detecting a.

[従来の技術] 近年、半導体集積回路は、増々微細化される傾向にあ
る。そして、その製造工程の内最も重要な工程として、
マスクパターンをウエハ上に転写するフォト工程があ
る。このフォト工程に用いられる装置が、半導体焼付装
置と呼ばれるものであり、現在最も有力な方式は光学的
投影露光方式である。それには、マスクとウエハを接触
させて焼き付けるコンタクト方式、マスクとウエハを数
10μmのギャップで離し、マスクパターンをウエハ上
に影絵焼きする近接露光方式、高解像度のレンズを用い
て、ウエハを一回ずつ送りながら、マスクパターンをウ
エハ上に転写していくステップ・アンド・リピート方
式、そして、高解像度のミラー光学系を用いてマスクパ
ターンをウエハ上に結像し、焼きつけるミラープロジェ
クション方式等がある。
[Prior Art] In recent years, semiconductor integrated circuits tend to be miniaturized more and more. And as the most important step of the manufacturing process,
There is a photo process of transferring a mask pattern onto a wafer. The apparatus used in this photo process is called a semiconductor printing apparatus, and the most influential method at present is the optical projection exposure method. For this purpose, a contact method is used in which a mask and a wafer are brought into contact with each other, a mask and a wafer are separated by a gap of several tens of μm, a proximity exposure method is used in which a mask pattern is shadow-printed on the wafer, and a high-resolution lens is used to move the wafer once There are a step-and-repeat method in which a mask pattern is transferred onto a wafer while feeding each by one by one, and a mirror projection method in which a mask pattern is imaged on a wafer using a high-resolution mirror optical system and printed.

これらの方式のうち、特に、ミラープロジェクション方
式については、5インチ径あるいはそれ以上の大口径ウ
エハの全面にわたって約1μm線中の微細パターンを一
括に転写するという特性上、ウエハ全面のピントを保証
しなければならないが、ウエハ表面に数ミクロンオーダ
ーの凹凸が存在すると言う問題がある。従ってウエハ上
の数箇所で凹凸の状態を計測し、ウエハ全面で平均的な
合焦調整を行い得るような装置が求められる。
Of these methods, the mirror projection method, in particular, guarantees the focus on the entire surface of the wafer because of the characteristic that a fine pattern in a line of about 1 μm is transferred at one time over the entire surface of a large diameter wafer having a diameter of 5 inches or more. However, there is a problem that unevenness of the order of several microns exists on the wafer surface. Therefore, there is a demand for an apparatus capable of measuring the state of unevenness at several points on the wafer and performing an average focus adjustment on the entire surface of the wafer.

従来より半導体焼付装置としてはウエハ焼付位置と別の
場所で基準からウエハまでの距離を計測し、それに基づ
いてウエハ焼付位置で位置出しが行われる。即ち焦点検
知に投影光学系を介在させていないのでオフ・アクシス
方式とも言うべき方式が普及している。その際の計測法
には、空気流をウエハに噴射し、空気の背圧を測ってウ
エハまでの距離を検出するエア・センサー方式、ウエハ
と検出装置間の電気容量を測る方式、超音波を使用して
測距する方式、ウエハ表面へ斜めに光線を投射し、反射
光の位置ずれを検知する方式等がある。
2. Description of the Related Art Conventionally, as a semiconductor printing apparatus, a distance from a reference to a wafer is measured at a place different from the wafer printing position, and the wafer is positioned at the wafer printing position based on the measured distance. That is, since a projection optical system is not provided for focus detection, a method called an off-axis method is widely used. The measurement method at that time is to inject an air flow onto the wafer, measure the back pressure of the air to detect the distance to the wafer, measure the electric capacity between the wafer and the detection device, and use ultrasonic waves. There are a method of measuring a distance by using the method, a method of projecting a light beam obliquely on the wafer surface and detecting a positional deviation of reflected light.

しかしながらオフ・アクシス方式の場合、ウエハの光軸
方向の位置を原理的には管理することができるが、マス
ク像の真にピントの合った位置にウエハ表面が位置して
いるか否かを検知することはできない。その理由はウエ
ハ焼付中の照明光の熱蓄積や周囲の環境温度の変動で投
影光学系のピント位置が移動した場合には、ウエハをし
かるべき位置に設定しても実際にはデフォーカスした像
が形成されるからである。
However, in the case of the off-axis method, the position of the wafer in the optical axis direction can be managed in principle, but it is detected whether the wafer surface is located at the position where the mask image is truly in focus. It is not possible. The reason is that if the focus position of the projection optical system moves due to heat accumulation of illumination light during wafer printing or fluctuations in the ambient environment temperature, the defocused image will actually appear even if the wafer is set at an appropriate position. Is formed.

従ってこの様な変化にも対処できるように焼付位置で、
投影光学系を通してウエハ面を覗くような検知が求めら
れる。
Therefore, in order to handle such changes, at the printing position,
Detection that looks into the wafer surface through the projection optical system is required.

[発明が解決しようとする課題] 本発明の目的は対物光学系を通して合焦検知を行うこと
にあり、比較的簡単な構成で検知を実行できる様にする
ことである。また従属目的は反射型投影光学系の収差特
性を利用し、半導体製造用マスクの像をウエハ上にフォ
ーカスするための面位置検出方法を提供することであ
る。
[Problems to be Solved by the Invention] An object of the present invention is to perform focus detection through an objective optical system, and to enable detection with a relatively simple configuration. A subordinate object is to provide a surface position detecting method for focusing an image of a semiconductor manufacturing mask on a wafer by utilizing an aberration characteristic of a reflective projection optical system.

[課題を解決する手段] 上記目的を達成する為に、本発明に面位置検出方法は、
第1物体面上のパターンを投影光学系を介し第2物体面
上に投影する投影装置の前記投影光学系の像面位置を検
出する方法で、前記投影光学系における検出像高の像面
位置と第2物体面との間隔に応じた信号を前記投影光学
系を介して光学的に検出する検出段階と、前記検出段階
により得た信号と前記投影光学系の像面彎曲特性とに基
づいて、前記第2物体面に対する前記検出像高と異なる
像高の像面位置を決定する段階とを有することを特徴と
する。
[Means for Solving the Problems] In order to achieve the above object, the surface position detecting method according to the present invention comprises:
An image plane position of a detected image height in the projection optical system, which is a method of detecting an image plane position of the projection optical system of a projection device that projects a pattern on the first object plane onto a second object plane via the projection optical system. Based on the detection step of optically detecting a signal corresponding to the distance between the object surface and the second object surface via the projection optical system, and the signal obtained by the detection step and the image plane curvature characteristic of the projection optical system. , Determining an image plane position of an image height different from the detected image height with respect to the second object plane.

特に、前記投影装置が第1物体と第2物体とを一次元方
向に移動させ走査露光する投影露光装置であることを特
徴とする。
In particular, the projection apparatus is a projection exposure apparatus that moves a first object and a second object in a one-dimensional direction to perform scanning exposure.

また、前記検出像高と、前記検出像高と異なる像高とが
走査方向に並んで位置することを特徴とする。
Further, the detected image height and an image height different from the detected image height are located side by side in the scanning direction.

[実施例] 本発明の実施例を説明する前に実施例を適用する反射型
投影焼付装置の基本構造をまず説明する。第1図でPSは
反射型投影系で、基本型は対向配置された凹凸球面から
成り、凹凸凹と3回反射して等倍結像する。
[Embodiment] Before describing an embodiment of the present invention, a basic structure of a reflection type projection printing apparatus to which the embodiment is applied will be described first. In FIG. 1, PS is a reflection type projection system, and the basic type is composed of concavo-convex spherical surfaces that are arranged to face each other.

反射投影光学系は光軸OO′に関して軸対称な系で、像高
y0において収差補正されており、この良像域である半径
y0の輪帯状の領域が使用される。転写のための走査を容
易にする一法として、光路はそれぞれ平面鏡FM1,FM2
折曲げられており、マスクMaの一点を発した光束は平面
鏡FM1で反射後、凹面鏡M1、絞作用の凸面鏡M2、再び凹
面鏡M1で反射し、平面鏡FM2で光路を曲げられてウエハ
W上の一点に収束する。
The catoptric projection optical system is a system that is axisymmetric with respect to the optical axis OO ', and
The aberration is corrected at y 0 , and the radius of this good image area
An annular zone of y 0 is used. As one method for facilitating scanning for transfer, the optical paths are bent by plane mirrors FM 1 and FM 2 , respectively, and the light flux emitted from one point of the mask Ma is reflected by the plane mirror FM 1 and then the concave mirror M 1 It is reflected by the convex mirror M 2 and the concave mirror M 1 in action again, the optical path is bent by the plane mirror FM 2 , and converges to a point on the wafer W.

輪帯状の領域が求める高性能を満足するため、この領域
に含まれる円弧状の部分が投影に使用されることにな
る。第2図はウエハW上に投影された幅SWのアパーチャ
APを描いており、この様にウエハにはアパーチャAPで画
定されたマスクの部分像が形成されるので、実際にはマ
スクMaとウエハWを一体に、白抜き矢印方向に走査して
マスクの全体像をウエハ上に転写する。マスクMaはアパ
ーチャAPに相当する照明系ISで照明され、この照明系は
紫外・遠紫外光源、コンデンサー、コリメーターなどで
構成される。ASはアライメント光学系で、マスクMaとウ
エハWの整合度を検知する機能を持つが、詳細は省く。
Since the ring-shaped region satisfies the required high performance, the arc-shaped portion included in this region is used for projection. FIG. 2 shows the aperture of width SW projected on the wafer W.
AP is drawn, and a partial image of the mask defined by the aperture AP is formed on the wafer in this way. Therefore, in actuality, the mask Ma and the wafer W are integrally scanned to scan the mask in the direction of the white arrow. The entire image is transferred onto the wafer. The mask Ma is illuminated by an illumination system IS corresponding to the aperture AP, and this illumination system is composed of an ultraviolet / far-ultraviolet light source, a condenser, a collimator, and the like. AS is an alignment optical system, which has a function of detecting the degree of alignment between the mask Ma and the wafer W, but details are omitted.

一般に光学系のサジタル像面Sとメリジオナル像面は光
軸を離れるとずれが大きくなるが、ここに採り上げた反
射投影光学系は軸外の特定像高(y=y0)でサジタル像
面とメリジオナル像面が一致するように設計されてい
る。この収差補正法については特開昭52−5544号
に述べられている。
In general, the sagittal image plane S and the meridional image plane of the optical system have large deviations away from the optical axis. However, the catoptric projection optical system adopted here is different from the sagittal image plane at the off-axis specific image height (y = y 0 ). The meridional image plane is designed to match. This aberration correction method is described in JP-A-52-5544.

そして像高(y=y0)付近ではサジタルとメリジオナル
の像面は第3図に描く様に傾いた直線を交差させた形態
になっている。Zは光軸方向。実際、焼付けを行う際
は、最良像高を含む上下1mm程度あるいはせいぜいその
2,3倍の帯域SWが使用される。但し、上述した様に光
学系が回転対称形であるため円弧となる。
In the vicinity of the image height (y = y 0 ), the sagittal and meridional image planes are formed by intersecting inclined straight lines as shown in FIG. Z is the optical axis direction. In fact, when printing is performed, a band SW including the best image height, about 1 mm above and below, or at most a few times as wide as the band SW is used. However, since the optical system is rotationally symmetrical as described above, it becomes an arc.

以上を前提として、以下本発明の実施例を説明するが、
光学系の像面彎曲としてはメリジオナル像面を使用する
ものとして説明する。
Based on the above, the embodiments of the present invention will be described below.
It is assumed that a meridional image plane is used as the image plane curve of the optical system.

今、第6図の装置で、ウエハWをマスク像が結像した面
に一致して配置したものと仮定した時、最良像高y0に対
し像高を上下に等量△yだけ振ったy1とy2の高さの位置
に当るウエハW上にパターンP1WとP2Wを設ける。この光
学系PSは等倍系なので、これらパターンの像はマスクMa
上でも同じ尺度で像高y1とy2の点P1とP2に結像する。こ
の様子を第3図に示す。
Now, assuming that the wafer W is arranged so as to coincide with the surface on which the mask image is formed in the apparatus of FIG. 6, the image height is vertically swung by an equal amount Δy with respect to the best image height y 0 . Patterns P 1W and P 2W are provided on the wafer W that hits the heights of y 1 and y 2 . Since this optical system PS is a unity magnification system, the images of these patterns are mask Ma
Also on the same scale, images are formed at points P 1 and P 2 at image heights y 1 and y 2 . This is shown in FIG.

第4図は投影するパターンの一例を示すが、メリジオナ
ル像面による像のボケが現われ易い様に、y方向に幅a
(1μm程度)、x方向に長さb(b>a)の矩形のパ
ターンを使用する。
FIG. 4 shows an example of the projected pattern, but the width a is increased in the y direction so that the blurring of the image due to the meridional image plane is likely to appear.
A rectangular pattern having a length b (b> a) in the x direction (about 1 μm) is used.

一方、受光側にはマスクMaの各々の結像位置P1,P2に同
一形状のスリットを設け、このスリットを通った光束を
受光素子で受光する。実際には、第6図に描く実施例の
様に顕微鏡対物L0と光路折曲げ鏡M0、リレーレンズLrに
関してマスクMaと光学的共役な位置にアパーチャAを設
け、その背後に2つの受光域の出力を独立に検出できる
受光素子Dを設置して出力を比較器Cに導いている。図
では、顕微鏡対物L0以下の系を拡大して描いているが、
実際には不図示の照明系からの照明光を遮蔽することの
ない大きさにしている。尚、それぞれ独立した受光素子
を配しても良いことは勿論である。受光素子Dの受光域
からの出力の差を取ると合焦の程度やピントずれの方向
がわかるが、この事を第3図を使って説明する。
On the other hand, on the light receiving side, slits of the same shape are provided at the respective image forming positions P 1 and P 2 of the mask Ma, and the light beam passing through these slits is received by the light receiving element. In practice, an aperture A is provided at a position optically conjugate with the mask Ma with respect to the microscope objective L 0 , the optical path bending mirror M 0 , and the relay lens Lr as in the embodiment shown in FIG. A light receiving element D capable of independently detecting the output of the region is installed and the output is guided to the comparator C. In the figure, the system below the microscope objective L 0 is shown enlarged, but
Actually, the size is set so as not to block the illumination light from the illumination system (not shown). Of course, independent light receiving elements may be arranged. The degree of focusing and the direction of defocus can be found by taking the difference in the output from the light receiving area of the light receiving element D. This will be described with reference to FIG.

メリジオナル像面を使用する場合のパターン(第4図)
を像高y1とy2に置いているが、これらの像高における最
良ピント位置はAとBで示される。y座標が理想結像面
に一致し、Z座標の(+)方向と(-)方向のどちらへ進んで
も像はボケルことになる。
Pattern when using the meridional image plane (Fig. 4)
Are placed at image heights y 1 and y 2 , and the best focus positions at these image heights are indicated by A and B. The y-coordinate coincides with the ideal image plane, and the image is blurred regardless of whether the Z-coordinate moves in the (+) direction or the (-) direction.

受光素子はP1とP2の位置で測定するため、光軸方向のデ
フォーカス量(△Z)の分だけボケたパターン像がそれ
ぞれ測定される。受光素子の前にはパターンと同形状の
スリットが配されているのでそれぞれ第5図(A)に斜線
部で示す光量が受光される。この場合、両受光域の出力
の差はデフォーカス量が等しい(P1A=P2B)ので0であ
る。
Since the light receiving element is measured at the positions of P 1 and P 2 , a pattern image blurred by the defocus amount (ΔZ) in the optical axis direction is measured. Since a slit having the same shape as the pattern is arranged in front of the light receiving element, the light amount indicated by the hatched portion in FIG. 5 (A) is received. In this case, the difference between the outputs of both light receiving regions is 0 because the defocus amounts are equal (P 1 A = P 2 B).

次にウエハが焦点ずれを起した時を考える。第6図は焦
点ずれを起した状態も描いている。この場合、ウエハ上
の、像高y1,y2に設けた点P1W,P2Wのピント面はメリジ
オナル像面がMからM′へとずれるから(サジタル像面
はS→S′)、P1とP2に置かれた受光素子の出力はこの
場合のデフォーカス量(各々△Z1,△Z2)に対応して変
化する。従って、点P1での出力はデフォーカス量が増加
するため(△Z1>△Z)、第5図(B)の様に低下し、逆
に点P2での出力はデフォーカス量が減少するため(△Z2
<△Z)上昇する。このため両出力の差を取れば、デフ
ォーカスの程度と方向を検知できる。
Next, consider the case where the wafer is out of focus. FIG. 6 also depicts a state where defocus occurs. In this case, since the meridional image plane shifts from M to M ′ in the focus planes of the points P 1W and P 2W provided on the wafer at the image heights y 1 and y 2 , (the sagittal image plane is S → S ′), P 1 and the defocus amount of the output in this case of the light receiving element placed in the P 2 (respectively △ Z 1, △ Z 2) changes in accordance with the. Therefore, the output at the point P 1 decreases because the defocus amount increases (ΔZ 1 > ΔZ), as shown in FIG. 5 (B), and conversely, the output at the point P 2 decreases the defocus amount. Decrease (△ Z 2
<ΔZ) Increase. Therefore, if the difference between the two outputs is calculated, the degree and direction of defocus can be detected.

第7図はスリットを通過した光束を受光する受光素子の
受光量とデフォーカスとの関係を示す図で、デフォーカ
ス量0の時の出力を1.0に正規化している。但し、図
中の数値は光学系のFe=3.5、λ=633nm、投影
パターンおよび受光スリットの幅を2.2μmとした時の
値である。第7図の符号は第3図の符号に対応させてお
り、感度を上げる為には、つり鐘状の曲線の変曲点の位
置A,Bに2つの受光素子を配置すればよい。その位置
(像高)は像面の傾き(tanθ)がわかっているので から容易に求められる。
FIG. 7 is a diagram showing the relationship between the defocus amount and the amount of light received by the light receiving element that receives the light flux that has passed through the slit, and the output when the defocus amount is 0 is normalized to 1.0. However, the numerical values in the figure are values when the optical system Fe = 3.5, λ = 633 nm, and the width of the projection pattern and the light-receiving slit is 2.2 μm. The reference numerals in FIG. 7 correspond to the reference numerals in FIG. 3, and in order to increase the sensitivity, two light receiving elements may be arranged at the positions A and B of the inflection points of the bell-shaped curve. At that position (image height), the tilt of the image plane (tan θ) is known, so Easily requested from.

第8図は1対の受光素子間の出力差と、ウエハのデフォ
ーカスとの関係を示す図であり、本方式のデフォーカス
検出感度曲線である。
FIG. 8 is a diagram showing the relationship between the output difference between a pair of light receiving elements and the defocus of the wafer, which is the defocus detection sensitivity curve of this system.

以上の例は、ウエハに予め検知用のパターンを設けてお
く場合の装置であるが、装置側にパターン投影系を設け
ても良く、第9図はその場合の実施例である。
The above example is an apparatus in which a detection pattern is provided in advance on a wafer, but a pattern projection system may be provided on the apparatus side, and FIG. 9 shows an embodiment in that case.

つまり、検出光学系DSの内部において、ランプLAから発
した光束はコンデンサーレンズLcでマスクAFMの位置に
集光される。マスクAFMには検出様マークが設けてあ
り、これが照明されて光束が進んでいく。光束はビーム
スプリッターBS0、リレーレンズLR、ミラーM0、そして
顕微鏡対物L0により、マスク下面P1,P2に結像し、投影
系PS内にはいっていく。
That is, inside the detection optical system DS, the luminous flux emitted from the lamp LA is condensed at the position of the mask AFM by the condenser lens Lc. The mask AFM is provided with a detection-like mark, which is illuminated and the light flux advances. The light beam is focused on the mask lower surfaces P 1 and P 2 by the beam splitter BS 0 , the relay lens LR, the mirror M 0 , and the microscope objective L 0 , and enters the projection system PS.

この方法をとると、焦点ボケの検出感度は2倍に上が
る。なぜなら、検出光学系内に設けた検出パターンAFM
の像は一旦マスクに結像したあと、投影系を通ってウエ
ハー上に結像するがこの時、ウエハーがデフォーカスし
ていると、ウエハーが鏡面の作用をして、実際のウエハ
ーのボケ量dの2倍ボケた位置2dにパターンの虚像を
つくる。その為、戻り光の結像点も検出位置Dで2倍ず
れるからである。
When this method is adopted, the sensitivity of detecting the out-of-focus is doubled. Because the detection pattern AFM provided in the detection optical system
Image on the mask, and then forms an image on the wafer through the projection system. At this time, if the wafer is defocused, the wafer acts as a mirror surface and the actual blur amount of the wafer A virtual image of the pattern is formed at a position 2d that is twice as blurred as d. Therefore, the image forming point of the return light is also shifted by twice at the detection position D.

上に述べた実施例は出力のアンバランスから、第8図の
感度曲線に従ってデフォーカス量を求めていたが、ゼロ
メソッドを実施することもできる。第10図でその方法
を説明するが、図中の符号は前述した、例えば第3図と
同等である。
In the above-described embodiment, the defocus amount is obtained from the output imbalance according to the sensitivity curve of FIG. 8, but the zero method can be performed. The method will be described with reference to FIG. 10, and the reference numerals in the figure are the same as those described above, for example, in FIG.

最初にP1,P2に受光素子がおかれている。ウエハーがベ
ストピントからデフォーカスするとサジタル、メリジオ
ナル線のピント面が各々S→S′、M→M′へと移動す
る為、両受光素子間に出力差が生じる(△Z1,△Z2に対
応している)。いま、一対の受光素子をP1,P2の位置か
ら各々P1′,P2′の位置へ移動させる。但し、受光素子
間の像高差は一定2△yに保っている。P1′,P2′では
両受光素子とメリジオナル像面M′のベストピント面と
のデフォーカス量が等しい(=△Z)為P1′=A″,
P2′=B″、差動出力は0である。ウエハーのデフォー
カス量(δ=△Z1−△Z=△Z−△Z2)は受光素子の像
高方向への移動量(△S)を知れば、 δ=△S×tanθ……(1) (但し、tanθは像面の傾き角である。) この(1)式に従って簡単に計算できる。
First, the light receiving elements are placed on P 1 and P 2 . When the wafer is defocused from the best focus, the focus planes of the sagittal and meridional lines move from S to S'and M to M ', respectively, so that an output difference occurs between both light receiving elements (ΔZ 1 and ΔZ 2) . Is supported). Now, the pair of light receiving elements are moved from the positions of P 1 and P 2 to the positions of P 1 ′ and P 2 ′, respectively. However, the image height difference between the light receiving elements is kept constant at 2Δy. In P 1 ′ and P 2 ′, since the defocus amounts of both light receiving elements and the best focus surface of the meridional image plane M ′ are equal (= ΔZ), P 1 ′ = A ″,
P 2 ′ = B ″ and the differential output is 0. The wafer defocus amount (δ = ΔZ 1 −ΔZ = ΔZ−ΔZ 2 ) is the amount of movement of the light receiving element in the image height direction (Δ). If S) is known, δ = ΔS × tan θ (1) (where tan θ is the tilt angle of the image plane). It can be easily calculated according to this equation (1).

これを実現するためには、第6図に示す実施例であれ
ば、アパーチャAと受光素子Dをリレーレンズの光軸X
と垂直な面内で上下方向に移動するか、受光素子Dの受
光域に余裕があればアパーチャAのみ移動しても良い。
移動の駆動機構ATはねじ送り機構と縮小機構を組合せた
ものでも良いし、圧電素子の積層体へ電圧を加えその伸
縮を利用してこれに結合されたアパーチャを移動しても
良い。また第9図の実施例でも同様にアパーチャAと受
光素子Dを出力差がゼロになるまで移動すれば良い。
In order to realize this, in the embodiment shown in FIG. 6, the aperture A and the light receiving element D are connected to the optical axis X of the relay lens.
It may move in the vertical direction in a plane perpendicular to, or if only the aperture A moves if the light receiving area of the light receiving element D has a margin.
The drive mechanism AT for movement may be a combination of a screw feed mechanism and a reduction mechanism, or a voltage may be applied to the laminated body of piezoelectric elements to utilize its expansion and contraction to move the aperture coupled thereto. Also in the embodiment of FIG. 9, similarly, the aperture A and the light receiving element D may be moved until the output difference becomes zero.

以上のゼロメソッドは幾つかの利点があり、その1はゼ
ロメソッド自体の特質である高精度である。第2は像面
の傾き角さえ知っていれば、受光素子の移動量から、ウ
エハーのデフォーカス量は容易に逆算できる点である。
感度曲線を覚えておく必要はない。その為、装置の変
動、検出光学系の設置誤差に対し非常に安定な検出を行
なえる。第3の利点はアパーチャと受光素子の位置設定
精度が緩くて良いことである。これは、サジタルおよび
メリジオナルの像面特性が立っている為に、微小のデフ
ォーカス量を検出するのに、受光素子を像高方向に大き
くふらなければならないからである。ちなみに、主とし
て凹凸の2枚鏡から構成されるミラー投影光学系の場
合、デフォーカス1μmを検出するのに、受光素子を焼
く100μm移動する事が必要である。この精度を達成
する事は容易である。
The above zero method has some advantages, and the first one is the high precision which is a characteristic of the zero method itself. Secondly, if only the tilt angle of the image plane is known, the defocus amount of the wafer can be easily back-calculated from the moving amount of the light receiving element.
There is no need to remember the sensitivity curve. Therefore, it is possible to perform very stable detection with respect to fluctuations in the device and installation errors in the detection optical system. The third advantage is that the position setting accuracy of the aperture and the light receiving element may be loose. This is because the sagittal and meridional image plane characteristics are outstanding, and therefore the light receiving element must be largely moved in the image height direction to detect a minute defocus amount. By the way, in the case of a mirror projection optical system mainly composed of two concave and convex mirrors, it is necessary to move the light receiving element by 100 μm to detect a defocus of 1 μm. It is easy to achieve this accuracy.

上の例はゼロメソッドを実現するために受光素子を機械
的に移動する例を上で説明したが、CCDのような光電的
位置検出素子の出力の工夫で代用させる方式が考えられ
る。つまり、第12図に示すように、像高y1とy2に各々中
心をもつような光電的位置検出素子Q1とQ2を設ける。こ
の一対の光電素子上において、電気的なマスクをかける
事により、受光量の積分領域R1とR2(前記矩形状のメリ
ジオナルパターン)をまず固定する。
In the above example, the example in which the light receiving element is mechanically moved to realize the zero method has been described above, but a method of substituting it with a devised output of a photoelectric position detection element such as a CCD may be considered. That is, as shown in FIG. 12, photoelectric position detecting elements Q 1 and Q 2 are provided which have their centers at image heights y 1 and y 2 , respectively. On the pair of photoelectric elements, an electric mask is applied to first fix the integration regions R 1 and R 2 (the rectangular meridional pattern) of the received light amount.

次いで、ウエハーのデフォーカス時には、上で述べた原
理に従い、両受光素子間の出力差を0とする様に、両素
子上の光量積分領域を、その形状と像高差を保って移動
させていく。その結果R1→R1′に、R2→R2′に各々移
る。その移動量(△S)を電気的に求めると、前記(1)
式よりウエハーのデフォーカス量がわかる。
Next, at the time of defocusing the wafer, according to the above-described principle, the light amount integration regions on both the light receiving elements are moved while maintaining the shape and the image height difference so that the output difference between the both light receiving elements becomes zero. Go. As a result, R 1 → R 1 ′ and R 2 → R 2 ′, respectively. When the amount of movement (ΔS) is calculated electrically, the above (1)
From the formula, the defocus amount of the wafer can be known.

次の実施例は検知開口の変形に関係する。これは第6図
や第9図で使用したアパーチャAが第4図とパターンと
同一形状の開口(スリット)を具えていたのに対し、同
一形状のマスクを使ってパターン像を遮蔽してしまう点
に特徴を持つ。この様にすれば第11図(A)(B)の斜線で
示す周辺部の光束を受光することになり、あまり変動を
受けない部分の光量を遮蔽しているので検出感度の向上
が期待できる。但し、この例では検出曲線は第7図に比
較して反転し、第15図の様になる。
The following example concerns deformation of the sensing aperture. This is because the aperture A used in FIGS. 6 and 9 has an opening (slit) having the same shape as the pattern in FIG. 4, but the pattern image is shielded by using the mask having the same shape. Characterized by points. By doing so, the light flux in the peripheral portion shown by the diagonal lines in FIGS. 11 (A) and (B) is received, and the light amount of the portion that is not significantly changed is shielded, so that improvement in detection sensitivity can be expected. . However, in this example, the detection curve is inverted as compared with FIG. 7, and becomes as shown in FIG.

第13図(A)は複数位置で検知をする場合の配置例で、
既述の例では被検体の1箇所で検知するものとして説明
してきたのに対し、本例ではP1P2,P1′P2′,P1″P2
の3箇所で測定している。即ちAPで示される弧はメリデ
ィオナル像面が理想像面と交差する位置(光学系が回転
対称であるから弧状となる)で、この位置を挾んでパタ
ーンを設け又はこの位置へパターンを投影する。P1P2
らのP1′P2′の出力、P1″P2″の出力は平均されてデフ
ォーカス量が算出され、第6図と第9図のウエハWを算
出値に基づいて不図示の調整機構で上下方向に移動しフ
ォーカスを達成する。なお、ウエハの替りにマスクを移
動しても良いし、可能ならば光学系を動かしても良い。
FIG. 13 (A) shows an example of arrangement when detecting at multiple positions.
In the example described above, the detection is performed at one location on the subject, whereas in this example, P 1 P 2 , P 1 ′ P 2 ′, P 1 ″ P 2 ″.
Are measured at three points. That is, the arc indicated by AP is a position where the meridional image plane intersects with the ideal image plane (because the optical system has rotational symmetry, it becomes an arc), and a pattern is provided or projected at this position by sandwiching this position. P 1 output of P 1 'P 2' from P 2, the output of P 1 "P 2" is the defocus amount is averaged is calculated, based on the wafer W in FIG. 6 and FIG. 9 to the calculated value An adjusting mechanism (not shown) moves vertically to achieve focus. The mask may be moved instead of the wafer, or the optical system may be moved if possible.

次の実施例は、収差の補正された最良像高(y=y0)か
ら点P1,P2ともに低い像高(又は高い像高)に検知位置
を設定する方法(第14図)である。像面の傾き角(ta
nθ)がわかっていれば、作用的には最良像高を挾んで
を配置する場合と同一である。これは第6図あ
るいは第9図の構成で、アパーチャAと受光素子Dの組
をメリジオナル像面に対応させて上方又は下方に移動す
ると共に前又は後方にずらして配置することにより達成
される。この構成を第13図(B)の様な配置で使用する
こともできる。P1P2,P1′P2′,P1″P2″はそれぞれパ
ターン投影される位置である。
The following example is a method (FIG. 14) in which the detection position is set to a low image height (or a high image height) for both points P 1 and P 2 from the aberration-corrected best image height (y = y 0 ). is there. Image plane tilt angle (ta
If nθ) is known, it is operationally the same as the case of arranging P 1 P 2 across the best image height. This is achieved by moving the pair of the aperture A and the light receiving element D upward or downward in correspondence with the meridional image plane and by arranging them forward or backward in the configuration of FIG. 6 or FIG. This configuration can also be used in the arrangement shown in FIG. 13 (B). P 1 P 2 , P 1 ′ P 2 ′ and P 1 ″ P 2 ″ are the positions where the pattern is projected.

この方法によると、スリットがウエハ上を移動していく
時、ウエハ上の各点が焼かれる直前に、そのピントずれ
を検出できる。ウエハの走査速度および焼き像高と検出
する像高の差(△yd)とがわかっていれば、ウエハ上の
各点が丁度、焼き位置にきた時、ピントずれを補正する
事は容易である。又、複数対の検出点を設ける事によっ
て、各検出点でのピントずれの平均値を求められる。こ
うすれば、ウエハの走査中、常に連続的に円弧上の焼き
部全体にわたって、ピントを合わせられるという利点が
ある。
According to this method, when the slit moves on the wafer, the focus shift can be detected immediately before each point on the wafer is burnt. If the wafer scanning speed and the difference between the image height to be detected and the image height to be detected (Δyd) are known, it is easy to correct the focus shift when each point on the wafer reaches the baking position. . Further, by providing a plurality of pairs of detection points, the average value of the focus deviation at each detection point can be obtained. In this way, there is an advantage that during the scanning of the wafer, the focus can always be continuously and continuously focused on the entire baked portion on the arc.

[発明の効果] 被検体と投影光学系の像面との間隔に応じた信号及び、
投影光学系の像面彎曲特性とから、被検体に対する、特
に使用領域に対する像面位置を、例えその像面位置を直
接検出する手段が構造的に配置できない場合でも、検出
する事を可能にしている。
EFFECT OF THE INVENTION A signal according to the distance between the subject and the image plane of the projection optical system, and
From the image plane curvature characteristics of the projection optical system, it is possible to detect the image plane position with respect to the subject, especially with respect to the usage area, even if the means for directly detecting the image plane position cannot be structurally arranged. There is.

また実施例で説明した様にミラーのみで構成された反射
系では色収差がないので、焦点検知光の波長のために投
影光学系の設計に制約を受ける難点も発生しない。
Further, as described in the embodiments, since the reflective system constituted by only the mirror has no chromatic aberration, there is no difficulty in restricting the design of the projection optical system due to the wavelength of the focus detection light.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来例を示す光学断面図、第2図はウエハ位置
の平面図、第3図は非点収差の要部を示す図、第4図は
検知用パターンの平面図、第5図は受光素子の受光量を
説明するための図、第6図は本発明の実施例を示す光学
断面図、第7図は受光量とデフォーカスとの関連図、第
8図は差動出力とデフォーカスの関連図、第9図は別実
施例を示す光学断面図、第10図は非点収差の要部を示
す図、第11図は受光素子の受光量を説明するための
図、第12図は光学的位置検出素子を使用した例の説明
図、第13図は検出位置の配置例を示す図、第14図は
非点収差の要部を示す図、第15図は受光量とデフォー
カス量の関連図。 図中、 Ma……マスク W……ウエハ PS……反射型投影系 M1……凹面鏡 M2……凸面鏡 M……メリジオナル像面 S……サジタル像面 L0……顕微鏡対物レンズ Lr……リレーレンズ A……アパーチャ D……受光素子 AFM……検知用パターンを有するマスク LA……照明光源 である。
FIG. 1 is an optical sectional view showing a conventional example, FIG. 2 is a plan view of a wafer position, FIG. 3 is a view showing a main part of astigmatism, FIG. 4 is a plan view of a detection pattern, and FIG. FIG. 6 is a diagram for explaining the amount of light received by the light receiving element, FIG. 6 is an optical sectional view showing an embodiment of the present invention, FIG. 7 is a relational diagram of the amount of received light and defocus, and FIG. 8 is a differential output. FIG. 9 is a cross-sectional view showing another embodiment of the defocusing, FIG. 10 is a view showing the main part of astigmatism, and FIG. 11 is a view for explaining the amount of light received by the light receiving element. FIG. 12 is an explanatory view of an example using an optical position detecting element, FIG. 13 is a view showing an arrangement example of detection positions, FIG. 14 is a view showing a main part of astigmatism, and FIG. The related figure of the amount of defocus. In the figure, Ma …… Mask W …… Wafer PS …… Reflective projection system M 1 …… Concave mirror M 2 …… Convex mirror M …… Meridional image plane S …… Sagittal image plane L 0 …… Microscope objective lens Lr …… Relay lens A ... Aperture D ... Light receiving element AFM ... Mask with detection pattern LA ... Illumination light source.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7352−4M H01L 21/30 311 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7352-4M H01L 21/30 311 N

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1物体面上のパターンを投影光学系を介
し第2物体面上に投影する投影装置の第2物体面に対す
る前記影光学系の像面位置を検出する方法において、 前記投影光学系における検出像高の像面位置と第2物体
面との間隔に応じた信号を前記投影光学系を介して光学
的に検出する検出段階と; 前記検出段階により得た信号と前記投影光学系の像面彎
曲特性とに基づいて、前記第2物体面に対する前記検出
像高と異なる像高の像面位置を決定する段階とを有する
ことを特徴とする面位置検出方法。
1. A method for detecting an image plane position of a shadow optical system with respect to a second object plane of a projection device, which projects a pattern on a first object plane onto a second object plane via a projection optical system, wherein: A detection step of optically detecting, via the projection optical system, a signal corresponding to the distance between the image plane position of the detected image height in the optical system and the second object surface; the signal obtained by the detection step and the projection optics Determining the image plane position of the image height different from the detected image height with respect to the second object plane, based on the image plane curvature characteristic of the system.
【請求項2】前記投影装置が第1物体と第2物体とを一
次元方向に移動させ走査露光する投影露光装置であるこ
とを特徴とする特許請求の範囲第1項記載の面位置検出
方法。
2. The surface position detecting method according to claim 1, wherein the projection device is a projection exposure device that moves a first object and a second object in a one-dimensional direction to perform scanning exposure. .
【請求項3】前記検出像高と、前記検出像高と異なる像
高とが走査方向に並んで位置することを特徴とする特許
請求の範囲第2項記載の面位置検出方法。
3. The surface position detecting method according to claim 2, wherein the detected image height and an image height different from the detected image height are positioned side by side in the scanning direction.
JP59176462A 1984-08-24 1984-08-24 Surface position detection method Expired - Lifetime JPH068926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59176462A JPH068926B2 (en) 1984-08-24 1984-08-24 Surface position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176462A JPH068926B2 (en) 1984-08-24 1984-08-24 Surface position detection method

Publications (2)

Publication Number Publication Date
JPS6153615A JPS6153615A (en) 1986-03-17
JPH068926B2 true JPH068926B2 (en) 1994-02-02

Family

ID=16014113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176462A Expired - Lifetime JPH068926B2 (en) 1984-08-24 1984-08-24 Surface position detection method

Country Status (1)

Country Link
JP (1) JPH068926B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506616B2 (en) * 1986-07-02 1996-06-12 キヤノン株式会社 Exposure apparatus and circuit manufacturing method using the same
JP6661371B2 (en) * 2015-12-25 2020-03-11 キヤノン株式会社 Evaluation method, exposure method, and article manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189106A (en) * 1981-05-18 1982-11-20 Nippon Kogaku Kk <Nikon> Focus detector
JPS5994032A (en) * 1982-11-22 1984-05-30 Nippon Kogaku Kk <Nikon> Apparatus for measuring characteristics of image forming optical system
JPS59101610A (en) * 1982-12-01 1984-06-12 Takeomi Suzuki Focusing detecting device

Also Published As

Publication number Publication date
JPS6153615A (en) 1986-03-17

Similar Documents

Publication Publication Date Title
US7236254B2 (en) Exposure apparatus with interferometer
US4705940A (en) Focus detection in a projection optical system
US5048967A (en) Detection optical system for detecting a pattern on an object
US5602399A (en) Surface position detecting apparatus and method
US6396067B1 (en) Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system
US4566795A (en) Alignment apparatus
JP3796368B2 (en) Projection exposure equipment
KR960029824A (en) An aberration correction optical system and an alignment device using this optical system
US4888614A (en) Observation system for a projection exposure apparatus
JP2938187B2 (en) Pattern forming method and apparatus for performing the method
JPH0822948A (en) Scanning aligner
US6023321A (en) Projection exposure apparatus and method
JPH1020197A (en) Reflecting and refracting optical system and its adjusting method
JP3298212B2 (en) Position detection method and apparatus, exposure method, projection exposure apparatus, and element manufacturing method
KR20000069918A (en) Three-mirror system for lithographic projection, and projection apparatus comprising such a mirror system
JPH06216005A (en) Levelling mating plane measuring method
JP2002093695A (en) Projection aligner
JPH068926B2 (en) Surface position detection method
JP4311713B2 (en) Exposure equipment
JPH08213306A (en) Position detector and projection exposure device provided with said detector
US4723846A (en) Optical path length compensating optical system in an alignment apparatus
JP3381740B2 (en) Exposure method and projection exposure apparatus
JP2001185474A (en) Alignment method, alignment device, substrate, mask, and exposure device
JP4416540B2 (en) Aberration measurement method
JPH02160237A (en) Mask substrate, production of mask and exposing method by using this mask substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term