JPH0688324B2 - Hollow PET container and method for manufacturing the same - Google Patents

Hollow PET container and method for manufacturing the same

Info

Publication number
JPH0688324B2
JPH0688324B2 JP12665889A JP12665889A JPH0688324B2 JP H0688324 B2 JPH0688324 B2 JP H0688324B2 JP 12665889 A JP12665889 A JP 12665889A JP 12665889 A JP12665889 A JP 12665889A JP H0688324 B2 JPH0688324 B2 JP H0688324B2
Authority
JP
Japan
Prior art keywords
parison
container
peripheral portion
thermal
pet container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12665889A
Other languages
Japanese (ja)
Other versions
JPH02305620A (en
Inventor
通 鈴木
誠 難波
好平 下嶋
祐登 渡辺
幸司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP12665889A priority Critical patent/JPH0688324B2/en
Publication of JPH02305620A publication Critical patent/JPH02305620A/en
Publication of JPH0688324B2 publication Critical patent/JPH0688324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0284Bottom construction having a discontinuous contact surface, e.g. discrete feet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/023Neck construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C2035/0283Thermal pretreatment of the plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • B29C49/6445Thermal conditioning of preforms characterised by temperature differential through the preform length
    • B29C49/6452Thermal conditioning of preforms characterised by temperature differential through the preform length by heating the neck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6463Thermal conditioning of preforms by contact heating or cooling, e.g. mandrels or cores specially adapted for heating or cooling preforms
    • B29C49/6464Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6463Thermal conditioning of preforms by contact heating or cooling, e.g. mandrels or cores specially adapted for heating or cooling preforms
    • B29C49/6465Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6463Thermal conditioning of preforms by contact heating or cooling, e.g. mandrels or cores specially adapted for heating or cooling preforms
    • B29C49/6466Thermal conditioning of preforms by contact heating or cooling, e.g. mandrels or cores specially adapted for heating or cooling preforms on the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C49/6605Heating the article, e.g. for hot fill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0063After-treatment of articles without altering their shape; Apparatus therefor for changing crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐圧耐熱性の中空PET容器およびその製造方
法に関し、とくに内容物の加熱殺菌効率が良く、耐衝撃
性の優れた中空PET容器およびその製造方法に係るもの
である。
Description: TECHNICAL FIELD The present invention relates to a pressure-resistant and heat-resistant hollow PET container and a method for producing the same, and particularly to a hollow PET container having good heat sterilization efficiency of contents and excellent impact resistance. And the manufacturing method thereof.

[従来の技術] 耐圧耐熱性の中空PET容器は、ポリエチレンテレフタレ
ート(以下PETという)からなる有底筒状のパリソンを
予備成形しておき、このパリソンを二軸延伸ブロー成形
して樹脂材料に結晶配向を生じさせることと、ヒートセ
ットすることにより、耐圧性と耐熱性を確保していた。
[Prior Art] In a pressure-resistant heat-resistant hollow PET container, a bottomed cylindrical parison made of polyethylene terephthalate (hereinafter referred to as PET) is preformed, and this parison is biaxially stretch blow molded to crystallize into a resin material. The pressure resistance and the heat resistance were ensured by causing the orientation and heat setting.

このようにして成形した中空PET容器は、底部の延伸度
が不足し、結晶化度が低くなってしまったり、未結晶化
部分が発生したりして、耐熱、耐圧性が極めて悪いとい
う欠点があった。
The hollow PET container molded in this way has a drawback that the bottom has a low degree of stretching, the degree of crystallinity is low, or an uncrystallized portion is generated, and heat resistance and pressure resistance are extremely poor. there were.

その結果、その容器の上から熱湯などをかけて充填物を
殺菌する場合などに、底部が熱と内圧により変形する傾
向が大きい。
As a result, when the filling is sterilized by applying hot water or the like from the top of the container, the bottom portion is likely to be deformed by heat and internal pressure.

従って、この変形を無くすため、湯の温度を低くしてい
るが、そのため、処理時間が長くなるという欠点があ
り、当業者間では高温の熱湯を用いて短時間で処理した
いとう要望が強かった。
Therefore, in order to eliminate this deformation, the temperature of the hot water is lowered. However, there is a drawback that the processing time becomes long, and there is a strong desire among those skilled in the art to use hot hot water in a short time. .

その解決のために、延伸やヒートセットが利きにくい口
頸部と底中央部を、パリソンの時点で熱結晶化させてお
くことが試みられた。
In order to solve the problem, it was attempted to thermally crystallize the mouth and neck and the center of the bottom, which are difficult to draw and heat set, at the time of the parison.

ところが、底中央部が一様に熱結晶化されていると、そ
のようなパリソンを用いて成形した容器は、落下テスト
した時ベースカップを付けておいても、底中央部に割れ
を生ずるという欠点があり、実用に供することができな
い。
However, if the center of the bottom is uniformly heat-crystallized, a container molded using such a parison will crack at the center of the bottom even when the base cup is attached when a drop test is performed. It has drawbacks and cannot be put to practical use.

これは、熱結晶化された部分は、耐衝撃性が極めて低い
という宿命的な性質によるものである。
This is due to the fatal property that the thermally crystallized portion has extremely low impact resistance.

[発明が解決しようとする課題] 耐衝撃性が大きく、しかも耐圧性と耐熱性の優れた中空
PET容器を提供することである。
[Problems to be Solved by the Invention] A hollow having high impact resistance and excellent pressure resistance and heat resistance
It is to provide a PET container.

[課題を解決するための手段] 本発明者らは、かかる課題解決のため種々研究した結
果、中空PET容器の熱結晶化された底中央部の熱結晶化
度を、周辺部が高く、中心部を低くすることにより、周
辺部の高結晶化部により耐熱、耐圧効果を、そして中心
部の低結晶化部により耐衝撃効果を奏させ、中空PET容
器の耐圧性と耐熱性を損なうことなく、耐衝撃性を向上
させることに成功し本発明を完成した。
[Means for Solving the Problems] As a result of various studies for solving the problems, the present inventors have found that the thermal crystallinity of the thermally crystallized bottom central part of the hollow PET container is high in the peripheral part and high in the central part. By lowering the part, the high crystallization part of the peripheral part provides heat resistance and pressure resistance effect, and the low crystallization part of the center part provides impact resistance effect, without impairing the pressure resistance and heat resistance of the hollow PET container. The present invention has been completed by succeeding in improving impact resistance.

すなわち本発明は、 「1.延伸ブロー成形によって形成された中空容器本体1
の、底中央部5と口頸部3に熱結晶化領域を設けた樹脂
製のPET容器において、該底中央部5の熱結晶化領域の
熱結晶化度を、周辺部7を熱結晶化度25〜50%と高く
し、中心部6を低くした中空PET容器。
That is, the present invention provides "1. Hollow container body 1 formed by stretch blow molding"
In a PET container made of resin having a thermal crystallization region in the bottom center part 5 and the mouth / neck part 3, the thermal crystallization degree of the thermal crystallization region of the bottom center part 5 and the peripheral part 7 are thermally crystallized. Hollow PET container with a high temperature of 25 to 50% and a low central portion 6.

2.中心部6の熱結晶化度が20%以下である、請求項1記
載の中空PET容器。
2. The hollow PET container according to claim 1, wherein the central portion 6 has a thermal crystallinity of 20% or less.

3.周辺部7に設けた熱結晶化領域が連続的であり、その
外周が円形である、請求項1または2のいずれか1項に
記載の中空PET容器。
3. The hollow PET container according to claim 1, wherein the thermal crystallization region provided in the peripheral portion 7 is continuous and the outer periphery thereof is circular.

4.周辺部7に設けた熱結晶化領域が連続的であり、その
外周が多角形である、請求項1または2項に記載の中空
PET容器。
4. The hollow according to claim 1 or 2, wherein the thermal crystallization region provided in the peripheral portion 7 is continuous and its outer periphery is polygonal.
PET container.

5.周辺部7に設けた熱結晶化領域が不連続的であり、そ
の間に非熱結晶化部分が存在している、請求項1乃至4
のいずれか1項に記載の中空PET容器。
5. The thermal crystallization region provided in the peripheral part 7 is discontinuous, and the non-thermal crystallization part exists between them.
The hollow PET container according to any one of 1.

6.底中央部15と口頸部3に熱結晶化領域を設け、底中央
部15の熱結晶化領域の周辺部17の熱結晶化度を高く、中
心部16を低くし、周辺部17の外径D1を、底外径D2の15〜
95%とした有底筒状のパリソンを二軸延伸ブロー成形し
て、熱結晶化領域以外の領域を全て高延伸倍率に延伸す
ることを特徴とする中空PET容器の製造方法。
6. A thermal crystallization area is provided in the bottom central portion 15 and the mouth / neck portion 3, and the thermal crystallization degree of the peripheral portion 17 of the thermal crystallization area of the bottom central portion 15 is high, the central portion 16 is low, and the peripheral portion 17 is Outer diameter D1 of the bottom outer diameter D2 of 15 ~
A method for producing a hollow PET container, characterized in that a tubular parison with a bottom of 95% is biaxially stretch blow-molded and all regions other than the thermal crystallization region are stretched to a high stretch ratio.

7.パリソンが、その熱結晶化された底中央部15の周辺部
17の外径D1を、延伸ブロー成形用の延伸棒の外径D3より
僅かに大きくしたものである、請求項6記載の中空PET
容器の製造 方法。
7. The parison has its thermally crystallized bottom center part 15 periphery
The hollow PET according to claim 6, wherein the outer diameter D1 of 17 is slightly larger than the outer diameter D3 of the stretch rod for stretch blow molding.
Container manufacturing method.

8.パリソンが、その熱結晶化された底中央部15の曲率
を、完成後の中空PET容器の底中央部5の曲率に合せた
ものである、請求項6または7に記載の中空PET容器の
製造方法。
8. The hollow PET container according to claim 6 or 7, wherein the parison has the curvature of the thermally crystallized bottom center part 15 matched with the curvature of the bottom center part 5 of the completed hollow PET container. Manufacturing method.

9.パリソンが、その熱結晶化された底中央部15の周辺部
17の厚さを、パリソンの胴部12の厚さより薄くしたもの
である、請求項6乃至8のいずれか1項に記載の中空PE
T容器の製造方法。
9. The parison has its thermal crystallized bottom center part 15 periphery
The hollow PE according to any one of claims 6 to 8, wherein the thickness of 17 is smaller than the thickness of the body 12 of the parison.
Manufacturing method of T container.

10.パリソンが、その熱結晶化された底中央部15の周辺
部17の、外側に隣接する部分の厚さを、外側に向かって
徐々に厚くしたものである、請求項9記載の中空PET容
器の製造方法。」 [作用] 本発明においては、中空PET容器の底の熱結晶化領域で
ある底中央部の熱結晶化度を、周辺部が高く、中心部を
低くすることにより、耐圧性と耐熱性を損なうことな
く、耐衝撃性を大きくすることができる。それは、この
ように底部に熱結晶化度の異なる領域を配置することに
より、落下時に最も強い衝撃をうける底中心部が、低熱
結晶化度のため柔軟で衝撃に強くなっているからであ
る。
10. The hollow PET according to claim 9, wherein the parison is formed by gradually increasing the thickness of the peripheral portion 17 of the thermally crystallized bottom central portion 15 of the peripheral portion 17 adjacent to the outer side toward the outer side. Container manufacturing method. [Operation] In the present invention, the thermal crystallization degree at the center of the bottom, which is the thermal crystallization region at the bottom of the hollow PET container, is high in the peripheral portion and low in the central portion, so that pressure resistance and heat resistance are improved. The impact resistance can be increased without impairing it. This is because by arranging the regions having different thermal crystallinity in the bottom in this way, the center of the bottom, which receives the strongest impact when dropped, is flexible and resistant to impact due to the low thermal crystallinity.

本発明においては、中空容器本体の底中央部の熱結晶化
領域の周辺部の熱結晶化度を、25〜50%にすると良い効
果がえられる。
In the present invention, a good effect can be obtained by setting the thermal crystallization degree at the peripheral portion of the thermal crystallization region at the center of the bottom of the hollow container body to 25 to 50%.

周辺部の熱結晶化度が25%未満では結晶化度が小さいた
め耐熱性が低く、従って熱による変形が発生し、熱結晶
化度が50%を越えると、耐衝撃性が悪くなり落下時に割
れが発生する。
If the thermal crystallinity of the peripheral part is less than 25%, the heat resistance is low because the crystallinity is small, and therefore deformation due to heat occurs. If the thermal crystallinity exceeds 50%, the impact resistance deteriorates and the product falls. Cracks occur.

また、中心部の熱結晶化度を20%以下とすると良い結果
がえられる。これは、熱結晶化された周辺部に囲まれた
熱結晶化度の低い中心部は、ブロー成形後も柔軟性をよ
り多く保っているために、中空PET容器の耐衝撃性が良
好となるのである。
Also, good results are obtained when the thermal crystallinity of the central portion is 20% or less. This is because the central part surrounded by the thermally crystallized peripheral part and having low thermal crystallinity retains more flexibility even after blow molding, so that the impact resistance of the hollow PET container is good. Of.

熱結晶化された周辺部の外周は、通常、円形であるが三
角、四角あるいは六角などの多角形でも良い。
The outer circumference of the thermally crystallized peripheral portion is usually circular, but may be polygonal such as triangular, square or hexagonal.

そして底中心部の熱結晶化度が10%以下で、その10%以
下の領域がかなり広いときは、熱結晶化された周辺部が
円環状、あるいは多角環状となる。このような時は、底
中心部の柔軟性が極めて良く、更に優れた耐衝撃性を示
す。
When the thermal crystallinity of the center of the bottom is 10% or less, and the region of 10% or less is considerably wide, the thermally crystallized peripheral portion has a circular ring shape or a polygonal ring shape. In such a case, the flexibility at the center of the bottom is extremely good, and the impact resistance is excellent.

また、熱結晶化領域の周辺部が不連続になっている場
合、すなわち、点、線又は細長い矩形などで形成した断
続状の熱結晶化部分の間に、非熱結晶化部分が存在して
いる場合は、中心部も適度に延伸結晶化されており、機
械的強度が大きく耐圧性が極めて優れている。
In addition, when the peripheral portion of the thermal crystallization region is discontinuous, that is, between the intermittent thermal crystallization portions formed by dots, lines or elongated rectangles, non-thermal crystallization portions exist. In the case where it is present, the central part is also appropriately stretched and crystallized, and the mechanical strength is large and the pressure resistance is extremely excellent.

本発明の中空PET容器を製造するには、ポリエチレンテ
レフタレート(PET)を用いて射出成形などによって有
底筒状パリソンを作り、常法にしたがって口頸部を熱結
晶化し、ついで本発明に従って底中央部の熱結晶化領域
の周辺部を高い熱結晶化度、たとえば25〜50%に、中心
部を低い熱結晶化度、たとえば20%以下に熱結晶化して
おき、このパリソンを二軸延伸ブロー成形することによ
って製造することができる。
To manufacture the hollow PET container of the present invention, polyethylene terephthalate (PET) is used to make a cylindrical parison with a bottom by injection molding, etc., and the mouth and neck are thermally crystallized according to the usual method, and then the center of the bottom is followed according to the present invention. The peripheral part of the thermal crystallization region is thermally crystallized to a high thermal crystallinity of, for example, 25 to 50%, and the central part is thermally crystallized to a low thermal crystallinity of, for example, 20% or less. It can be manufactured by molding.

このとき、中心部の熱結晶化度を10%以下としておく
と、より耐衝撃性の優れた中空PET容器が得られる。そ
して、その周辺の熱結晶化部を円環状又は多角環状にし
ておくことも、さらには、点、線又は細長い矩形などで
形成して断続状にしておくこともできる。
At this time, if the thermal crystallinity of the central portion is set to 10% or less, a hollow PET container having more excellent impact resistance can be obtained. Then, the thermal crystallization portion around it can be formed in an annular shape or a polygonal shape, or can be formed in the shape of dots, lines, elongated rectangles, or the like to be discontinuous.

また、本発明の製造方法においては、パリソンの熱結晶
化された底中央部の熱結晶化領域の周辺部の外径を、パ
リソンの底外径の15〜95%にしておく必要がある。
Further, in the manufacturing method of the present invention, the outer diameter of the peripheral portion of the thermally crystallized region at the center of the thermally crystallized bottom of the parison needs to be 15 to 95% of the outer diameter of the bottom of the parison.

15%未満では、延伸ブロー成形したとき結晶化部分が過
少のため底部の耐熱強度が低くなり、95%を越えると、
結晶化部分が過大となり耐衝撃強度が低下する。
If it is less than 15%, the heat resistance strength of the bottom part becomes low because the crystallization part is too small when stretch blow molding, and if it exceeds 95%,
The crystallized portion becomes too large, and the impact resistance strength decreases.

また、パリソンの熱結晶化された底中央部の熱結晶化領
域の周辺部の外径を、延伸ブロー成形用の延伸棒の外径
より僅かに大きくしておくと、延伸ブロー成形したと
き、底中央部の熱結晶化領域の周辺部の外側に隣接する
部分の延伸を、極めて均一にかつ円滑に延伸結晶化する
ことができる。
Further, the outer diameter of the peripheral portion of the thermally crystallized region of the thermally crystallized bottom center of the parison is slightly larger than the outer diameter of the stretch rod for stretch blow molding, and when stretch blow molding is performed, The stretching of the portion adjacent to the outer side of the peripheral portion of the thermal crystallization region at the center of the bottom can be performed extremely uniformly and smoothly.

また、パリソンの熱結晶化された底中央部の曲率を、完
成後の中空PET容器底部の曲率に合せておくことによ
り、延伸ブロー成形によって形成された延伸結晶化部
と、元からあった熱結晶化部との間に歪みが発生せず、
耐衝撃強度の優れた中空PET容器がえられる。
In addition, by matching the curvature of the thermally crystallized bottom center of the parison with the curvature of the hollow PET container bottom after completion, the stretched crystallization part formed by stretch blow molding and the original heat No distortion occurs between the crystallization part,
A hollow PET container with excellent impact strength can be obtained.

また、パリソンの熱結晶化された底中央部の熱結晶化領
域の周辺部の厚さを、パリソンの底部や胴部の厚さより
薄くすることにより、延伸ブロー成形後、底中央部の厚
さと容器壁の厚さを等しくすることができ、境界部に歪
みが発生することがなく、耐衝撃性の向上に役立つ。
In addition, by making the thickness of the peripheral part of the thermally crystallized region in the center part of the thermally crystallized bottom of the parison smaller than the thickness of the bottom part and body of the parison, the thickness of the center part of the bottom after stretch blow molding The thickness of the container wall can be made equal, distortion does not occur at the boundary, and it helps improve impact resistance.

また、パリソンの熱結晶化された底中央部の熱結晶化領
域の周辺部の外側に隣接する部分の厚さを、外側に向か
って徐々に厚くしておくことにより、延伸ブロー成形
後、境界部の厚みの変化がより滑らかになり、耐衝撃性
をさらに向上させることができる。
Further, by gradually increasing the thickness of the portion adjacent to the outer side of the peripheral portion of the thermal crystallized region of the central portion of the thermally crystallized bottom of the parison toward the outer side, after the stretch blow molding, the boundary The change in the thickness of the portion becomes smoother, and the impact resistance can be further improved.

[実施例] 以下、本発明を図示の実施例に基づいて説明する。[Examples] Hereinafter, the present invention will be described based on illustrated examples.

第1図は本発明の中空PET容器の一実施例を示してお
り、図において、Iは中空PET容器全体を示している。
この容器Iは内部中空に構成された容器本体1と、この
容器本体1の底面に被着されるベースカップIIとから構
成されている。
FIG. 1 shows one embodiment of the hollow PET container of the present invention, and in the figure, I shows the whole hollow PET container.
The container I is composed of a container body 1 which is hollow inside, and a base cup II which is attached to the bottom surface of the container body 1.

第2図は容器本体1を説明するもので、容器本体1はポ
リエチレンテレフタレート(PET)製で、円筒状の胴部
2と、胴部2上方を丸く絞ってその先に設けられた口頸
部3と、胴部2の下端に連続して設けられ下方に向かっ
て球殻状に突出する底部4とから構成されている。
FIG. 2 illustrates the container main body 1. The container main body 1 is made of polyethylene terephthalate (PET), and has a cylindrical body portion 2 and a mouth / neck portion provided on the tip of the body portion 2 by squeezing the upper portion of the body 2 roundly. 3 and a bottom portion 4 continuously provided at the lower end of the body portion 2 and projecting downward in a spherical shell shape.

口頸部3は肉厚の円筒状で、その下端面の外側縁に胴部
2から連続して高延伸された肩部の上端縁が結合されて
いるが、その口頸部3は全体を約45%に熱結晶化させ
て、強度、耐熱性を高めてある。
The mouth / neck portion 3 has a thick-walled cylindrical shape, and the upper edge of the shoulder portion continuously extended from the body portion 2 is joined to the outer edge of the lower end surface of the mouth / neck portion 3. Thermally crystallized to about 45% to improve strength and heat resistance.

即ち熱結晶化された口頸部3は、約100℃〜140℃位で熱
結晶化させてあり、球晶が生じて乳白色を呈し、延伸さ
れない無配向の結晶状態で、強度が高く、安定した形態
を保持している。
That is, the thermally crystallized mouth-neck portion 3 is thermally crystallized at about 100 ° C to 140 ° C, and spherulites are formed to give a milky white color. It retains its morphology.

また容器本体1の底部4は、その中央部が熱によって部
分的に結晶化されて熱結晶化領域底中央部5となってい
る。
Further, the bottom portion 4 of the container body 1 is partially crystallized by heat to form a thermal crystallization region bottom central portion 5.

この熱結晶化された熱結晶化領域、すなわち底中央部5
は、熱結晶化度の低い底中心部6と、その周縁の配置さ
れた高熱結晶化周辺部7とからなり、この周辺部7は中
心部6を中心として約10mmの外径D4を有し、熱結晶化度
は約45%である。熱結晶化度は周辺部7から中心部6に
向かって低下し、中心部6の熱結晶化度は10%以下であ
る。
This thermally crystallized thermally crystallized region, that is, the bottom center portion 5
Is composed of a bottom center portion 6 having a low thermal crystallization degree and a high heat crystallization peripheral portion 7 arranged at the periphery thereof, and the peripheral portion 7 has an outer diameter D4 of about 10 mm with the center portion 6 as the center. , Thermal crystallinity is about 45%. The thermal crystallinity decreases from the peripheral portion 7 toward the central portion 6, and the thermal crystallinity of the central portion 6 is 10% or less.

したがって、本発明の中空PET容器の底部4は、この高
度に熱結晶化されている周辺部7の奏する耐熱効果によ
り、熱湯をかけても変形せず、しかも、熱結晶化度の低
い中心部分6の奏する優れた耐衝撃効果を有している。
Therefore, the bottom portion 4 of the hollow PET container of the present invention is not deformed by boiling water due to the heat resistance effect of the highly thermally crystallized peripheral portion 7, and the central portion thereof has a low thermal crystallinity. 6 has an excellent impact resistance effect.

勿論、この場合、熱結晶化領域底中央部5の周辺部7
を、第3図乃至第6図に示すごとく円環状や多角環状
に、かつ熱結晶化度25〜50%に熱結晶化させ、その内側
部分を熱結晶化度20%以下にしたものも、ほぼ同等の耐
熱耐圧性および耐衝撃性を持っている。
Of course, in this case, the peripheral portion 7 of the bottom central portion 5 of the thermal crystallization region is
As shown in FIG. 3 to FIG. 6, heat-crystallized in an annular shape or a polygonal shape and having a thermal crystallinity of 25 to 50%, and the inner portion thereof has a thermal crystallinity of 20% or less, Has almost the same heat and pressure resistance and impact resistance.

また、第7図または第8図に示すごとく、熱結晶化され
ている円環状又は多角環状部分を断続させた場合は、延
伸成形時に内側部分も適量に延伸結晶化されているの
で、優れた機械的強度と耐圧性を示す。
Further, as shown in FIG. 7 or FIG. 8, when the thermally crystallized annular or polygonal annular portion is interrupted, an appropriate amount of the inner portion is also stretch-crystallized during stretch molding, which is excellent. Shows mechanical strength and pressure resistance.

そして容器本体1の口頸部3以外の領域および底中央部
5以外の領域が、すべて高延伸倍率にて薄肉に延伸され
て高延伸結晶化領域となっており、それらの領域は結晶
化度10〜40%に高延伸結晶化されている。したがって、
高延伸結晶化領域においては、材料は延伸作用によって
材料内部に結晶配向が生じ。強度が大きく形状保持性も
優れたものとなっている。
Then, the region other than the mouth / neck part 3 and the region other than the bottom center part 5 of the container body 1 are all thinly stretched at a high stretch ratio to be high stretch crystallization regions, and these regions are crystallized. It is highly stretched and crystallized to 10-40%. Therefore,
In the high-stretch crystallization region, the crystal orientation occurs inside the material due to the stretching action. It has high strength and excellent shape retention.

なお、本実施例では、高延伸された容器にヒートセット
を施したことにより、さらに結晶化度が高くなり、耐熱
性がより向上している。
In this example, the heat-set was applied to the highly stretched container, whereby the crystallinity was further increased and the heat resistance was further improved.

ベースカップIIは、概略有底円筒状で、周壁の径がほぼ
容器本体Iの胴部2の外径と同一になっている。
The base cup II has a substantially bottomed cylindrical shape, and the diameter of the peripheral wall is substantially the same as the outer diameter of the body portion 2 of the container body I.

そして、ベースカップIIの底壁には容器本体Iの底面に
接着固定される環状の台座部が設けられている。
An annular pedestal portion that is adhesively fixed to the bottom surface of the container body I is provided on the bottom wall of the base cup II.

一方、ベースカップの周壁の上端部は容器本体Iの胴部
2の下縁に係止されており、周壁の上端部にはベースカ
ップと容器本体底部との間に形成される空間に、熱湯の
流通を許容する通口部が周方向に複数設けられている。
On the other hand, the upper end of the peripheral wall of the base cup is locked to the lower edge of the body portion 2 of the container main body I, and the upper end of the peripheral wall has hot water in a space formed between the base cup and the bottom of the container main body. A plurality of through-holes are provided in the circumferential direction to allow the circulation of.

つぎに上記中空PET容器の製造方法について第9図乃至
第12図に基づいて説明する。
Next, a method for manufacturing the hollow PET container will be described with reference to FIGS. 9 to 12.

まず、第9図に示すような延伸成形用パリソン11を予備
成形する。パリソン11は上記容器本体1を二軸延伸ブロ
ー成形するために予備的に成形される素材であり、主と
して容器本体1の胴部2と成るべき筒状部12と、容器本
体1の底中央部5と成るべきパリソンの底中央部15と、
筒状部12上端に連なる口頸部3とから成る有底円筒状部
材により構成されている。
First, a stretch molding parison 11 as shown in FIG. 9 is preformed. The parison 11 is a material that is preliminarily molded to perform the biaxial stretch blow molding of the container body 1. The parison 11 is mainly the cylindrical portion 12 that should be the body portion 2 of the container body 1, and the center of the bottom of the container body 1. The bottom center 15 of the parison should be 5,
It is configured by a bottomed cylindrical member including a mouth and neck portion 3 connected to the upper end of the tubular portion 12.

パリソン11の製造は、たとえば射出成形により製造され
る。すなわち型閉めした成形型に、射出ノズルから溶融
樹脂を注入し、冷却硬化後型開きして成形されたパリソ
ン11を取出した。
The parison 11 is manufactured by injection molding, for example. That is, the molten resin was injected from the injection nozzle into the closed mold, cooled and cured, and the mold was opened to take out the molded parison 11.

つぎに、第9図に示すようにパリソン11の、口頸部3及
び底の中央の一部分である底中央部15を加熱処理した。
本実施例においては、口頸部3は全体を結晶化度約45%
に熱結晶化した。
Next, as shown in FIG. 9, the parison 11 was heat-treated at the mouth / neck portion 3 and the bottom center portion 15 which is a part of the center of the bottom.
In the present embodiment, the mouth / neck portion 3 has an overall crystallinity of about 45%.
Thermally crystallized.

また、底中央部15については、その周辺部17を結晶化度
約45%に熱結晶化し、底中心部16に向かって結晶化度を
低下させ、中心部16は結晶化度10%以下とした。
Further, with respect to the bottom central portion 15, the peripheral portion 17 is thermally crystallized to have a crystallinity of about 45%, and the crystallinity decreases toward the bottom central portion 16, and the central portion 16 has a crystallinity of 10% or less. did.

この時、第9図または第10図に示すように、結晶化され
た周辺部17の外径D1は、パリソンの底外径D2(=胴部12
の外径)の40%とした。
At this time, as shown in FIG. 9 or FIG. 10, the outer diameter D1 of the crystallized peripheral portion 17 is equal to the outer diameter D2 of the bottom of the parison (= the body portion 12).
40% of the outer diameter).

本実施例にあっては、パリソンの底外径D2は25mmなの
で、周辺部17の外径D1は10mmとなるように熱結晶化し
た。
In this example, since the bottom outer diameter D2 of the parison was 25 mm, the outer diameter D1 of the peripheral portion 17 was thermally crystallized to be 10 mm.

また、本実施例にあっては、熱結晶化された底中央部15
の曲率を、第11図(イ)に示すごとく、完成後の容器本
体底部4の曲率に合せて、半径(r)50mmの曲率に設計
した。
Further, in the present embodiment, the thermally crystallized bottom central portion 15
As shown in FIG. 11 (a), the curvature was designed to have a radius (r) of 50 mm in accordance with the curvature of the container body bottom 4 after completion.

これにより、ブロー成形後の容器本体底部4の丸みは
(ロ)に示すごとく、一様に滑らかに仕上がり、歪みが
なく優れた耐衝撃性を示した。
As a result, the roundness of the bottom 4 of the container body after blow molding was finished uniformly and smoothly, and there was no distortion and excellent impact resistance was exhibited.

また、第11図(イ)に示すごとく、熱結晶化された底中
央部15の熱結晶化領域の周辺部17の厚さを、パリソンの
胴部12の厚さ3mmより2mm薄くして1mmとした。これによ
り、(ロ)に示すごとく、ブロー成形後の容器本体底中
央部5の厚さは胴部2の厚さと同じになって、歪みが無
くなり優れた耐衝撃性を示した。
In addition, as shown in FIG. 11 (a), the thickness of the peripheral portion 17 of the thermally crystallized region of the thermally crystallized bottom central portion 15 is 2 mm thinner than the thickness 3 mm of the parison body 12 to be 1 mm. And As a result, as shown in (b), the thickness of the container body bottom center portion 5 after blow molding became the same as the thickness of the body portion 2, and there was no distortion, indicating excellent impact resistance.

また、第11図(イ)に示すごとく、熱結晶化された底中
央部15の熱結晶化領域の周辺部17の外側の厚さを、外側
に向かって次第に厚くなるように設計した。これによ
り、(ロ)に示すごとく、ブロー成形後の容器本体底部
4の厚みは一様の厚さに滑らかに仕上がって、歪みがさ
らに無くなり優れた耐衝撃性を示した。
Further, as shown in FIG. 11 (a), the outer thickness of the peripheral portion 17 of the thermally crystallized region of the thermally crystallized bottom central portion 15 was designed to gradually increase toward the outer side. As a result, as shown in (b), the thickness of the container body bottom portion 4 after the blow molding was smoothly finished to a uniform thickness, and the distortion was further eliminated to show excellent impact resistance.

次に、上記したパリソン11を用いて、ブロー成形により
容器本体1を成形する成形工程について、第12図
(イ)、(ロ)に基づいて説明する。
Next, a molding process for molding the container body 1 by blow molding using the parison 11 described above will be described based on FIGS. 12 (a) and 12 (b).

図において、30はブロー成形用の金型であり、この金型
30は容器本体1の胴部2を成形する割型31と、容器本体
底中央部5を成形する底型32と、容器の口頸部3を保持
するネック型33からなっている。
In the figure, 30 is a mold for blow molding.
Reference numeral 30 includes a split mold 31 for molding the body portion 2 of the container body 1, a bottom mold 32 for molding the bottom central portion 5 of the container body, and a neck mold 33 for holding the mouth / neck portion 3 of the container.

34はパリソン11をその軸線方向に延伸するための延伸棒
であり、図示しない駆動源によって金型30に装着された
パリソン11内に、その口頸部3側から出没自在に挿入さ
れる。この延伸棒34の外径D3は本実施例にあっては9mm
である。そして、この延伸棒34とパリソン11の内面との
空間に、圧縮空気などの流体が通る流体通路35が設けら
れている。
Reference numeral 34 is an extension rod for extending the parison 11 in the axial direction thereof, and is inserted into the parison 11 mounted on the mold 30 by a drive source (not shown) so as to be retractable from the mouth / neck 3 side. The outer diameter D3 of the drawing rod 34 is 9 mm in this embodiment.
Is. A fluid passage 35, through which a fluid such as compressed air passes, is provided in the space between the stretching rod 34 and the inner surface of the parison 11.

上記装置においてブロー成形は次のようにして行われ
る。まず延伸温度70〜140℃、好ましくは90〜120℃に加
熱されたパリソン11を、 第12図(イ)に示すように延伸棒34を伸ばして軸方向に
延伸させる。この状態では主としてパリソン11の筒状部
12が軸方向に延伸される。
Blow molding is performed in the above apparatus as follows. First, the parison 11 heated to a stretching temperature of 70 to 140 ° C., preferably 90 to 120 ° C. is stretched in the axial direction by stretching the stretching rod 34 as shown in FIG. In this state, mainly the cylindrical part of parison 11
12 are stretched in the axial direction.

前述のごとく、延伸棒34の外径D3は本実施例にあっては
9mmなので、結晶化された周辺部17の外径D1を10mmにな
るよう設定した。
As described above, the outer diameter D3 of the stretch rod 34 is not the same in this embodiment.
Since it is 9 mm, the outer diameter D1 of the crystallized peripheral portion 17 is set to be 10 mm.

このようにD1をD3より僅かに大きくしたことにより、周
辺部17の外側に隣接する部分の延伸を極めて円滑に行う
ことができる。
By making D1 slightly larger than D3 in this way, the portion adjacent to the outer side of the peripheral portion 17 can be extremely smoothly stretched.

なお、延伸棒34の外径D3は余り太いと、空気が入りにく
くなるので好ましくない。
If the outer diameter D3 of the stretching rod 34 is too large, it will be difficult for air to enter, which is not preferable.

さらに、第12図(ロ)に示すように、圧縮空気が延伸棒
34の流体通路35を通って高圧下で吹込まれて、パリソン
11の筒状部12が半径方向外方に膨らんで金型30の内面に
密着する。一方、パリソンの底部は、底中央部15の熱結
晶化領域の周辺部17の外側に隣接する部分から、薄肉化
されながら半径方向外方に拡がり、その外面が底型32の
内面に密着する。この状態ではパリソン11の筒状部12は
主として周方向に延伸される。
Furthermore, as shown in Fig. 12 (b), compressed air is
Blown under high pressure through 34 fluid passages 35, parison
The tubular portion 12 of 11 bulges outward in the radial direction and comes into close contact with the inner surface of the mold 30. On the other hand, the bottom of the parison spreads outward in the radial direction while being thinned from a portion adjacent to the outside of the peripheral portion 17 of the thermal crystallization region of the bottom central portion 15, and the outer surface thereof adheres to the inner surface of the bottom mold 32. . In this state, the tubular portion 12 of the parison 11 is mainly stretched in the circumferential direction.

このようにして、容器本体1の口頸部3以外の領域およ
び底中央部5以外の領域が、すべて高延伸倍率にて薄肉
に延伸されて高延伸結晶化領域となり、それらの領域は
結晶化度10〜40%に高延伸結晶化される。
In this way, all the regions other than the mouth / neck part 3 and the bottom center part 5 of the container body 1 are thinly stretched at a high stretching ratio to become highly stretched crystallization regions, and these regions are crystallized. It is highly stretched and crystallized to a degree of 10-40%.

このような高延伸結晶化度にするには、前述の如く通常
70〜140℃、好ましくは90〜120℃に加熱した状態で、か
つ、高い延伸倍率で延伸することにより高結晶配向を生
じさせ達成することができる。
To obtain such a high stretch crystallinity, as described above,
This can be achieved by producing a high crystal orientation by stretching at a high stretching ratio in a state of being heated to 70 to 140 ° C, preferably 90 to 120 ° C.

パリソンの底部については、パリソンをブロー延伸する
と、パリソンの熱結晶化されている底中央部15の熱結晶
化領域の周辺部17の周囲が連続している場合は、この熱
結晶化部分は最早延伸によって伸びることも縮むことも
しないので、周辺部17に囲まれた内側の中心部分は延伸
されることがなく、周辺部17に連続する外側の非晶質部
分のみが延伸される。
Regarding the bottom of the parison, when the parison is blow-drawn, if the periphery of the peripheral part 17 of the thermal crystallized region of the bottom central part 15 of the parison that is thermally crystallized is continuous, this thermal crystallized part is no longer necessary. Since neither stretching nor shrinking is caused by stretching, the inner central portion surrounded by the peripheral portion 17 is not stretched, and only the outer amorphous portion continuous with the peripheral portion 17 is stretched.

熱結晶化されている底中央部15の、熱結晶化領域の周辺
部17が第3図乃至第6図のように円環状または多角環状
のになっている場合も、この熱結晶化部分は最早延伸に
よって殆ど変化せず、従って囲まれた内側の中心部分も
延伸されることがなく、周辺部17に連続する外側の非晶
質部分のみが延伸される。
Even when the peripheral portion 17 of the thermally crystallized region of the bottom central portion 15 which is thermally crystallized has an annular shape or a polygonal annular shape as shown in FIGS. 3 to 6, this thermal crystallized portion is Almost no change is caused by the stretching, so that the enclosed inner central portion is not stretched, and only the outer amorphous portion continuous with the peripheral portion 17 is stretched.

即ち、上記の場合は、内側の中心部分が低く熱結晶化さ
れているか、あるいは未結晶かである。
That is, in the above case, the inner central portion is low and is either thermally crystallized or uncrystallized.

しかし、熱結晶化されている周辺部17が第7図または第
8図のように断続している時は、延伸によって周辺部が
僅かに広がり、それに伴って中心部分も若干延伸結晶化
されることになる。
However, when the peripheral portion 17 which is thermally crystallized is intermittent as shown in FIG. 7 or FIG. 8, the peripheral portion is slightly expanded by stretching, and the central portion is also slightly stretched and crystallized accordingly. It will be.

このように延伸結晶化された結果、単に低熱結晶あるい
は未結晶のものより、延伸結晶効果が奏され、機械的強
度が大きく耐圧性のすぐれた底中央部5が形成されるこ
とになる。
As a result of the stretch crystallization as described above, the stretch crystallization effect is exerted more than the low heat crystal or the uncrystallized one, and the bottom central portion 5 having high mechanical strength and excellent pressure resistance is formed.

こうしてパリソン11の熱結晶化領域以外の非晶質部分、
主として筒状部12が加熱延伸されて十分な結晶配向が生
じ、容器本体の胴部2、肩部、底部4を形成し、この部
分が高延伸結晶化されることになる。
In this way, the amorphous part of the parison 11 other than the thermally crystallized region,
Mainly, the tubular portion 12 is heated and stretched to cause sufficient crystal orientation to form the body portion 2, the shoulder portion and the bottom portion 4 of the container body, and this portion is highly stretched and crystallized.

延伸ブロー成形に際して、割型31及び底型32を約50〜16
0℃に加熱しておくと、成形された容器はヒートセット
され、さらに耐熱性の優れた容器が得られる。
During stretch blow molding, split mold 31 and bottom mold 32 are
When heated to 0 ° C., the molded container is heat set, and a container having excellent heat resistance can be obtained.

第11図(イ)及び(ロ)は、延伸ブロー成形におけるパ
リソン底部の延伸状態を示している。
11 (a) and 11 (b) show the stretched state of the parison bottom in stretch blow molding.

すなわち、圧縮空気のガス圧によって(イ)に示すパリ
ソン底部が、(ロ)に示す容器本体底部に延伸成形され
るが、パリソン底中央部15の厚さはパリソン胴部12の厚
さより薄くしてあり、また、パリソン底周辺部17から外
側に向かって次第に厚くしてあり、さらに、パリソン底
中央部15の曲率rを完成後の容器本体底部の曲率rと等
しくしてあるので、延伸成形後、(ロ)に示す容器本体
底部のごとく極めて滑らかな底部が形成される。
That is, the parison bottom shown in (a) is stretch-molded on the bottom of the container body shown in (b) by the gas pressure of compressed air, but the thickness of the center 15 of the parison bottom is made thinner than the thickness of the parison body 12. Further, since the thickness is gradually increased from the peripheral part 17 of the parison bottom toward the outside, and the curvature r of the central part 15 of the parison bottom is made equal to the curvature r of the bottom part of the container main body after completion, the stretch molding is performed. After that, an extremely smooth bottom is formed like the bottom of the container body shown in (b).

このようにして、きわめて耐圧耐熱性と耐衝撃性のすぐ
れた中空PET容器がえられる。
In this way, a hollow PET container with excellent pressure resistance, heat resistance and impact resistance can be obtained.

なお、熱結晶化度および延伸結晶化度を測定するには、
その部分の密度を測定して換算すればよい。
To measure the thermal crystallinity and the stretch crystallinity,
The density of that portion may be measured and converted.

但し、Dは密度(測定値) 容器本体1の成形が完了すると、容器本体1の底面に第
1図のごとくベースカップIIを装着し、台座分に於いて
接着固定して容器が完成する。
However, D is a density (measured value) When the molding of the container body 1 is completed, the base cup II is attached to the bottom surface of the container body 1 as shown in FIG. 1, and the container is completed by adhesively fixing the base cup II.

つぎに、このようにして成形された容器に炭酸飲料など
を充填して、内容物を加熱殺菌する場合について説明す
る。
Next, a case where the container thus formed is filled with a carbonated drink or the like and the contents are sterilized by heating will be described.

内容物の加熱殺菌は、容器内に内容物を充填してキャッ
ピングした後、熱湯を容器の上部から流すことにより行
う。本実施例では容器上部に75℃の熱湯を流す。熱湯は
容器本体1の胴部2の外周面を伝って下方に流れ、容器
本体1の壁面を通じて内容物を加熱殺菌する。
The heat sterilization of the content is performed by filling the content in the container and capping it, and then pouring hot water from the upper part of the container. In this embodiment, hot water of 75 ° C. is poured on the upper part of the container. The hot water flows downward along the outer peripheral surface of the body 2 of the container body 1, and heat-sterilizes the contents through the wall surface of the container body 1.

一方、胴部下端まで流れた熱湯は、ベースカップIIに形
成した通口部からベースカップIIの内側に侵入し、容器
本体1底面の球面状の外周面を伝って下方に流れる。こ
の底面において熱湯は65℃程度となる。
On the other hand, the hot water that has flowed to the lower end of the body enters the inside of the base cup II through the passage formed in the base cup II, flows along the spherical outer peripheral surface of the bottom surface of the container body 1, and flows downward. On this bottom surface, boiling water is about 65 ° C.

一方、加熱によって容器本体1内部のガス圧が高まり、
容器本体1は高温、高圧下にさらされるが、容器本体1
の底中央部5の熱結晶化領域の周辺部7は十分熱結晶化
されており、周辺部7から外方に隣接して連続する底部
4は、十分結晶配向された高延伸部となっているので、
高温の熱湯を流しても軟化するおそれはなく、耐熱性お
よび耐圧性は高まって温度による制約は低減される。
On the other hand, the heating increases the gas pressure inside the container body 1,
Although the container body 1 is exposed to high temperature and high pressure,
The peripheral portion 7 of the thermally crystallized region of the bottom central portion 5 of the above is fully thermally crystallized, and the bottom portion 4 which is adjacent to the peripheral portion 7 and outwardly is a highly stretched portion having a sufficiently crystallographic orientation. Because
There is no possibility of softening even when hot water is poured, heat resistance and pressure resistance are increased, and restrictions due to temperature are reduced.

因みに、このように結晶化した場合の耐熱温度は80〜90
℃、耐圧性は8〜10kg/cm2程度となる。従って、より高
温での殺菌が可能となり、使用範囲を拡大することがで
きる。
By the way, the heat-resistant temperature of such crystallization is 80-90.
The temperature and pressure resistance are about 8-10 kg / cm 2 . Therefore, sterilization at a higher temperature becomes possible, and the range of use can be expanded.

しかも、容器本体1の底の熱結晶化領域である底中央部
5は、周辺部7から中心部6に向かって、熱結晶化度を
低下させてあるので耐衝撃性が大きく、落下時などにお
ける耐衝撃効果が極めて優れている。
Moreover, since the thermal crystallization degree of the bottom central portion 5 which is the thermal crystallization region of the bottom of the container body 1 is decreased from the peripheral portion 7 toward the central portion 6, the impact resistance is great, and when falling, etc. The impact resistance effect is extremely excellent.

(発明の効果) 本発明は以上の構成および作用から成るものであり、延
伸ブロー成形時に十分延伸されない容器底中央部と口頸
部を、予め熱結晶化させておいて延伸ブロー成形する
と、熱結晶化部が脆いため落下時などに、とくに容器底
中央部が割れるという従来容器の欠点を解決したもの
で、容器の底中央部5の熱結晶化領域の周辺部7を25〜
50%熱結晶化し、周辺部7から中心部6に向かって次第
に熱結晶化度を20%以下に下げた熱結晶化領域を形成
し、その場合、必要により熱結晶化した周辺部7を円環
状または多角環状にし、その内部を熱結晶化度10%以下
にしたり、熱結晶化した周辺部7を断続的に分断したり
することにより、容器の底中央部5の耐熱耐圧性を高度
に維持したまま、耐衝撃性を著しく高めることができる
ので、内容物の殺菌を高温の熱湯で迅速に行うことや、
殺菌温度の高い種々の内容物を入れる容器として用いる
ことが可能となり、しかも落下時などにおいて底が割れ
にくいという、汎用性の高い耐熱耐圧容器を提供するこ
とができた。
(Effects of the Invention) The present invention is composed of the above-mentioned constitutions and operations. When the center part of the container bottom and the neck part which are not sufficiently stretched at the time of stretch blow molding are thermally crystallized in advance and stretch blow molding, It solves the disadvantage of the conventional container that the center part of the bottom of the container is broken especially when dropped because the crystallization part is fragile.
Thermal crystallization is performed by 50%, and the thermal crystallization degree is gradually reduced from the peripheral portion 7 to the central portion 6 to 20% or less. In that case, the thermal crystallized peripheral portion 7 is circled if necessary. The heat resistance and pressure resistance of the bottom center part 5 of the container can be enhanced by making the inside of the ring or polygonal ring to have a thermal crystallization degree of 10% or less and intermittently dividing the thermally crystallized peripheral part 7. Since the impact resistance can be remarkably enhanced while maintaining it, it is possible to quickly sterilize the contents with high temperature hot water,
It has become possible to provide a heat-resistant and pressure-resistant container with high versatility that can be used as a container for storing various contents having a high sterilization temperature and that the bottom is not easily broken when dropped.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る中空PET容器Iの、全
体構成を示す一部破断正面図である。 第2図は本発明の一実施例に係る中空PET容器Iから、
ベースカップIIを取除いた容器本体1の一部破断正面図
を示す。 第3図は容器本体またはパリソンの底部に設けた、熱結
晶化した円環状の周辺部を示す。 第4図乃至第6図は容器本体またはパリソンの底部に設
けた、熱結晶化した多角環状(三角、四角、六角)の周
辺部を示す。 第7図乃至第8図は容器本体またはパリソンの底部に設
けた、熱結晶化した断続周辺部を示す。 第9図は本発明で用いるパリソンの一部破断正面図を示
す。 第10図は本発明で用いるパリソンの底部〜筒状部と延伸
棒の拡大断面図である。 第11図(イ)は、底中央部15を熱結晶化したパリソンの
一部の断面図であり、(ロ)は(イ)を延伸した時の関
係を示す容器本体1底部の断面図である。 第12図の(イ)および(ロ)は第9図のパリソンを用い
て容器本体をブロー成形する状態を示すブロー成形型の
概略縦断面図である。 I……中空PET容器、II……ベースカップ、1……容器
本体、2……容器本体の胴部、3……容器本体またはパ
リソンの口頸部、4……容器本体の底部、5……容器本
体の底中央部、6……容器本体の底中心部、7……容器
本体の底中央部の熱結晶化領域の周辺部、11……パリソ
ン、12……パリソンの筒状部、15……パリソンの底中央
部、16……パリソンの底中心部、17……パリソンの底中
央部の熱結晶化領域の周辺部、30……金型、31……割
型、32……底型、33……ネック型、34……延伸棒、D1…
…パリソンの底中央部15の熱結晶化領域の周辺部17の外
径、D2……パリソンの底外径(=胴部12の外径)、D3…
…延伸棒34の外径、D4……容器本体の底中央部5の熱結
晶化領域の周辺部7の外径、r……曲率(半径)。
FIG. 1 is a partially cutaway front view showing the overall structure of a hollow PET container I according to an embodiment of the present invention. FIG. 2 shows a hollow PET container I according to an embodiment of the present invention,
The partially broken front view of the container main body 1 which removed the base cup II is shown. FIG. 3 shows a thermally crystallized annular peripheral portion provided on the bottom of the container body or parison. 4 to 6 show the peripheral portion of a thermally crystallized polygonal ring (triangle, square, hexagon) provided on the bottom of the container body or the parison. FIGS. 7 to 8 show a thermally crystallized intermittent peripheral portion provided on the bottom of the container body or the parison. FIG. 9 shows a partially cutaway front view of the parison used in the present invention. FIG. 10 is an enlarged cross-sectional view of the bottom part to the cylindrical part of the parison and the stretch rod used in the present invention. FIG. 11 (a) is a partial cross-sectional view of the parison in which the bottom center part 15 is thermally crystallized, and (b) is a cross-sectional view of the bottom part of the container body 1 showing the relationship when (a) is stretched. is there. 12 (a) and 12 (b) are schematic vertical cross-sectional views of the blow molding die showing a state in which the container body is blow molded using the parison of FIG. I ... Hollow PET container, II ... Base cup, 1 ... Container body, 2 ... Container body, 3 ... Container body or parison mouth / neck, 4 ... Container bottom, 5 ... ... central part of bottom of container body, 6 ... central part of bottom of container body, 7 ... peripheral part of thermal crystallization region at bottom center part of container body, 11 ... parison, 12 ... cylindrical part of parison, 15 …… Parison bottom central part, 16 …… Parison bottom central part, 17 …… Parison bottom central part peripheral part of thermal crystallization region, 30 …… Mold, 31 …… Split mold, 32 …… Bottom type, 33 …… Neck type, 34 …… Stretching rod, D1…
… Outer diameter of the peripheral part 17 of the thermal crystallization area of the bottom central part 15 of the parison, D2 …… Outer diameter of the bottom of the parison (= outer diameter of the body 12), D3…
... outer diameter of the drawing rod 34, D4 ... outer diameter of the peripheral portion 7 of the thermal crystallization region of the bottom central portion 5 of the container body, r ... curvature (radius).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−201631(JP,A) 特開 昭54−155262(JP,A) 実開 昭52−117566(JP,U) 実開 昭55−101712(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-57-201631 (JP, A) JP-A-54-155262 (JP, A) Actually open Sho-52-117566 (JP, U) Actual-open Sho-55- 101712 (JP, U)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】延伸ブロー成形によって形成された中空容
器本体1の、底中央部5と口頚部3に熱結晶化領域を設
けた樹脂製のPET容器において、該底中央部5の熱結晶
化領域の熱結晶化度を、周辺部7を熱結晶化度25〜50%
と高くし、中心部6を低くした中空PET容器。
Claim: What is claimed is: 1. A plastic PET container, comprising a hollow container body 1 formed by stretch blow molding and having thermal crystallization regions in the center 5 of the bottom and the neck 3 of the container. The thermal crystallinity of the area is 25 to 50% in the peripheral portion 7.
Hollow PET container with high and low center 6.
【請求項2】中心部6の熱結晶化度が20%以下である、
請求項1記載の中空PET容器。
2. The thermal crystallinity of the central portion 6 is 20% or less,
The hollow PET container according to claim 1.
【請求項3】周辺部7に設けた熱結晶化領域が連続的で
あり、その外周が円形である、請求項1または2のいず
れか1項に記載の中空PET容器。
3. The hollow PET container according to claim 1, wherein the thermal crystallization region provided in the peripheral portion 7 is continuous and its outer periphery is circular.
【請求項4】周辺部7に設けた熱結晶化領域が連続的で
あり、その外周が多角形である、請求項1または2項に
記載の中空PET容器。
4. The hollow PET container according to claim 1, wherein the thermal crystallization region provided in the peripheral portion 7 is continuous and its outer periphery is polygonal.
【請求項5】周辺部7に設けた熱結晶化領域が不連続的
であり、その間に非熱結晶化部分が存在している、請求
項1乃至4のいずれか1項に記載の中空PET容器。
5. The hollow PET according to claim 1, wherein the thermally crystallized region provided in the peripheral portion 7 is discontinuous, and the non-thermally crystallized region is present therebetween. container.
【請求項6】底中央部15と口頚部3に熱結晶化領域を設
け、底中央部15の熱結晶化領域の周辺部17の熱結晶化度
を高く、中心部16を低くし、周辺部17の外径D1を、底外
径D2の15〜95%とした有底筒状のパリソンを二軸延伸ブ
ロー成形して、熱結晶化領域以外の領域を全て高延伸倍
率に延伸することを特徴とする中空PET容器の製造方
法。
6. A thermal crystallization region is provided in the bottom central portion 15 and the mouth / neck portion 3, and the peripheral portion 17 of the thermal crystallization region of the bottom central portion 15 has a high thermal crystallinity and the central portion 16 has a low thermal crystallization degree. The outer diameter D1 of the part 17 is 15 to 95% of the outer diameter D2 of the bottom, and a bottomed cylindrical parison is biaxially stretch blow molded to stretch all regions other than the thermal crystallization region to a high stretch ratio. A method for producing a hollow PET container, which is characterized by:
【請求項7】パリソンが、その熱結晶化された底中央部
15の周辺部17の外径D1を、延伸ブロー成形用の延伸棒の
外径D3より僅かに大きくしたものである、請求項6記載
の中空PET容器の製造 方法。
7. A parison has a thermally crystallized bottom center portion.
7. The method for producing a hollow PET container according to claim 6, wherein the outer diameter D1 of the peripheral portion 17 of 15 is slightly larger than the outer diameter D3 of the stretch rod for stretch blow molding.
【請求項8】パリソンが、その熱結晶化された底中央部
15の曲率を、完成後の中空PET容器の底中央部5の曲率
に合せたものである、請求項6または7に記載の中空PE
T容器の製造方法。
8. A parison has a thermally crystallized bottom center portion.
The hollow PE according to claim 6 or 7, wherein the curvature of 15 is matched with the curvature of the bottom central portion 5 of the completed hollow PET container.
Manufacturing method of T container.
【請求項9】パリソンが、その熱結晶化された底中央部
15の周辺部17の厚さを、パリソンの胴部12の厚さより薄
くしたものである、請求項6乃至8のいずれか1項に記
載の中空PET容器の製造方法。
9. The parison has a thermally crystallized bottom center portion.
The method for manufacturing a hollow PET container according to any one of claims 6 to 8, wherein the peripheral portion 17 of 15 has a thickness smaller than that of the body 12 of the parison.
【請求項10】パリソンが、その熱結晶化された底中央
部15の周辺部17の、外側に隣接する部分の厚さを、外側
に向かって徐々に厚くしたものである、請求項9記載の
中空PET容器の製造方法。
10. The parison is formed by gradually increasing the thickness of the peripheral portion 17 of the thermally crystallized bottom central portion 15 of the peripheral portion 17 adjacent to the outer side toward the outer side. For manufacturing a hollow PET container.
JP12665889A 1989-05-22 1989-05-22 Hollow PET container and method for manufacturing the same Expired - Lifetime JPH0688324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12665889A JPH0688324B2 (en) 1989-05-22 1989-05-22 Hollow PET container and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12665889A JPH0688324B2 (en) 1989-05-22 1989-05-22 Hollow PET container and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02305620A JPH02305620A (en) 1990-12-19
JPH0688324B2 true JPH0688324B2 (en) 1994-11-09

Family

ID=14940669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12665889A Expired - Lifetime JPH0688324B2 (en) 1989-05-22 1989-05-22 Hollow PET container and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0688324B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2801847B2 (en) * 1993-08-06 1998-09-21 電気化学工業株式会社 Heat and pressure resistant free-standing container
JP3678789B2 (en) * 1995-03-03 2005-08-03 大日本印刷株式会社 Container with cap
DE60335447D1 (en) * 2003-04-15 2011-02-03 Nestle Waters Man & Technology Thin-walled container
US20090050598A1 (en) * 2007-08-20 2009-02-26 Chow-Chi Huang Supportable pressurizable container and base cup therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117566U (en) * 1976-03-02 1977-09-06
JPS6034443B2 (en) * 1978-05-30 1985-08-08 日本エステル株式会社 Method for manufacturing polyester preform
JPS5821372Y2 (en) * 1979-01-09 1983-05-06 株式会社吉野工業所 Biaxially stretched synthetic resin thin wall bottle
JPS57201631A (en) * 1982-05-24 1982-12-10 Yoshino Kogyosho Co Ltd Staturated polyester resin made bottle and manufacture thereof

Also Published As

Publication number Publication date
JPH02305620A (en) 1990-12-19

Similar Documents

Publication Publication Date Title
JP2781810B2 (en) Container for heated filling, manufacturing method thereof and intermediate molded product thereof
US4465199A (en) Pressure resisting plastic bottle
JP3612775B2 (en) Heat-resistant pressure-resistant self-supporting container and manufacturing method thereof
CA2071260C (en) Footed hot-fill container
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
US5145632A (en) Process for the manufacture of pet containers designed to be filled with a hot liquid
US5047271A (en) Apparatus and process relating to a preform and a container with geodesic reinforcement
JPH0735085B2 (en) Biaxially stretched crystalline resin container and method for producing the same
EP0365945B1 (en) Container
US4885197A (en) Plastic preform for forming blow molded plastic bottles
JP3522370B2 (en) Molding method and mold for heat-resistant container
JPH0411374B2 (en)
JP3684692B2 (en) Freestanding container with excellent heat and pressure resistance
JP3086882B2 (en) Method for forming bottles with heat resistance and pressure resistance
JPH0688324B2 (en) Hollow PET container and method for manufacturing the same
JPH0512217B2 (en)
JPH0643091B2 (en) Heat resistant polyester bottle and method for producing the same
JP3556320B2 (en) Molding method of bottle with handle
JPH0512219B2 (en)
JPH0622862B2 (en) Heat-resistant pressure-resistant container and manufacturing method thereof
JPH06198719A (en) Biaxial stretching blow molding method for self-standing bottle and preform used therefor
JPH0651342B2 (en) Heat and pressure resistant polyester bottle and method for producing the same
JPH10146879A (en) Production of bottle made of polyethylene terephthalate resin
JPH09123260A (en) Plastic container and bottom die for molding
JPS6073829A (en) Method of molding biaxially orientated bottle resistant to heat