JPH0688295A - Plating device and method for controlling plating film thickness - Google Patents

Plating device and method for controlling plating film thickness

Info

Publication number
JPH0688295A
JPH0688295A JP10265292A JP10265292A JPH0688295A JP H0688295 A JPH0688295 A JP H0688295A JP 10265292 A JP10265292 A JP 10265292A JP 10265292 A JP10265292 A JP 10265292A JP H0688295 A JPH0688295 A JP H0688295A
Authority
JP
Japan
Prior art keywords
plating
current
film thickness
procedure
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10265292A
Other languages
Japanese (ja)
Inventor
Nobuyuki Naruo
信之 成尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10265292A priority Critical patent/JPH0688295A/en
Publication of JPH0688295A publication Critical patent/JPH0688295A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To make the plating film thickness uniform and to shorten the plating time. CONSTITUTION:This device is provided with ultrasonic vibrators 31 to 3N for transmitting and receiving an ultrasonic wave to measure the thickness of a plating film formed on a substrate 2, a vibrator control part 4 for supplying vibrator driving currents 41 to 4N and signal currents 41 to 4N received from the vibrator, a part 5 for receiving the signal 51 from the control part and calculating the plating film thickness, a part 6 for receiving plating film thickness information 52 from the part 5, calculating the mean value of the film thicknesses and determining a plating current from the difference between the mean value and the thickness information, a plating current control part 7 for receiving a current value instructing signal 53 from the part 6 and outputting the plating currents 21 to 2N and anodes 11 to 1N connected to the control part 7 and supplied with a plating current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメッキ装置およびメッキ
膜厚制御方法、特に、電気回路基板等の上に金属薄膜を
形成するためのメッキ装置およびメッキ膜厚制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plating apparatus and a plating film thickness control method, and more particularly to a plating apparatus and a plating film thickness control method for forming a metal thin film on an electric circuit board or the like.

【0002】[0002]

【従来の技術】従来のメッキ装置およびメッキ膜厚制御
方法について図面を参照して詳細に説明する。
2. Description of the Related Art A conventional plating apparatus and plating film thickness control method will be described in detail with reference to the drawings.

【0003】図9は、従来の一例を示すブロック図であ
る。図9に示すメッキ装置およびメッキ膜厚制御方法
は、メッキ電流21〜2Nを制御するメッキ電流制御部
7と、メッキ電流制御部7からメッキ電流21〜2Nの
供給を受けるアノード11〜1Nと、メッキのための電
解液を保持するメッキ液槽1とを有している。
FIG. 9 is a block diagram showing a conventional example. The plating apparatus and the plating film thickness control method shown in FIG. 9 include a plating current control unit 7 that controls the plating currents 21 to 2N, and anodes 11 to 1N that receive the plating currents 21 to 2N from the plating current control unit 7. It has a plating solution tank 1 for holding an electrolytic solution for plating.

【0004】ここで、基板2上に一様な厚さで金属メッ
キを施すために、作業者10はアノード11〜1Nに供
給するメッキ電流21〜2Nの値を決定し電流制御部7
をボリューム等で調整する。電流制御部7がアノード1
1〜1Nにメッキ電流21〜2Nを供給することによ
り、基板2上にメッキが施される。
Here, in order to perform metal plating on the substrate 2 with a uniform thickness, the worker 10 determines the values of the plating currents 21 to 2N to be supplied to the anodes 11 to 1N and determines the current control unit 7.
Adjust with the volume etc. The current controller 7 is the anode 1
The plating is applied to the substrate 2 by supplying the plating currents 21 to 2N to the electrodes 1 to 1N.

【0005】図10は、一様な膜厚を得るためのメッキ
電流値を確定させるまでの作業の流れ図である。作業者
はまずメッキ電流の初期値設定301を行った後メッキ
を実行する(302)。メッキ終了後、メッキの膜厚測
定303を行い、膜厚が基板全体にわたって一様かどう
かを調べる(304)。膜厚が一様に安定した場合には
その時のメッキ電流値を確定値とし(306)、膜厚に
ばらつきがある時は膜厚の分布の度合に応じて次回のメ
ッキ電流を決定する(305)。次回のメッキ電流を決
定するに際しては、実際にメッキされた基板の膜厚分布
のばらつきと共に、「基板の周辺はメッキが厚くなる傾
向がある。」といったメッキ作業者の専門知識が反映さ
れる。
FIG. 10 is a flow chart of work until the plating current value for obtaining a uniform film thickness is determined. The operator first sets the initial value 301 of the plating current and then executes the plating (302). After the plating is completed, a plating film thickness measurement 303 is performed to check whether the film thickness is uniform over the entire substrate (304). When the film thickness is uniformly stable, the plating current value at that time is set as a definite value (306), and when the film thickness varies, the next plating current is determined according to the degree of distribution of the film thickness (305). ). When determining the plating current for the next time, along with the variation in the film thickness distribution of the actually plated substrate, the expertise of the plating operator such as "the plating tends to be thicker around the substrate" is reflected.

【0006】[0006]

【発明が解決しようとする課題】上述した従来のメッキ
装置およびメッキ膜厚制御方法は、メッキ実行中にメッ
キ条件が変更できないため、最適なメッキ条件を得るま
で数枚の基板に対して実験的なメッキを行わなければな
らず、またメッキ電流の決定がメッキ作業者に委ねられ
ているため、メッキの膜厚が一様となる電流値を得るの
に要する時間が長くかかり、また、その時間は作業者の
熟練度に大きく依存するという問題があった。
In the conventional plating apparatus and plating film thickness control method described above, since the plating conditions cannot be changed during the execution of the plating, it is necessary to experimentally test several substrates until the optimum plating conditions are obtained. Since it is up to the plating operator to decide the plating current and the plating current is left to the plating operator, it takes a long time to obtain the current value with which the film thickness of the plating becomes uniform. Has a problem that it greatly depends on the skill of the worker.

【0007】[0007]

【課題を解決するための手段】第1の発明のメッキ装置
は、対象基板上に形成されるメッキ膜厚を計測するため
の超音波を送信および受信する超音波振動子と、前記超
音波振動子に振動子駆動電流を供給すると共に振動子か
らの受波信号電流を受け取る振動子制御部と、前記振動
子制御部から供給される受波信号を受け取りメッキ膜厚
を算出するメッキ厚算出部と、前記メッキ厚算出部から
メッキ膜厚情報を受け取り膜厚の平均値を計算し、その
平均値とメッキ膜厚情報の差からメッキ電流を決定する
メッキ電流決定部と、前記メッキ電流決定部から電流値
指示信号を受け取りメッキ電流を出力するメッキ電流制
御部と、前記メッキ電流制御部に接続されメッキ電流の
供給を受けるアノードとを含んで構成される。
A plating apparatus according to a first aspect of the present invention includes an ultrasonic vibrator for transmitting and receiving ultrasonic waves for measuring a plating film thickness formed on a target substrate, and the ultrasonic vibration. A vibrator control unit that supplies a vibrator drive current to a child and receives a received signal current from the vibrator, and a plating thickness calculation unit that receives a received signal supplied from the vibrator control unit and calculates a plating film thickness A plating current determining unit that receives plating film thickness information from the plating thickness calculating unit, calculates an average value of the film thickness, and determines a plating current from the difference between the average value and the plating film thickness information; And a plating current control unit for receiving a current value instruction signal from the unit and outputting a plating current, and an anode connected to the plating current control unit and supplied with the plating current.

【0008】第2の発明のメッキ膜厚制御方法は、メッ
キの最初の電流値を設定する初期電流設定手順と、メッ
キの開始を指示するメッキ開始手順とメッキ形成中にメ
ッキ膜厚分布を監視する膜厚分布監視手順と、膜厚分布
に偏りがある場合にその偏りを是正するメッキ条件変更
手順とメッキ膜厚が目標値に達したかの判定を行うメッ
キ終了判定手順とを含んで構成される。
In the plating film thickness control method of the second invention, an initial current setting process for setting the initial current value of plating, a plating starting process for instructing the start of plating, and a plating film thickness distribution during plating are monitored. A film thickness distribution monitoring procedure, a plating condition changing procedure that corrects the bias in the film thickness distribution when there is a deviation, and a plating end determination procedure that determines whether the plating film thickness has reached a target value. .

【0009】第3の発明のメッキ装置は、対象基板上に
形成されるメッキ膜厚を計測するための超音波を送信お
よび受信する超音波振動子と、前記超音波振動子に振動
子駆動電流を供給すると共に振動子からの受波信号電流
を受け取る振動子制御部と、前記振動子制御部から供給
される受波信号を受け取りメッキ膜厚を算出するメッキ
厚算出部と、前記メッキ厚算出部からメッキ膜厚情報を
受け取りメッキ作業者の専門知識に従ってメッキ条件を
決定するエキスパートシステムで構成されるメッキ電流
決定部と、前記メッキ電流決定部から電流値指示信号を
受け取りメッキ電流を出力するメッキ電流制御部と、前
記メッキ電流制御部に接続されメッキ電流の供給を受け
るアノードとを含んで構成される。
A plating apparatus according to a third aspect of the present invention is an ultrasonic vibrator for transmitting and receiving ultrasonic waves for measuring a plating film thickness formed on a target substrate, and a vibrator driving current for the ultrasonic vibrator. And a plating thickness calculator that receives the received signal current from the vibrator, calculates the plating film thickness, and receives the received signal current from the vibrator. Plating current determining unit configured by an expert system that receives plating film thickness information from the plating unit and determines plating conditions according to the expertise of the plating operator, and plating that receives a current value instruction signal from the plating current determining unit and outputs the plating current. It is configured to include a current control unit and an anode connected to the plating current control unit and supplied with a plating current.

【0010】第4の発明のメッキ膜厚制御方法は、メッ
キ条件を決定するエキスパートシステムの知識ベースを
構築する知識ベース構築手順と、メッキの開始を指示す
るメッキ開始手順とメッキ形成中にメッキ膜厚分布を監
視する膜厚分布監視手順と、膜厚分布に偏りがある場合
にその偏りを是正するメッキ条件変更手順とメッキ膜厚
が目標値に達したかの判定を行うメッキ終了判定手順と
を含んで構成される。
A plating film thickness control method according to a fourth aspect of the present invention is a knowledge base construction procedure for constructing a knowledge base of an expert system for determining plating conditions, a plating start procedure for instructing the start of plating, and a plating film during plating formation. Includes a film thickness distribution monitoring procedure to monitor the thickness distribution, a plating condition changing procedure to correct the bias in the film thickness distribution if there is a deviation, and a plating end determination procedure to determine whether the plating film thickness has reached the target value. Composed of.

【0011】第5の発明のメッキ装置は、対象基板上に
形成されるメッキ膜厚を計測するための超音波を送信お
よび受信する超音波振動子と、前記超音波振動子に振動
子駆動電流を供給すると共に振動子からの受波信号電流
を受け取る振動子制御部と、前記振動子制御部から供給
される受波信号を受け取りメッキ膜厚を算出するメッキ
厚算出部と、前記メッキ厚算出部からメッキ膜厚情報を
受け取りファジィ推論システムで構成されるメッキ電流
決定部と、前記メッキ電流決定部から電流値指示信号を
受け取りメッキ電流を出力するメッキ電流制御部と、前
記メッキ電流制御部に接続されメッキ電流の供給を受け
るアノードとを含んで構成される。
According to a fifth aspect of the present invention, in a plating apparatus, an ultrasonic vibrator for transmitting and receiving ultrasonic waves for measuring a plating film thickness formed on a target substrate, and a vibrator driving current for the ultrasonic vibrator. And a plating thickness calculator that receives the received signal current from the vibrator, calculates the plating film thickness, and receives the received signal current from the vibrator. To the plating current control section, which receives the plating film thickness information from the plating section and which is configured by a fuzzy inference system, the plating current control section which receives the current value instruction signal from the plating current decision section and outputs the plating current. And an anode which is connected and receives a plating current.

【0012】第6の発明のメッキ膜厚制御方法は、メッ
キ条件を決定するファジィ推論システムのファジィルー
ルを構築するファジィルール構築手順と、メッキの開始
を指示するメッキ開始手順とメッキ形成中にメッキ膜厚
分布を監視する膜厚分布監視手順と、膜厚分布に偏りが
ある場合にその偏りを是正するメッキ条件変更手順とメ
ッキ膜厚が目標値に達したかの判定を行うメッキ終了判
定手順とを含んで構成される。
According to a sixth aspect of the present invention, there is provided a plating film thickness control method, wherein a fuzzy rule construction procedure for constructing a fuzzy rule of a fuzzy inference system for determining plating conditions, a plating start procedure for instructing the start of plating, and a plating during plating formation. A film thickness distribution monitoring procedure for monitoring the film thickness distribution, a plating condition changing procedure for correcting the film thickness distribution if there is a deviation, and a plating completion judging procedure for judging whether or not the plating film thickness has reached the target value. It is configured to include.

【0013】[0013]

【実施例】次に、本発明について図面を参照して詳細に
説明する。
The present invention will be described in detail with reference to the drawings.

【0014】図1は本発明の一実施例を示すブロック図
である。図1に示すメッキ装置は、対象基板2上に形成
されるメッキ膜厚を計測するための超音波を送信および
受信する超音波振動子31〜3Nと、超音波振動子に振
動子駆動電流41〜4Nを供給すると共に振動子からの
受波信号電流41〜4Nを受け取る振動子制御部4と、
振動子制御部4から供給される受波信号51を受け取り
メッキ膜厚を算出するメッキ厚算出部5と、メッキ厚算
出部5からメッキ膜厚情報52を受け取り膜厚の平均値
を計算し、その平均値とメッキ膜厚情報の差からメッキ
電流を決定するメッキ電流決定部6と、メッキ電流決定
部6から電流値指示信号53を受け取りメッキ電流21
から2Nを出力するメッキ電流制御部7と、メッキ電流
制御部7に接続されメッキ電流の供給を受けるアノード
11〜1Nとを備えている。
FIG. 1 is a block diagram showing an embodiment of the present invention. The plating apparatus shown in FIG. 1 includes ultrasonic transducers 31 to 3N for transmitting and receiving ultrasonic waves for measuring the plating film thickness formed on the target substrate 2, and a transducer driving current 41 for the ultrasonic transducers. A vibrator control unit 4 that supplies the received signal currents 41 to 4N from the vibrator,
The plating thickness calculation unit 5 that receives the reception signal 51 supplied from the vibrator control unit 4 and calculates the plating film thickness, and the plating film thickness information 52 from the plating thickness calculation unit 5 to calculate the average value of the film thickness, The plating current determining unit 6 for determining the plating current from the difference between the average value and the plating film thickness information, and the current value instruction signal 53 from the plating current determining unit 6 are received.
To 2N, and the anodes 11 to 1N connected to the plating current controller 7 and supplied with the plating current.

【0015】図2は、図1に示すメッキ電流決定部6の
第1の例を示すブロック図である。メッキ電流の基準値
を保持する基準値保持部63と、メッキ膜厚情報52か
らメッキ膜厚の平均値を算出する平均値算出部61と、
算出された膜厚平均値80とメッキ膜厚情報52に含ま
れる各部膜厚情報71〜7Nの差を計算する差分算出部
62と、基準値保持部63から出力される基準情報10
1〜10Nと差分情報の加減算を行い、電流値指示信号
53を出力する加減算部とを含んで構成される。
FIG. 2 is a block diagram showing a first example of the plating current determining unit 6 shown in FIG. A reference value holding unit 63 that holds a reference value of the plating current; an average value calculation unit 61 that calculates an average value of the plating film thickness from the plating film thickness information 52;
The difference calculation unit 62 that calculates the difference between the calculated film thickness average value 80 and the film thickness information 71 to 7N included in the plating film thickness information 52, and the reference information 10 output from the reference value holding unit 63.
1 to 10 N and addition / subtraction of difference information, and an addition / subtraction unit that outputs a current value instruction signal 53 is configured.

【0016】図3は、第2の発明のメッキ膜厚制御方法
を示すフローチャートである。メッキの最初の電流値を
設定する初期電流設定手順201と、メッキの開始を指
示するメッキ開始手順203とメッキ形成中にメッキ膜
厚分布を監視する膜厚分布監視手順204と、膜厚分布
に偏りがある場合にその偏りを是正するメッキ条件変更
手順206とメッキ膜厚が目標値に達したかの判定を行
うメッキ終了判定手順205とを含んでいる。
FIG. 3 is a flow chart showing the plating film thickness control method of the second invention. An initial current setting procedure 201 for setting the initial current value of plating, a plating start procedure 203 for instructing the start of plating, a film thickness distribution monitoring procedure 204 for monitoring the plating film thickness distribution during plating formation, and a film thickness distribution It includes a plating condition changing procedure 206 for correcting the bias when there is a bias and a plating end determining procedure 205 for determining whether the plating film thickness has reached a target value.

【0017】次にメッキ装置の動作とメッキ膜厚制御方
法について説明する。まず、初期電流設定手順201に
おいて、基板2に一様なメッキを施すために複数個のア
ノード11〜1Nに供給するメッキ電流21〜2Nの初
期値を設定する。このメッキ電流初期値は従来例で説明
したメッキ工程における1回目のメッキに採用される電
流値で構わない。ここで設定された初期電流値はメッキ
電流決定部6の基準値保持部63に格納される。次に、
メッキ開始手順203においてメッキ装置にメッキの開
始を指示すると、基準値保持部63に格納されていた初
期電流値が最初の基準情報101〜10Nとして出力さ
れ、加減算部64を通って電流値指示信号53としてメ
ッキ電流制御部7に供給される。メッキ電流制御部7が
入力された電流値指示信号に基づき、アノード11〜1
Nにメッキ電流21〜2Nを供給することにより、基板
2上にメッキが施される。メッキ膜形成中、振動子制御
部4は超音波振動子31〜3Nに対して超音波送波のた
めの振動子電流41〜4Nを供給すると共に、超音波振
動子31〜3Nが受けた反射波により生じる受波電流4
1〜4Nを受け取り受波信号51としてメッキ厚算出部
5に供給する。メッキ厚算出部5は、受波信号51に基
づき基板2上に形成されているメッキ膜の膜厚分布を算
出しメッキ膜厚情報52としてメッキ電流決定部6に供
給する。
Next, the operation of the plating apparatus and the plating film thickness control method will be described. First, in the initial current setting procedure 201, initial values of the plating currents 21 to 2N supplied to the plurality of anodes 11 to 1N for uniformly plating the substrate 2 are set. This initial value of the plating current may be the current value used for the first plating in the plating process described in the conventional example. The initial current value set here is stored in the reference value holding unit 63 of the plating current determination unit 6. next,
When the plating apparatus is instructed to start plating in the plating start procedure 203, the initial current value stored in the reference value holding unit 63 is output as the first reference information 101 to 10N, and the current value instruction signal is passed through the addition / subtraction unit 64. It is supplied to the plating current controller 7 as 53. Based on the current value instruction signal input by the plating current control unit 7, the anodes 11 to 1
The substrate 2 is plated by supplying the plating currents 21 to 2N to N. During the formation of the plated film, the vibrator control unit 4 supplies the vibrator currents 41 to 4N for ultrasonic wave transmission to the ultrasonic vibrators 31 to 3N and reflects the ultrasonic waves received by the ultrasonic vibrators 31 to 3N. Received current 4 caused by waves
1 to 4N are received and supplied to the plating thickness calculation unit 5 as the received wave signal 51. The plating thickness calculation unit 5 calculates the film thickness distribution of the plating film formed on the substrate 2 based on the received signal 51 and supplies it as the plating film thickness information 52 to the plating current determination unit 6.

【0018】図4(a),(b)はメッキ膜厚算出の原
理を示す模式図である。超音波振動子31から送波され
た超音波は水槽3のなかを通って、メッキ液槽1の壁面
であるメッキ液槽壁9、基板2、メッキ層8を通過して
行く。この過程で全ての超音波エネルギーは通過せず、
伝搬媒体境界面、すなわちメッキ液槽の外壁、内壁、基
板下面、基板上面およびメッキ層上面でその一部は反射
され超音波振動子31に戻ってくる。図4(b)は超音
波振動子31からインパルス音波を発射した時に各境界
面から反射され超音波振動子31に戻ってくる反射波の
様子を示したものである。超音波の伝搬時間は伝搬距離
に比例するためメッキ層8の下面および上面からの反射
波の到達時間ta 、tb の差を求めることにより、メッ
キ層8の膜厚を算出することができる。
FIGS. 4A and 4B are schematic diagrams showing the principle of plating film thickness calculation. The ultrasonic waves transmitted from the ultrasonic vibrator 31 pass through the water tank 3 and the plating solution tank wall 9, which is the wall surface of the plating solution tank 1, the substrate 2, and the plating layer 8. In this process all ultrasonic energy does not pass,
The propagation medium boundary surface, that is, the outer wall, the inner wall of the plating solution tank, the lower surface of the substrate, the upper surface of the substrate, and the upper surface of the plating layer are partly reflected and returned to the ultrasonic transducer 31. FIG. 4B shows a state of a reflected wave that is reflected from each boundary surface and returns to the ultrasonic transducer 31 when an impulse sound wave is emitted from the ultrasonic transducer 31. Since the propagation time of ultrasonic waves is proportional to the propagation distance, the film thickness of the plating layer 8 can be calculated by obtaining the difference between the arrival times ta and tb of the reflected waves from the lower surface and the upper surface of the plating layer 8.

【0019】この様にして算出されたメッキ膜厚情報5
2を構成する各部膜厚情報71〜7Nは、メッキ電流決
定部6の平均値算出部61と差分算出部62に供給され
る。平均値算出部61は各部膜厚情報71〜7Nの平均
値、すなわち基板2に形成されたメッキ膜厚の平均値8
0を求め差分算出部62へ供給する。差分算出部62
は、各部膜厚情報71〜7Nと膜厚平均値80との差を
求め差分情報81〜8Nとして加減算部64に供給す
る。加減算部64は、基準値保持部63から供給されて
いる現在のメッキ電流値である基準情報101〜10N
に対して差分情報81〜8Nを加減算し、メッキ膜厚の
薄い部分に対応するアノードのメッキ電流を増やし、逆
にメッキ膜厚の厚い部分に対応するアノードのメッキ電
流を減らすように電流値指示信号53をメッキ電流制御
部7に供給すると同時に、基準値保持部63へも供給す
ることにより、新たに設定されたメッキ電流設定値91
〜9Nが次のメッキ電流基準値となる。メッキ電流制御
部7がメッキ電流設定値91〜9Nで構成される電流値
指示信号53に基づき、各アノード11〜1Nに新たに
設定されたメッキ電流21〜2Nを供給することにより
メッキ膜厚の薄い部分にはより多くのメッキ電流が供給
され、メッキ膜厚の厚い部分のメッキ電流は抑制される
ことになる。以上の動作を繰り返し、メッキ膜厚が目標
値に達するまでメッキを継続して行う。
Plating film thickness information 5 calculated in this way
The respective pieces of film thickness information 71 to 7N constituting No. 2 are supplied to the average value calculation unit 61 and the difference calculation unit 62 of the plating current determination unit 6. The average value calculation unit 61 calculates the average value of the film thickness information 71 to 7N of each part, that is, the average value 8 of the plating film thickness formed on the substrate 2.
0 is obtained and supplied to the difference calculation unit 62. Difference calculator 62
Calculates the difference between the film thickness information 71 to 7N of each part and the film thickness average value 80 and supplies it to the addition / subtraction unit 64 as difference information 81 to 8N. The addition / subtraction unit 64 uses the reference information 101 to 10N which is the current plating current value supplied from the reference value holding unit 63.
The difference value 81 to 8N is added to or subtracted from the difference information to increase the plating current of the anode corresponding to the portion where the plating film thickness is thin, and conversely, the current value is instructed to reduce the plating current of the anode corresponding to the portion where the plating film thickness is thick. By supplying the signal 53 to the plating current control unit 7 and the reference value holding unit 63 at the same time, the newly set plating current set value 91 is obtained.
9N is the next plating current reference value. The plating current control unit 7 supplies the newly set plating currents 21 to 2N to the respective anodes 11 to 1N based on the current value instruction signal 53 composed of the plating current set values 91 to 9N, so that the plating film thickness More plating current is supplied to the thin portion, and the plating current in the thick portion is suppressed. The above operation is repeated to continue plating until the plating film thickness reaches the target value.

【0020】ここでのメッキ膜厚制御方法は、図3にお
いて、メッキ形成中にメッキ膜厚分布を監視する膜厚分
布監視手順204と、膜厚分布に偏りがある場合にその
偏りを是正するメッキ条件変更手順206とメッキ膜厚
が目標値に達したかの判定を行うメッキ終了判定手順2
05に相当するものである。
The plating film thickness control method here is to correct the plating film thickness distribution monitoring procedure 204 for monitoring the plating film thickness distribution during the formation of the plating in FIG. Plating condition change procedure 206 and plating termination determination procedure 2 for determining whether the plating film thickness has reached the target value
It is equivalent to 05.

【0021】図5は、図1に示すメッキ電流決定部6の
第2の例を示すブロック図である。メッキ作業者の専門
知識を格納する知識ベース564と、知識ベース564
の知識を入力・修正する知識ベースエディタ563と、
メッキ膜厚情報を受け取ると共に推論の中間状態を保持
するワーキングメモリ562と、知識ベース564とワ
ーキングメモリ562の状態に基づいて推論を行いメッ
キ条件を決定し、電流値指示信号553を出力する推論
エンジン565とを含んで構成される。
FIG. 5 is a block diagram showing a second example of the plating current determining section 6 shown in FIG. A knowledge base 564 that stores the expertise of the plating operator, and a knowledge base 564.
A knowledge base editor 563 for inputting / correcting the knowledge of
A working memory 562 which receives plating film thickness information and holds an intermediate state of inference, and an inference engine which infers based on the states of the knowledge base 564 and the working memory 562 to determine a plating condition and outputs a current value instruction signal 553. And 565.

【0022】図6は、第4の発明のメッキ膜厚制御方法
を示すフローチャートである。メッキ条件を決定するエ
キスパートシステムの知識ベースを構築する知識ベース
構築手順601と、メッキの開始を指示するメッキ開始
手順203とメッキ形成中にメッキ膜厚分布を監視する
膜厚分布監視手順204と、膜厚分布に偏りがある場合
にその偏りを是正するメッキ条件変更手順206とメッ
キ膜厚が目標値に達したかの判定を行うメッキ終了判定
手順205とを含んでいる。
FIG. 6 is a flow chart showing a plating film thickness control method of the fourth invention. A knowledge base construction procedure 601 for constructing a knowledge base of an expert system for determining plating conditions, a plating start procedure 203 for instructing the start of plating, and a film thickness distribution monitoring procedure 204 for monitoring the plating film thickness distribution during plating formation, It includes a plating condition changing procedure 206 for correcting the unevenness in the film thickness distribution and a plating end judging procedure 205 for judging whether the plating film thickness reaches a target value.

【0023】知識ベース構築手順601において、メッ
キ作業者のメッキに関する専門知識を知識ベースエディ
タ563によって知識ベース564に入力する。ここ
で、知識ベース564は主にアノード11〜1Nに供給
するメッキ電流21〜2Nの初期値を設定するための初
期電流値設定知識と、メッキ実行中にメッキ膜厚情報に
基づいてメッキ電流を制御しメッキ膜厚を均一に保つた
めのメッキ電流制御知識に大別される。初期電流設定知
識は例えば、「初期メッキ電流は基板のパターン密度に
比例させる。」、「基板周辺は中心よりもメッキ電流を
小さくする。」、「メッキ膜厚の要求精度が20μm以
下の時は最大メッキ電流をI1 とする。」といった初期
メッキ電流決定のための制約知識であり、またメッキ電
流制御知識は例えば、「測定されたメッキ膜厚が予想期
待値より小さいときはその部分に相当するアノードのメ
ッキ電流を増加させる。」、「メッキ電流値を増減させ
るとき、その増減率はパターン密度に比例させる。」等
のメッキ実行中におけるメッキ電流調節のための知識で
ある。メッキ開始手順203においてメッキ装置にメッ
キの開始を指示すると、推論エンジン565は知識ベー
ス564の初期電流設定知識に基づいて推論を行い、初
期電流値を決定し電流値指示信号53としてメッキ電流
制御部7に供給される。
In the knowledge base construction procedure 601, the expertise of the plating operator regarding plating is input to the knowledge base 564 by the knowledge base editor 563. Here, the knowledge base 564 mainly determines the plating current based on the initial current value setting knowledge for setting the initial values of the plating currents 21 to 2N supplied to the anodes 11 to 1N and the plating film thickness information during the execution of plating. It is roughly divided into plating current control knowledge for controlling and maintaining a uniform plating film thickness. The initial current setting knowledge is, for example, "the initial plating current is proportional to the pattern density of the substrate", "the plating current is smaller in the periphery of the substrate than in the center", and "when the required accuracy of the plating film thickness is 20 μm or less. It is the constraint knowledge for determining the initial plating current such as "the maximum plating current is I1", and the plating current control knowledge is, for example, "corresponding to that portion when the measured plating film thickness is smaller than the expected expected value". It is the knowledge for adjusting the plating current during the execution of plating such as "increasing the plating current of the anode.", "When increasing or decreasing the plating current value, the rate of increase or decrease is proportional to the pattern density." When the plating apparatus is instructed to start plating in the plating start procedure 203, the inference engine 565 makes an inference based on the knowledge of the initial current setting of the knowledge base 564, determines the initial current value, and sets the current value instruction signal 53 as the plating current control unit 53. 7 is supplied.

【0024】図7は、図1に示すメッキ電流決定部6の
第3の例を示すブロック図である。メッキ作業者の専門
知識に基づくファジィルールを格納するファジィルール
保持部764と、ファジィルール保持部764のルール
を入力・修正するファジィルール・エディタ763と、
メッキ膜厚情報を受け取る入力部762と、ファジィル
ール保持部764のルールと入力部762に入力された
メッキ膜厚情報52に基づいてファジィ推論を行いメッ
キ条件を決定し、電流値指示信号53を出力するファジ
ィ演算部765とを含んで構成される。
FIG. 7 is a block diagram showing a third example of the plating current determining unit 6 shown in FIG. A fuzzy rule holding unit 764 that stores a fuzzy rule based on the expertise of a plating operator, and a fuzzy rule editor 763 that inputs and corrects the rules of the fuzzy rule holding unit 764.
An input unit 762 that receives the plating film thickness information, a fuzzy inference based on the rule of the fuzzy rule holding unit 764 and the plating film thickness information 52 input to the input unit 762 is used to determine the plating condition, and the current value instruction signal 53 is set. And a fuzzy operation unit 765 for outputting.

【0025】図8は、第6の発明のメッキ膜厚制御方法
を示すフローチャートである。メッキ条件を決定するフ
ァジィ推論システムのファジィルールを構築するファジ
ィルール構築手順801と、メッキの開始を指示するメ
ッキ開始手順203とメッキ形成中にメッキ膜厚分布を
監視する膜厚分布監視手順204と、膜厚分布に偏りが
ある場合にその偏りを是正するメッキ条件変更手順20
6とメッキ膜厚が目標値に達したかの判定を行うメッキ
終了判定手順205とを含んでいる。
FIG. 8 is a flow chart showing a plating film thickness control method of the sixth invention. A fuzzy rule construction procedure 801 for constructing a fuzzy rule of a fuzzy inference system for determining plating conditions, a plating start procedure 203 for instructing the start of plating, and a film thickness distribution monitoring procedure 204 for monitoring the plating film thickness distribution during plating formation. If the film thickness distribution is uneven, the plating condition changing procedure 20 for correcting the unevenness is corrected.
6 and a plating end determination procedure 205 for determining whether the plating film thickness has reached the target value.

【0026】ファジィルール構築手順801において、
メッキ作業者のメッキに関する専門知識をファジィルー
ル・エディタ763によってファジィルール保持部76
4に入力する。ここで、ファジィルールは主にアノード
11〜1Nに供給するメッキ電流21〜2Nの初期値を
設定するための初期電流値設定ルールと、メッキ実行中
にメッキ膜厚情報に基づいてメッキ電流を制御しメッキ
膜厚を均一に保つためのメッキ電流制御ルールに大別さ
れ、ルールの条件部はファジィ・メンバシップ関数で表
現される。初期電流設定ルールは例えば、「初期メッキ
電流は基板のパターン密度に比例させる。」、「基板周
辺は中心よりもメッキ電流を小さくする。」といった初
期メッキ電流決定のための制約ルールであり、またメッ
キ電流制御ルールは例えば、「測定されたメッキ膜厚が
予想期待値より小さいときはその部分に相当するアノー
ドのメッキ電流を増加させる。」、「メッキ電流値を増
減させるとき、その増減率はパターン密度に比例させ
る。」等のメッキ実行中におけるメッキ電流調節のため
のルールである。メッキ開始手順203においてメッキ
装置にメッキの開始を指示すると、ファジィ演算部76
5はファジィルール保持部764の初期電流設定ルール
に基づいてファジィ演算(広く用いられる演算手法とし
てMamdani方等を採用する。)を行い、初期電流
値を決定し電流値指示信号53としてメッキ電流制御部
7に供給される。メッキ電流制御部7が入力された電流
値指示信号に基づき、アノード11〜1Nにメッキ電流
21〜2Nを供給することにより、基板2上にメッキが
施される。
In the fuzzy rule construction procedure 801,
The fuzzy rule editor 763 applies the plating operator's expertise regarding plating to the fuzzy rule holding unit 76.
Enter in 4. Here, the fuzzy rule mainly controls an initial current value setting rule for setting initial values of the plating currents 21 to 2N supplied to the anodes 11 to 1N, and controls the plating current based on the plating film thickness information during the execution of plating. It is roughly divided into plating current control rules for keeping the plating film thickness uniform, and the condition part of the rules is expressed by a fuzzy membership function. The initial current setting rule is, for example, a constraint rule for determining the initial plating current such as "the initial plating current is proportional to the pattern density of the substrate", "the plating current is smaller in the periphery of the substrate than in the center", and The plating current control rule is, for example, “when the measured plating film thickness is smaller than the expected expected value, increase the plating current of the anode corresponding to that portion.”, “When increasing or decreasing the plating current value, the increase / decrease rate is It is a rule for adjusting the plating current during plating, such as "Proportional to pattern density." When the plating apparatus is instructed to start plating in the plating start procedure 203, the fuzzy operation unit 76
A fuzzy rule holding unit 764 performs a fuzzy calculation based on the initial current setting rule (Mamdani method or the like is used as a widely used calculation method) to determine an initial current value and control a plating current as a current value instruction signal 53. It is supplied to the part 7. The plating current controller 7 supplies the plating currents 21 to 2N to the anodes 11 to 1N based on the input current value instruction signal, so that the substrate 2 is plated.

【0027】算出されたメッキ膜厚情報52は、メッキ
電流決定部6に供給され、入力部762に格納される。
ここでファジィ演算部765はファジィルール保持部7
64のメッキ電流制御ルールとメッキ膜厚情報52に基
づいてファジィ演算を行い、基板全面のメッキ膜厚が一
様になるように、すなわち、メッキ膜厚の薄い部分に対
応するアノードのメッキ電流を増やし、逆にメッキ膜厚
の厚い部分に対応するアノードのメッキ電流を減らすよ
うにメッキ電流の調節を行い、新たに設定される電流値
指示信号53をメッキ電流制御部7に供給する。メッキ
電流制御部7が電流値指示信号53に基づき、各アノー
ド11〜1Nに新たに設定されたメッキ電流21〜2N
を供給することによりメッキ膜厚の薄い部分にはより多
くのメッキ電流が供給され、メッキ膜厚の厚い部分のメ
ッキ電流は抑制されることになる。以上の動作を繰り返
し、メッキ膜厚が目標値に達するまでメッキを継続して
行う。ここでのメッキ膜厚制御方法は、図8において、
メッキ形成中にメッキ膜厚分布を監視する膜厚分布監視
手順204と、膜厚分布に偏りがある場合にその偏りを
是正するメッキ条件変更手順206とメッキ膜厚が目標
値に達したかの判定を行うメッキ終了判定手順205に
相当するものである。
The calculated plating film thickness information 52 is supplied to the plating current determining unit 6 and stored in the input unit 762.
Here, the fuzzy operation unit 765 is the fuzzy rule holding unit 7.
Fuzzy calculation is performed based on the plating current control rule 64 and the plating film thickness information 52 so that the plating film thickness on the entire surface of the substrate becomes uniform, that is, the plating current of the anode corresponding to the thin plating film portion is set. On the contrary, the plating current is adjusted so as to reduce the plating current of the anode corresponding to the thicker portion of the plating film thickness, and the newly set current value instruction signal 53 is supplied to the plating current control unit 7. Based on the current value instruction signal 53, the plating current controller 7 newly sets the plating currents 21 to 2N for the respective anodes 11 to 1N.
Is supplied, a larger amount of plating current is supplied to the portion having a thin plating film thickness, and the plating current to the portion having a large plating film thickness is suppressed. The above operation is repeated to continue plating until the plating film thickness reaches the target value. The plating film thickness control method here is as shown in FIG.
A film thickness distribution monitoring procedure 204 for monitoring the plating film thickness distribution during plating formation, a plating condition changing procedure 206 for correcting the unevenness in the film thickness distribution, and a judgment as to whether the plating film thickness has reached the target value are performed. This is equivalent to the plating end determination procedure 205 to be performed.

【0028】[0028]

【発明の効果】本発明のメッキ装置およびメッキ膜厚制
御方法は、最適なメッキ電流値を求めるために実験的な
メッキを行う必要がなく、また、メッキ電流の決定が作
業者の熟練度に依存せず、短時間で一様なメッキ膜厚が
得られるという効果がある。
According to the plating apparatus and the plating film thickness control method of the present invention, it is not necessary to perform experimental plating in order to obtain the optimum plating current value, and the determination of the plating current depends on the skill of the operator. There is an effect that a uniform plating film thickness can be obtained in a short time without depending on it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1に示すメッキ電流決定部6の第1の例を示
すブロック図である。
FIG. 2 is a block diagram showing a first example of a plating current determination unit 6 shown in FIG.

【図3】第2の発明のメッキ膜厚制御方法を示すフロー
チャートである。
FIG. 3 is a flowchart showing a plating film thickness control method of the second invention.

【図4】(a),(b)はメッキ膜厚算出の原理を示す
模式図である。
4A and 4B are schematic diagrams showing the principle of calculating the plating film thickness.

【図5】図1に示すメッキ電流決定部6の第2の例を示
すブロック図である。
5 is a block diagram showing a second example of the plating current determination unit 6 shown in FIG.

【図6】第4の発明のメッキ膜厚制御方法を示すフロー
チャートである。
FIG. 6 is a flowchart showing a plating film thickness control method of a fourth invention.

【図7】図1に示すメッキ電流決定部6の第3の例を示
すブロック図である。
FIG. 7 is a block diagram showing a third example of the plating current determination unit 6 shown in FIG.

【図8】第6の発明のメッキ膜厚制御方法を示すフロー
チャートである。
FIG. 8 is a flow chart showing a plating film thickness control method of a sixth invention.

【図9】従来の一例を示すブロック図である。FIG. 9 is a block diagram showing a conventional example.

【図10】従来の一例を示すフローチャートである。FIG. 10 is a flowchart showing a conventional example.

【符号の説明】[Explanation of symbols]

1 メッキ液槽 2 基板 3 水槽 4 振動子制御部 5 メッキ厚算出部 6 メッキ電流決定部 7 メッキ電流制御部 8 メッキ層 9 メッキ液槽壁 10 作業者 11〜1N アノード 21〜2N メッキ電流 31〜3N 超音波振動子 41〜4N 振動子電流 51 受波信号、 52 メッキ膜厚情報 53 電流値指示信号 61 平均値算出部 62 差分算出部 63 基準値保持部 64 加減算部 71〜7N 各部膜厚情報 80 メッキ膜厚平均値 81〜8N 差分情報 91〜9N メッキ電流設定値 101〜10N 基準情報 201 初期電流 1 Plating Liquid Tank 2 Substrate 3 Water Tank 4 Transducer Control Section 5 Plating Thickness Calculation Section 6 Plating Current Determining Section 7 Plating Current Control Section 8 Plating Layer 9 Plating Solution Bath Wall 10 Worker 11-1N Anode 21-2N Plating Current 31- 3N ultrasonic transducer 41 to 4N transducer current 51 received signal, 52 plating film thickness information 53 current value instruction signal 61 average value calculation unit 62 difference calculation unit 63 reference value holding unit 64 addition / subtraction unit 71 to 7N film thickness information 80 Average plating film thickness 81 to 8N Difference information 91 to 9N Plating current setting value 101 to 10N Reference information 201 Initial current

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 対象基板上に形成されるメッキ膜厚を計
測するための超音波を送信および受信する超音波振動子
と、前記超音波振動子に振動子駆動電流を供給すると共
に振動子からの受波信号電流を受け取る振動子制御部
と、前記振動子制御部から供給される受波信号を受け取
りメッキ膜厚を算出するメッキ厚算出部と、前記メッキ
厚算出部からメッキ膜厚情報を受け取り膜厚の平均値を
計算し、その平均値とメッキ膜厚情報の差からメッキ電
流を決定するメッキ電流決定部と、前記メッキ電流決定
部から電流値指示信号を受け取りメッキ電流を出力する
メッキ電流制御部と、前記メッキ電流制御部に接続され
メッキ電流の供給を受けるアノードとを含むことを特徴
とするメッキ装置。
1. An ultrasonic oscillator for transmitting and receiving ultrasonic waves for measuring a plating film thickness formed on a target substrate; and an oscillator driving current supplied to the ultrasonic oscillator from the oscillator. Of the received wave signal current, a plating thickness calculation section that receives the received wave signal supplied from the vibrator control section and calculates the plating film thickness, and plating thickness information from the plating thickness calculation section. A plating current determining unit that calculates an average value of the received film thickness and determines a plating current from the difference between the average value and the plating film thickness information, and a plating that receives a current value instruction signal from the plating current determining unit and outputs the plating current. A plating apparatus comprising a current controller and an anode connected to the plating current controller and supplied with a plating current.
【請求項2】 メッキの最初の電流値を設定する初期電
流設定手順と、メッキの開始を指示するメッキ開始手順
とメッキ形成中にメッキ膜厚分布を監視する膜厚分布監
視手順と、膜厚分布に偏りがある場合にその偏りを是正
するメッキ条件変更手順とメッキ膜厚が目標値に達した
かの判定を行うメッキ終了判定手順とを含むことを特徴
とするメッキ膜厚制御方法。
2. An initial current setting procedure for setting an initial current value of plating, a plating start procedure for instructing the start of plating, a film thickness distribution monitoring procedure for monitoring a plating film thickness distribution during plating formation, and a film thickness. A plating film thickness control method comprising: a plating condition changing procedure for correcting the distribution unevenness and a plating termination judging procedure for judging whether the plating film thickness reaches a target value.
【請求項3】 対象基板上に形成されるメッキ膜厚を計
測するための超音波を送信および受信する超音波振動子
と、前記超音波振動子に振動子駆動電流を供給すると共
に振動子からの受波信号電流を受け取る振動子制御部
と、前記振動子制御部から供給される受波信号を受け取
りメッキ膜厚を算出するメッキ厚算出部と、前記メッキ
厚算出部からメッキ膜厚情報を受け取りメッキ作業者の
専門知識に従ってメッキ条件を決定するエキスパートシ
ステムで構成されるメッキ電流決定部と、前記メッキ電
流決定部から電流値指示信号を受け取りメッキ電流を出
力するメッキ電流制御部と、前記メッキ電流制御部に接
続されメッキ電流の供給を受けるアノードとを含むこと
を特徴とするメッキ装置。
3. An ultrasonic vibrator for transmitting and receiving ultrasonic waves for measuring a plating film thickness formed on a target substrate, and a vibrator driving current is supplied to the ultrasonic vibrator from the vibrator. Of the received wave signal current, a plating thickness calculation section that receives the received wave signal supplied from the vibrator control section and calculates the plating film thickness, and plating thickness information from the plating thickness calculation section. Receiving a plating current determining unit configured by an expert system that determines plating conditions according to the expertise of a plating operator, a plating current controlling unit receiving a current value instruction signal from the plating current determining unit and outputting a plating current, and the plating A plating apparatus comprising: an anode connected to a current control unit and supplied with a plating current.
【請求項4】 メッキ条件を決定するエキスパートシス
テムの知識ベースを構築する知識ベース構築手順と、メ
ッキの開始を指示するメッキ開始手順とメッキ形成中に
メッキ膜厚分布を監視する膜厚分布監視手順と、膜厚分
布に偏りがある場合にその偏りを是正するメッキ条件変
更手順とメッキ膜厚が目標値に達したかの判定を行うメ
ッキ終了判定手順とを含むことを特徴とするメッキ膜厚
制御方法。
4. A knowledge base construction procedure for constructing a knowledge base of an expert system for determining plating conditions, a plating start procedure for instructing the start of plating, and a film thickness distribution monitoring procedure for monitoring a plating film thickness distribution during plating formation. And a plating film thickness control method that includes a plating condition changing procedure that corrects the unevenness in the film thickness distribution and a plating completion determining procedure that determines whether the plating film thickness reaches a target value. .
【請求項5】 対象基板上に形成されるメッキ膜厚を計
測するための超音波を送信および受信する超音波振動子
と、前記超音波振動子に振動子駆動電流を供給すると共
に振動子からの受波信号電流を受け取る振動子制御部
と、前記振動子制御部から供給される受波信号を受け取
りメッキ膜厚を算出するメッキ厚算出部と、前記メッキ
厚算出部からメッキ膜厚情報を受け取りファジィ推論シ
ステムで構成されるメッキ電流決定部と、前記メッキ電
流決定部から電流値指示信号を受け取りメッキ電流を出
力するメッキ電流制御部と、前記メッキ電流制御部に接
続されメッキ電流の供給を受けるアノードとを含むこと
を特徴とするメッキ装置。
5. An ultrasonic transducer for transmitting and receiving ultrasonic waves for measuring a plating film thickness formed on a target substrate; and a transducer driving current supplied to the ultrasonic transducer from the transducer. Of the received wave signal current, a plating thickness calculation section that receives the received wave signal supplied from the vibrator control section and calculates the plating film thickness, and plating thickness information from the plating thickness calculation section. A plating current determination unit configured by a reception fuzzy inference system, a plating current control unit that receives a current value instruction signal from the plating current determination unit and outputs a plating current, and a plating current supply unit that is connected to the plating current control unit. A plating apparatus including a receiving anode.
【請求項6】 メッキ条件を決定するファジィ推論シス
テムのファジィルールを構築するファジィルール構築手
順と、メッキの開始を指示するメッキ開始手順とメッキ
形成中にメッキ膜厚分布を監視する膜厚分布監視手順
と、膜厚分布に偏りがある場合にその偏りを是正するメ
ッキ条件変更手順とメッキ膜厚が目標値に達したかの判
定を行うメッキ終了判定手順とを含むことを特徴とする
メッキ膜厚制御方法。
6. A fuzzy rule construction procedure for constructing a fuzzy rule of a fuzzy inference system for determining plating conditions, a plating start procedure for instructing the start of plating, and a film thickness distribution monitoring for monitoring the plating film thickness distribution during plating formation. Plating film thickness control including a procedure, a plating condition changing procedure for correcting the unevenness of the film thickness distribution if there is a deviation, and a plating completion judging procedure for judging whether the plating film thickness reaches a target value. Method.
JP10265292A 1992-04-22 1992-04-22 Plating device and method for controlling plating film thickness Withdrawn JPH0688295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10265292A JPH0688295A (en) 1992-04-22 1992-04-22 Plating device and method for controlling plating film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10265292A JPH0688295A (en) 1992-04-22 1992-04-22 Plating device and method for controlling plating film thickness

Publications (1)

Publication Number Publication Date
JPH0688295A true JPH0688295A (en) 1994-03-29

Family

ID=14333181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10265292A Withdrawn JPH0688295A (en) 1992-04-22 1992-04-22 Plating device and method for controlling plating film thickness

Country Status (1)

Country Link
JP (1) JPH0688295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237645A (en) * 1997-02-28 1998-09-08 Asahi Optical Co Ltd Optical thin-film production system
JP2003534460A (en) * 2000-05-24 2003-11-18 セミトゥール・インコーポレイテッド Tuning electrode used in a reactor for electrochemically processing microelectronic workpieces
JP2006328537A (en) * 2005-05-25 2006-12-07 Applied Materials Inc In-situ profile measurement in electroplating process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237645A (en) * 1997-02-28 1998-09-08 Asahi Optical Co Ltd Optical thin-film production system
JP2003534460A (en) * 2000-05-24 2003-11-18 セミトゥール・インコーポレイテッド Tuning electrode used in a reactor for electrochemically processing microelectronic workpieces
JP2006328537A (en) * 2005-05-25 2006-12-07 Applied Materials Inc In-situ profile measurement in electroplating process

Similar Documents

Publication Publication Date Title
US5701542A (en) Automatic developing apparatus for photosensitive lithographic printing plates
JPH09276797A (en) Method of driving power ultrasonic actuator and device therefor
JPH0688295A (en) Plating device and method for controlling plating film thickness
US11536600B2 (en) Coriolis flowmeter, timing prediction system, and timing prediction method
JPS61204379A (en) Electroless plating speed control method
JP5608884B2 (en) Ultrasonic flow meter and fluid supply system
JPH10132646A (en) Liquid phase surface treatment device, and method for measuring change in mass of a body to be treated using it
JPH09256338A (en) Water level forecasting device for river
JPH0581228A (en) Method for constituting neural network and learning/ recollecting system
CN114589315B (en) Optimal lapping step matching method for laser additive manufacturing
CN113971326A (en) Method for predicting residual life of continuous casting crystallizer vibration device
JP2013090644A (en) Ultrasonic diagnostic equipment and ultrasonic image generation method
JP2997967B2 (en) Control method of plating equipment
JP2002242435A (en) Concrete compaction determining method and device
JP3393934B2 (en) Film thickness monitoring control method
JP2987661B2 (en) Plating apparatus and plating method using the same
JPH02298296A (en) Thin film forming device
La Mura et al. Extreme value analysis of the impact of the effective gap tolerance on the acoustic transmit and receive performance of reverse-CMUT arrays
JP4689879B2 (en) Ultrasonic flow velocity measurement method
JP4689904B2 (en) Ultrasonic flow velocity measurement method
JPH1092789A (en) Etching speed evaluation method
JPS6284536A (en) Manufacture of semiconductor device
JP2004085420A (en) Flow measuring instrument
JPH0475817A (en) Electric discharge machining device
JPH0320341Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706