JPH0688168A - Heat resistant ferritic stainless steel sheet excellent in high temperature strength and weldability - Google Patents

Heat resistant ferritic stainless steel sheet excellent in high temperature strength and weldability

Info

Publication number
JPH0688168A
JPH0688168A JP8387793A JP8387793A JPH0688168A JP H0688168 A JPH0688168 A JP H0688168A JP 8387793 A JP8387793 A JP 8387793A JP 8387793 A JP8387793 A JP 8387793A JP H0688168 A JPH0688168 A JP H0688168A
Authority
JP
Japan
Prior art keywords
less
high temperature
weldability
temperature strength
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8387793A
Other languages
Japanese (ja)
Other versions
JP2923825B2 (en
Inventor
Yoshihiro Uematsu
美博 植松
Naoto Hiramatsu
直人 平松
Sadayuki Nakamura
定幸 中村
Manabu Oku
学 奥
Tomoyuki Sugino
智幸 杉野
Shinji Shibata
新次 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nisshin Steel Co Ltd filed Critical Toyota Motor Corp
Priority to JP8387793A priority Critical patent/JP2923825B2/en
Publication of JPH0688168A publication Critical patent/JPH0688168A/en
Application granted granted Critical
Publication of JP2923825B2 publication Critical patent/JP2923825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide ferritic stainless steel for the exhaust manifold of an automotive engine excellent in high temp. strength and weldability. CONSTITUTION:The compsn. of the steel is constituted of a one contg., by mass, <=0.02% C, <0.6% Si, 0.6 to 2.0% Mn, <=0.006% S, <=0.04% P, 17.0 to 22.0S Cr, >0.6 to 1.5% Nb, 1.0 to 3.0% Mo, 0.01 to 0.5% V, 0.1 to <0.3% Cu, <=0.02% N, 0.005 to 0.05% Al and <=0.012% O. Furthermore, these elements are incorporated so as to satisfy the relationship of C+N<=O.03%, MW/S>=200 as well as 16.8<=0.6Cr+1.1Mo+1.5W+8.2Nb<=24.0, and the balance Fe with inevitable impurities on the producing process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,各種内燃機関の排気ガ
ス系統の部材例えばエキゾーストマニホールドや排ガス
浄化用材料あるいは各種燃焼機器などに用いられる高温
強度および溶接性に優れたフエライト系耐熱用ステンレ
ス鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite heat-resistant stainless steel sheet having excellent high-temperature strength and weldability, which is used in exhaust gas system members of various internal combustion engines, such as exhaust manifolds, exhaust gas purification materials, and various combustion equipment. It is about.

【0002】[0002]

【従来の技術】近年,自動車あるいは工場から排出され
るガスによる大気汚染が大きな問題となっている。例え
ば自動車の排気ガスは公害防止の観点からNOX, H
C,COなどの量が規制されてきたが,最近では酸性雨
などの点から規制がより厳しくなる傾向にあり,排気ガ
ス浄化効率の向上が必要となっている。
2. Description of the Related Art In recent years, air pollution caused by gas emitted from automobiles or factories has become a serious problem. For example, the exhaust gas of automobiles is NO X , H from the viewpoint of pollution prevention.
Although the amount of C, CO, etc. has been regulated, recently the regulation tends to be more strict in view of acid rain and the like, and it is necessary to improve the exhaust gas purification efficiency.

【0003】他方, 自動車では浄化効率の向上に加え,
エンジンの高出力化あるいは性能向上の要求が高まり,
排ガス温度は上昇する傾向にある。このような背景か
ら, 排気ガス系統の部材, 特にエンジンに直結している
エキゾーストマニホールド (排気ガス管) などは,運転
中にきわめて高温になる。加えて,機械の振動や外部か
らの振動による機械的な応力変動, あるいは運転パター
ンに依存した冷熱サイクルによる熱応力変動など,きわ
めて過酷な状況下にさらされることになる。
On the other hand, in addition to improving purification efficiency in automobiles,
The demand for higher engine output or improved performance has increased,
Exhaust gas temperature tends to rise. Against this background, the exhaust gas system members, especially the exhaust manifold (exhaust gas pipe) directly connected to the engine, become extremely hot during operation. In addition, it is exposed to extremely severe conditions such as mechanical stress fluctuations due to machine vibrations or external vibrations, or thermal stress fluctuations due to cooling / heating cycles depending on operating patterns.

【0004】ステンレス鋼などの耐熱鋼をこれらの用途
で使用する場合, 上述のように使用中に様々な応力を受
けるため, これに耐え得る高温特性, つまり高温強度特
性に優れることが重要となる。しかも排気ガス系統の部
材は,鋼板をプレス成形したのちに溶接したり,溶接造
管後, 加工を施して使用される。したがって,この用途
では,高温強度特性が顕著に優れ且つ鋼板での溶接性に
優れ, 加工性も良好であることが重要となる。
When heat-resistant steel such as stainless steel is used in these applications, various stresses are applied during use as described above, so it is important to have excellent high-temperature properties that can withstand this, that is, high-temperature strength properties. . Moreover, the exhaust gas system members are used by press-forming steel plates and then welding, or after welding and pipe forming, after processing. Therefore, in this application, it is important that the high-temperature strength properties are remarkably excellent, the weldability on the steel sheet is excellent, and the workability is also good.

【0005】SUS304に代表されるオーステナイト系ステ
ンレス鋼は加工性に優れかつ溶接性も良好である。これ
に加え, 高温強度がフエライト系ステンレス鋼に比べ高
いことから,耐熱性が要求される用途に対して有望な材
料であると考えられている。しかしオーステナイト系ス
テンレス鋼は熱膨張係数が大きいことから,加熱および
冷却の繰返しを受けるような用途では使用中に発生する
熱応力により熱疲労破壊することが懸念されている。ま
たオーステナイト系ステンレス鋼は熱膨張係数が大きい
ため,加熱および冷却の繰返しによって表面酸化物が剥
離し易い。
Austenitic stainless steel represented by SUS304 has excellent workability and weldability. In addition, its high-temperature strength is higher than that of ferritic stainless steel, so it is considered to be a promising material for applications requiring heat resistance. However, since austenitic stainless steel has a large coefficient of thermal expansion, it is feared that thermal fatigue fracture will occur due to the thermal stress generated during use in applications where it is repeatedly heated and cooled. Also, since austenitic stainless steel has a large coefficient of thermal expansion, surface oxides are easily peeled off by repeated heating and cooling.

【0006】このようなことから一部の用途ではIncone
l 600 に代表されるNi基の合金が使用されている。こ
の合金材料はオーステナイト系ステンレス鋼より熱膨張
係数が低く, また表面酸化物の密着性が良く, 耐高温酸
化特性に優れ, かつ高い高温強度を有しているので有望
な材料であるが,きわめて高価な材料であるため広く一
般に使用されるに至っていない。
As a result, in some applications, Incone
A Ni-based alloy represented by l 600 is used. This alloy material is a promising material because it has a lower thermal expansion coefficient than austenitic stainless steel, good adhesion of surface oxides, excellent high-temperature oxidation resistance, and high high-temperature strength. Since it is an expensive material, it has not been widely used.

【0007】一方, フエライト系ステンレス鋼は,オー
ステナイト系ステンレス鋼に比べて安価である。また熱
膨張係数が小さいので熱疲労特性に優れており,加熱お
よび冷却の繰返しを受ける用途ではこの点で優れた特徴
を示すものと考えられる。そのため一部の用途に対して
Tepe409やSUS430で代表されるフエライト系ステンレス
鋼が使用され始めている。しかしこれらの材料は,600
℃以上での高温強度が著しく低いので,この温度域では
強度不足による高温疲労破壊や熱疲労破壊などを起こす
可能性がある。さらに900℃以上の温度では,フエライ
ト相がオーステナイト相に変態することがあり, その後
の冷却で生成したマルテンサイトによって室温での靭性
が著しく低下する可能性がある。
On the other hand, ferritic stainless steel is less expensive than austenitic stainless steel. In addition, since it has a small coefficient of thermal expansion, it has excellent thermal fatigue properties, and it is considered that this is an excellent feature in applications where repeated heating and cooling are used. So for some uses
Ferrite-based stainless steels such as Tepe409 and SUS430 are beginning to be used. However, these materials are
Since the high temperature strength at temperatures above ℃ is extremely low, there is a possibility of high temperature fatigue fracture and thermal fatigue fracture due to insufficient strength in this temperature range. Furthermore, at temperatures above 900 ° C, the ferrite phase may transform into the austenite phase, and the martensite formed during subsequent cooling may significantly reduce the toughness at room temperature.

【0008】このようなフエライト系ステンレス鋼特有
の問題に対し,フエライト生成元素でかつ高温強化元素
であるMoやWなどの添加によって高温強度を改善する
ことも考えられる。しかし単にこれらの元素を添加する
のみでは高温強度の十分な上昇は望めない。また高温強
度を高くすると室温においても硬質となり加工性が低下
することや過剰添加により溶接性が低下することなどの
問題も生じてくる。
In order to solve such a problem peculiar to ferritic stainless steel, it is conceivable to improve the high temperature strength by adding Mo and W which are ferrite forming elements and high temperature strengthening elements. However, a sufficient increase in high temperature strength cannot be expected by simply adding these elements. In addition, when the high temperature strength is increased, it becomes hard even at room temperature and the workability is deteriorated, and the weldability is deteriorated due to excessive addition.

【0009】[0009]

【発明が解決しようとする課題】以上のように,今後の
排気ガス浄化効率の向上, 内燃機関の高出力化および高
性能化などの進展とともにますます厳しくなる使用条件
および環境に対応し得る高温強度特性や溶接性に優れた
材料が要望されているが,現状では前記のような課題が
完全には解決されていない。もし耐熱用フエライト系ス
テンレス鋼において, 最も重要視される高温強度特性に
優れた鋼が得られれば, 上記のような厳しい使用条件の
用途に対してきわめて有望な材料を得ることができるも
のと考えられる。本発明の目的はここにある。
[Problems to be Solved by the Invention] As described above, with the progress of future improvement of exhaust gas purification efficiency, higher output and higher performance of internal combustion engine, etc., high temperature that can cope with increasingly severe operating conditions and environment Materials having excellent strength characteristics and weldability have been demanded, but at present, the above problems have not been completely solved. If a steel with excellent high-temperature strength properties, which is regarded as the most important of the heat-resistant ferrite-type stainless steels, can be obtained, it is considered that a very promising material can be obtained for the applications under the severe usage conditions as described above. To be This is the purpose of the present invention.

【0010】すなわち本発明は,耐熱用構造材料に最も
要求される耐熱性すなわち高温強度特性が従来の自動車
用エキゾーストマニホールド材である耐熱用フエライト
系ステンレス鋼のSUS430LX系鋼の2倍以上,つまり1000
℃の0.2%耐力が15N/mm2以上であるようなフエライト系
ステンレス鋼板の開発を目的としたものである。
That is, according to the present invention, the heat resistance, that is, the high-temperature strength property most required for the heat-resistant structural material is more than twice that of the conventional SUS430LX steel, which is a heat-resistant ferrite stainless steel, which is an exhaust manifold material for automobiles.
The purpose is to develop a ferritic stainless steel sheet with a 0.2% proof stress of 15 N / mm 2 or higher.

【0011】[0011]

【課題を解決するための手段】本発明は,質量%におい
て,C:0.02%以下, Si:0.6%未満, Mn:0.6%以上
2.0%以下, S:0.006%以下, P:0.04%以下, Cr:1
7.0%以上22.0%以下,Nb:0.6%を超え1.5%以下, M
o:1.0%以上3.0%以下, V:0.01%以上0.5%以下, C
u:0.1%以上0.3%未満, N:0.02%以下, Al:0.005
%以上0.05%以下, O:0.012%以下を含み,場合によ
ってはさらに,Ti:1.5%以下, Zr:2.0%以下, W:
5.0%以下,B:0.01%以下, Y:0.1%以下, REM:0.1
%以下, の一種または二種以上を含有したうえ,前記の
範囲において, C+N≦0.03% Mn/S≧200 16.8≦0.6Cr+1.1Mo+8.2Nb≦24.0 ただし,Wを含む場合には, 16.8≦0.6Cr+1.1Mo+1.5W+8.2Nb≦24.0 の関係を満足するようにこれらの元素を含有し, 残量が
Feおよび製造上の不可避的不純物からなる高温強度お
よび溶接性に優れたフエライト系ステンレス鋼板を提供
する。
According to the present invention, in mass%, C: 0.02% or less, Si: less than 0.6%, Mn: 0.6% or more.
2.0% or less, S: 0.006% or less, P: 0.04% or less, Cr: 1
7.0% to 22.0%, Nb: 0.6% to 1.5%, M
o: 1.0% to 3.0%, V: 0.01% to 0.5%, C
u: 0.1% or more and less than 0.3%, N: 0.02% or less, Al: 0.005
% To 0.05% or less, O: 0.012% or less, and in some cases, Ti: 1.5% or less, Zr: 2.0% or less, W:
5.0% or less, B: 0.01% or less, Y: 0.1% or less, REM: 0.1
% Or less, and in the above range, C + N ≦ 0.03% Mn / S ≧ 200 16.8 ≦ 0.6 Cr + 1.1Mo + 8.2Nb ≦ 24.0 However, if W is included, 16.8 ≦ 0.6 Provided ferritic stainless steel sheet containing these elements so as to satisfy the relation of Cr + 1.1Mo + 1.5W + 8.2Nb ≤ 24.0, with the balance of Fe and inevitable impurities in manufacturing, and excellent in high temperature strength and weldability. To do.

【0012】特に本発明鋼板は, その製造過程における
最終仕上げ焼鈍において, 該焼鈍を1050℃以上1200℃以
下の温度で10分以下の条件で行い, この焼鈍温度から60
0℃までを2℃/sec以上の速度で冷却することによって
優れた高温強度を具備するようになる。この鋼板素材は
所望径のパイプに溶接(高周波溶接)造管し,このパイ
プから,各種加工や溶接を適用して自動車エンジンのエ
キゾーストマニホールドを製作するのに適する。したが
って本発明はまた,前記の成分組成からなる自動車エン
ジンのマニホールド用鋼を提供するものである。
In particular, the steel sheet of the present invention is subjected to final finishing annealing in the manufacturing process thereof at a temperature of 1050 ° C. or higher and 1200 ° C. or lower for 10 minutes or less.
By cooling up to 0 ° C at a rate of 2 ° C / sec or more, excellent high temperature strength can be provided. This steel sheet material is suitable for producing an exhaust manifold for an automobile engine by welding (high-frequency welding) a pipe of a desired diameter and applying various processing and welding from this pipe. Accordingly, the present invention also provides a steel for an automobile engine manifold having the above-mentioned composition.

【0013】[0013]

【作用】図1は,低C,N-18%Cr-1.0%Mn-2.0%Mo-0.25%
Cu鋼を基本成分とし,900℃および1000℃での高温強度
(引張強さ, 0.2%耐力) に及ぼす鋼中のNb量の影響を
調べた結果を示したものである。試験片は4mmtの各鋼
の熱延板を1000℃にて焼鈍した後, 2mmtまで冷延し,1
100℃で焼鈍したものを用いた。
[Function] Figure 1 shows low C, N-18% Cr-1.0% Mn-2.0% Mo-0.25%
Cu steel as a basic component, high temperature strength at 900 ℃ and 1000 ℃
The results of examining the effect of the amount of Nb in steel on (tensile strength, 0.2% proof stress) are shown. The test piece was made by annealing 4 mmt hot-rolled steel sheet at 1000 ° C and then cold rolling to 2 mmt.
The one annealed at 100 ° C. was used.

【0014】図1の結果から,Nb量が0.6%まではNb
量の増加に伴って高温強度 (引張強さと0.2%耐力)は
僅かに上昇するが,Nb量が0.6%を超えると, これを境
にして高温強度が急激に上昇し,1000℃での0.2%耐力
は15N/mm2以上という非常に高い値を示すことがわか
る。
From the results shown in FIG. 1, the Nb content up to 0.6% is Nb.
The high-temperature strength (tensile strength and 0.2% proof stress) slightly increased with the increase of the amount, but when the Nb content exceeded 0.6%, the high-temperature strength rapidly increased at this point and the It can be seen that the% yield strength shows a very high value of 15 N / mm 2 or more.

【0015】すなわち,本発明者らはこの成分系におい
て0.6%を超えるNbを添加すると高温強度が飛躍的に上
昇するという知見を得た。高温強度の上昇をもたらして
いる理由は,後述するように (C+N) 量や焼鈍温度の
影響もあるが,添加したNb量のうち強化元素として有
効に作用するNb量が増加したためと考えられる。
That is, the present inventors have found that the addition of Nb in an amount of more than 0.6% in this component system dramatically increases the high temperature strength. It is considered that the reason why the high temperature strength is increased is that the amount of Nb that effectively acts as a strengthening element among the added amounts of Nb increases, although it is also affected by the amount of (C + N) and the annealing temperature as described later.

【0016】図2は 18%Cr-1.0%Mn-2.0%Mo-1.0%Nb-
0.25%Cu 鋼を基本成分とし,図1と同様の1100℃焼鈍
材について,1000℃での高温強度に及ぼす鋼中の (C+
N)量の影響を調べたものである。
FIG. 2 shows 18% Cr-1.0% Mn-2.0% Mo-1.0% Nb-
Using 0.25% Cu steel as a basic component, the 1100 ° C annealed material similar to that shown in Fig. 1 has an effect on (C +
N) The influence of the amount was investigated.

【0017】図2の結果から,0.2%耐力は,(C+N)量
が0.03%以下の領域において, 15N/mm2以上の高い値を
示すものの, (C+N)量が0.03%を超えると低下する
ことがわかる。このことは,フエライト系ステンレス鋼
にNbを多量に添加するだけでは高温強度の飛躍的上昇
は確保できないことを示唆している。つまり, 高温強度
に優れたフエライト系ステンレス鋼を得るためには,N
b量に加え(C+N)量も厳しく規定する必要があること
を示している。なお, このような (C+N)量の増加に
伴う高温強度の低下は, (C+N)量が増加するとNbが
炭窒化物として析出し,強化に有効な固溶Nb量が減少
するからであると考えられる。
From the results of FIG. 2, the 0.2% proof stress shows a high value of 15 N / mm 2 or more in the region where the (C + N) amount is 0.03% or less, but decreases when the (C + N) amount exceeds 0.03%. I understand. This suggests that a dramatic increase in high temperature strength cannot be secured by simply adding a large amount of Nb to the ferrite stainless steel. In other words, in order to obtain ferritic stainless steel with excellent high temperature strength, N
It indicates that in addition to the b amount, the (C + N) amount must be strictly specified. The decrease in high-temperature strength with an increase in the amount of (C + N) is because Nb precipitates as carbonitrides when the amount of (C + N) increases, and the amount of solid solution Nb effective for strengthening decreases. Conceivable.

【0018】図3は, 低C,N-18%Cr-1.0%Mn-1.0%Mo-
0.6%Nb-0.25%Cu 鋼を基本成分とし,前例と同様に110
0℃焼鈍材についての1000℃での高温強度に及ぼすCr,
Mo,Wの影響について調べたものである。また,Nb量
についての図1の結果も合わせて図中に示した。
FIG. 3 shows low C, N-18% Cr-1.0% Mn-1.0% Mo-
With 0.6% Nb-0.25% Cu steel as the basic component, 110% as in the previous example
Effect of Cr on the high temperature strength at 1000 ℃ for 0 ℃ annealed material,
This is an examination of the effects of Mo and W. The results of FIG. 1 for the amount of Nb are also shown in the figure.

【0019】図3の結果から,本成分系における高温強
度は各元素のこの範囲の添加量に応じて比較的単調に増
加することがわかる。ここで,σ0.2:1000℃での0.2%
耐力 (N/mm2)とし,Cr,Mo,W,Nb:各添加元素量 (質
量%) とすると, σ0.2=−1.8+0.6Cr+1.1Mo+1.5W+8.2Nb ・・・(1) で表し得る。この(1) 式からも,各元素のσ0.2への寄
与率 (各元素の係数) はCr,Mo,W,Nbの順に大きくな
り,とりわけNbは大きく, Nbの添加はMoやWに比べ
て高温強度上昇に非常に有効であることがわかる。
From the results shown in FIG. 3, it can be seen that the high temperature strength of this component system increases relatively monotonically with the addition amount of each element in this range. Where σ 0.2 : 0.2% at 1000 ℃
Proofing power (N / mm 2 ) and Cr, Mo, W, Nb: each additive element amount (mass%), σ 0.2 = -1.8 + 0.6Cr + 1.1Mo + 1.5W + 8.2Nb ・ ・ ・ (1) obtain. Also from this equation (1), the contribution rate of each element to σ 0.2 (coefficient of each element) increases in the order of Cr, Mo, W, Nb, especially Nb is large, and the addition of Nb is larger than that of Mo or W. It can be seen that it is very effective in increasing the high temperature strength.

【0020】図4は 18%Cr-1.0%Mn-2.0%Mo-0.25%Cu
-0.45%Nb鋼 (以下0.45%Nb鋼と記す) および 18%Cr-
1.0%Mn-2.0%Mo-0.25%Cu-1.0%Nb鋼 (以下1.0%Nb鋼
と記す) について,1000℃における高温引張特性に及ぼ
す最終仕上げ焼鈍の焼鈍温度の影響を調べたものであ
る。
FIG. 4 shows 18% Cr-1.0% Mn-2.0% Mo-0.25% Cu.
-0.45% Nb steel (hereinafter referred to as 0.45% Nb steel) and 18% Cr-
For 1.0% Mn-2.0% Mo-0.25% Cu-1.0% Nb steel (hereinafter referred to as 1.0% Nb steel), the effect of the annealing temperature of the final finish annealing on the high temperature tensile properties at 1000 ° C was investigated.

【0021】図4の結果から,0.45%Nb鋼は,最終仕
上げ焼鈍温度の影響をほとんど受けず, ほぼ一定の強度
値を示すのに対し,1.0%Nb鋼は,1050℃焼鈍までは0.
45%Nb鋼のものと実質的な差は認められないが,1050
℃以上の焼鈍温度になると高温強度は急激に上昇し,11
00℃焼鈍では0.45%Nb鋼の2倍程度の0.2%耐力が得ら
れるようになることがわかる。このような高温強度の上
昇は,前述のような強化に有効な固溶Nb量が焼鈍温度
の上昇によって増加したことによると考えられる。以上
の事実は, 適切なNb量および (C+N) 量の選択と,
これに加えて1050℃以上の最終仕上げ焼鈍を行なうこと
が高温強度に優れたフエライト系ステンレス鋼板を得る
上で重要であることを示している。
From the results shown in FIG. 4, the 0.45% Nb steel is almost unaffected by the final annealing temperature and shows a substantially constant strength value, while the 1.0% Nb steel has a strength of 0.
No substantial difference with 45% Nb steel, but 1050
When the annealing temperature is above ℃, the high temperature strength rises rapidly.
It can be seen that with 00 ° C annealing, 0.2% proof stress, which is about twice that of 0.45% Nb steel, can be obtained. It is considered that such an increase in high temperature strength is due to the increase in the amount of solid solution Nb effective for strengthening as described above due to the increase in annealing temperature. The above facts indicate that the proper selection of Nb and (C + N)
In addition to this, it has been shown that performing final finishing annealing at 1050 ° C or higher is important for obtaining ferrite stainless steel sheets with excellent high temperature strength.

【0022】図5は,低C,N-18%Cr-1.0%Mn-2.0%Mo-
1.0%Nb-0.25%Cu鋼について,熱処理条件を種々変えて
固溶Nb量を変化させた場合の,固溶Nb量と1000℃での
0.2%耐力との関係を示したものである。なお固溶Nb量
は,添加したNb量から析出物としてのNb量を引いたも
のである。析出物はX線回折にて同定したところ,Fe3
Nb3CとFe2Nbが主体であることが明らかになった。
この析出物としてのNb量は各熱処理材を非水溶媒系抽
出液にて電解抽出することによって求めた。なお各熱処
理材の結晶粒度番号は5番程度のほぼ一定である。
FIG. 5 shows low C, N-18% Cr-1.0% Mn-2.0% Mo-
For 1.0% Nb-0.25% Cu steel, when the amount of solute Nb was changed by changing the heat treatment conditions,
It shows the relationship with 0.2% proof stress. The amount of dissolved Nb is the amount of Nb added minus the amount of Nb as a precipitate. When the precipitate was identified by X-ray diffraction, Fe 3
It was revealed that Nb 3 C and Fe 2 Nb are the main components.
The amount of Nb as the precipitate was obtained by electrolytically extracting each heat-treated material with a nonaqueous solvent-based extract. The grain size number of each heat-treated material is approximately constant at about 5.

【0023】図5の結果から,この鋼の高温強度は0.5
%以上の固溶Nb量の領域で急激に上昇していることが
わかる。
From the results of FIG. 5, the high temperature strength of this steel is 0.5
It can be seen that the amount of solid solution Nb is rapidly increasing in the range of over%.

【0024】Nb添加フエライト系ステンレス鋼に焼鈍
工程を組合わせてクリープ強度を上昇させる方法は例え
ば特開昭60-145359号公報や特公平1-41695号公報に記載
されている。両公報とも強化に有効な固溶Nb量は,添
加Nb量からNbCまたはNbNとして析出したNb量を引
いたものとしており,また,クリープ強度を上昇させる
ためには或る程度の炭窒化物の存在が必要であるとして
いる。しかし本発明の成分系つまり0.6%を超えるNbを
添加した場合には,NbCやNbNなどのような析出物の
存在は認められず,Fe3Nb3CおよびFe2Nbが析出す
る。したがって上記公報に掲載された固溶Nb量の算出
式は本発明の成分系では適用できない。また該公報の教
示とは異なり,適量の炭窒化物を存在させるためにCや
Nを含有させることは本発明の成分系では必要ではな
く,前記の図2の結果に見られるように,むしろ強化に
有効なNb量を確保するために(C+N)量の上限を厳
しく限定する必要がある。
A method for increasing creep strength by combining an Nb-added ferrite type stainless steel with an annealing step is described in, for example, Japanese Patent Application Laid-Open No. 60-145359 and Japanese Patent Publication No. 1-41695. In both publications, the amount of solid solution Nb effective for strengthening is obtained by subtracting the amount of Nb precipitated as NbC or NbN from the amount of added Nb, and in order to increase the creep strength, a certain amount of carbonitride It is said that existence is necessary. However, when the component system of the present invention, that is, when Nb exceeding 0.6% is added, the presence of precipitates such as NbC and NbN is not recognized, and Fe 3 Nb 3 C and Fe 2 Nb are precipitated. Therefore, the formula for calculating the amount of solute Nb published in the above publication cannot be applied to the component system of the present invention. Also, unlike the teaching of the publication, the inclusion of C or N to allow the presence of an appropriate amount of carbonitride is not necessary in the component system of the present invention, rather as seen in the results of FIG. 2 above. In order to secure the Nb amount effective for strengthening, it is necessary to strictly limit the upper limit of the (C + N) amount.

【0025】以上のような知見事実に基づき,本発明は
高温強度および溶接性に優れた耐熱用フエライト系ステ
ンレス鋼板を提供するものであり,特にこれからの高出
力自動車エンジンに直結しても充分に信頼性のあるステ
ンレス鋼製のエキゾーストマニホールドとなり得る材料
を提供するものである。
Based on the above facts, the present invention provides a heat-resistant ferrite-type stainless steel sheet excellent in high-temperature strength and weldability, and particularly when directly connected to a high-power automobile engine in the future. It provides a material that can be used as a reliable stainless steel exhaust manifold.

【0026】以下に,本発明鋼の各成分の作用とその化
学成分値の含有量範囲を定めた理由の概要を個別に説明
する。
The action of each component of the steel of the present invention and the reason for defining the content range of the chemical component value will be individually described below.

【0027】CおよびN:CおよびNは一般的にはクリ
ープ強度およびクリープ破断強度などの高温強度に対し
ては最も有効な元素とされているが,その反面,含有量
が多くなると耐酸化性,加工性ならびに靭性が低下す
る。したがって,CおよびNは本成分系においては低い
ことが望ましく,それぞれ0.02%以下とする。また,C
およびNはNbとの化合物を生成しやすいのでフエライ
ト相の固溶強化に有効のNb量,より具体的には,高温
での0.2%耐力および引張強さを上昇させる有効Nb量を
減少させる。図2で示したように (C+N) 量を0.03%
以下とすることにより1000℃で15N/mm2以上の0.2%耐力
を確保することができる。
C and N: C and N are generally considered to be the most effective elements for high-temperature strength such as creep strength and creep rupture strength, but on the other hand, when the content is high, oxidation resistance is high. , Workability and toughness decrease. Therefore, it is desirable that C and N are low in this component system, and each is made 0.02% or less. Also, C
Since N and N easily form a compound with Nb, the amount of Nb effective for solid solution strengthening of the ferrite phase, more specifically, the amount of effective Nb for increasing 0.2% proof stress and tensile strength at high temperature is reduced. As shown in Fig. 2, the amount of (C + N) is 0.03%.
By setting the following, it is possible to secure a 0.2% proof stress of 15 N / mm 2 or more at 1000 ° C.

【0028】Si:Siは耐酸化性の向上には有効な元素
である。しかしSiを過剰に添加すると硬さが上昇し,
加工性および靭性が低下することから,Siは0.6%未満
とする。
Si: Si is an element effective for improving the oxidation resistance. However, if Si is added excessively, the hardness increases,
Si is less than 0.6% because workability and toughness decrease.

【0029】Mn:Mnは溶接高温割れに有害なSをMn
Sの形で固定し,溶接金属中のSを除去, 減少させる。
溶接高温割れを防止するためには,鋼中に含まれるSに
対応したMnの添加が必要であり,Mn/Sが200以上で
割れ防止効果が現れる。またMnを添加することによっ
て耐スケール剥離性も改善されるが,過剰の添加は加工
性および溶接性が問題となる。このようなことから,十
分な耐スケール剥離性を有し, なおかつ加工性および溶
接性に影響を及ぼさぬようにMnの範囲は0.6%以上2.0
%以下とする。
Mn: Mn is S which is harmful to hot cracking in welding.
Fix in the form of S to remove and reduce S in the weld metal.
In order to prevent hot cracking in the weld, it is necessary to add Mn corresponding to S contained in the steel, and when Mn / S is 200 or more, a crack preventing effect appears. The addition of Mn also improves scale peeling resistance, but excessive addition causes problems in workability and weldability. Therefore, the range of Mn is 0.6% or more and 2.0% or more so that it has sufficient scale peeling resistance and does not affect workability and weldability.
% Or less.

【0030】S:Sは上述のごとく溶接高温割れに対し
て有害であるので可能な限り低いほうが望ましいが,低
く押さえるほど製造コストの上昇を招く。本発明鋼にお
いてはSは0.006%まで許容しても十分な耐溶接高温割
れを有するため,Sの範囲を0.006%以下とする。
S: S is harmful to high temperature welding cracks as described above, so it is desirable that it be as low as possible, but the lower it is, the higher the manufacturing cost. In the steel of the present invention, since S has a sufficient weld-resistant hot cracking even if S is allowed up to 0.006%, the range of S is made 0.006% or less.

【0031】P:Pは本発明が目的とする高温強度の向
上には特に悪影響を及ぼさないが,0.04%を超えて含有
されると鋼板の靭性を著しく損なう。したがって,Pの
範囲は0.04%以下とする。
P: P has no particular adverse effect on the improvement in high temperature strength aimed at by the present invention, but if it is contained in excess of 0.04%, the toughness of the steel sheet is significantly impaired. Therefore, the range of P is 0.04% or less.

【0032】Cr:Crはフエライト相を安定させるとと
もに,高温用材料で重要視される耐酸化性の改善に不可
欠の元素である。しかし17.0%未満では上記の効果が十
分に発揮されない。耐酸化性の面からはCrは高いほど
望ましいが22.0%を超えて過剰に添加すると鋼の脆化を
招き, また硬さの上昇によって加工性も劣化する。した
がって,Crの範囲は17.0%以上22.0%以下とする。
Cr: Cr is an element which stabilizes the ferrite phase and is indispensable for improving the oxidation resistance, which is important in high temperature materials. However, if it is less than 17.0%, the above effect is not sufficiently exhibited. From the viewpoint of oxidation resistance, the higher Cr is, the more preferable it is, but if added in excess of 22.0%, the steel becomes brittle, and the workability deteriorates due to the increase in hardness. Therefore, the range of Cr is 17.0% or more and 22.0% or less.

【0033】Nb:Nbは前述の図1の高温引張試験結果
に示したように,高温強度を維持するのに必要な元素で
ある。しかも強力な炭窒化物生成元素であるため,固溶
強化による著しい高温強度の上昇を図るためには,Cお
よびNの低減化に加え,0.6%を超えるNbの添加が必要
である。またNbの添加は加工性および耐酸化性の改善
に好影響を及ぼす。しかしNbを過剰に添加すると溶接
高温割れ感受性が高くなる。十分な高温強度を維持し,
なおかつ溶接高温割れ感受性にさほど影響を及ぼさない
ようにNbの範囲は0.6%を超え1.5%以下とする。
Nb: Nb is an element necessary for maintaining high temperature strength as shown in the high temperature tensile test result of FIG. Moreover, since it is a strong carbonitride-forming element, in order to achieve a marked increase in high-temperature strength by solid solution strengthening, in addition to the reduction of C and N, it is necessary to add Nb in excess of 0.6%. Also, the addition of Nb has a favorable effect on the improvement of workability and oxidation resistance. However, if Nb is added excessively, the hot cracking susceptibility of the weld becomes high. Maintain sufficient high temperature strength,
In addition, the range of Nb is set to more than 0.6% and 1.5% or less so as not to affect the welding hot cracking sensitivity.

【0034】Mo:Moは固溶強化によって高温強度を上
昇させる元素である。また耐高温酸化性および耐食性の
改善にも有効である。一方,過剰に添加すると低温での
靭性を著しく低下させ,また溶接性および加工性の低下
をきたすため,その成分範囲を1.0%以上3.0%以下, 好
ましくは1.0%を越え3.0%以下とする。
Mo: Mo is an element that increases high temperature strength by solid solution strengthening. It is also effective in improving high temperature oxidation resistance and corrosion resistance. On the other hand, if added excessively, the toughness at low temperature is remarkably deteriorated, and the weldability and workability are deteriorated. Therefore, the range of its content is 1.0% or more and 3.0% or less, preferably more than 1.0% and 3.0% or less.

【0035】V:Vは炭窒化物生成元素であり,高温強
度およびクリープ破断強度を上昇させ,加工性を改善す
る。またCおよびNと結合することによって, 高温強度
上昇に有効な固溶Nb量を増加させる。さらにVはNbと
の共存によって耐粒界腐食性を向上させると共に溶接熱
影響部の靭性を向上させる。これらの効果はV量が0.01
%未満では十分ではない。他方0.5%を越えて過剰に添
加すると逆に加工性の低下を招くため, Vの範囲は0.01
%以上0.5%以下とする。
V: V is a carbonitride forming element, which increases high temperature strength and creep rupture strength and improves workability. Also, by combining with C and N, the amount of solute Nb effective for increasing the high temperature strength is increased. Further, V improves the intergranular corrosion resistance and the toughness of the weld heat affected zone by coexisting with Nb. These effects have a V amount of 0.01
Less than% is not enough. On the other hand, if V is added in excess of 0.5%, the workability will be adversely affected.
% Or more and 0.5% or less.

【0036】Al:製鋼工程において脱炭を行なう際に
酸素吹錬を行なうが,このとき鋼中の残存した酸素は,
溶接性に著しい悪影響を及ぼす。このため脱酸材として
Alが必要不可欠な元素となる。しかし過剰の添加は逆
に溶接性の低下を招く。十分な脱酸を行なうことがで
き,なおかつ溶接性に影響を及ぼさぬようAlの範囲は
0.005%以上0.05%以下とする。
Al: Oxygen is blown during decarburization in the steelmaking process. At this time, the residual oxygen in the steel is
Significantly adversely affects weldability. Therefore, Al is an essential element as a deoxidizing material. However, excessive addition causes a decrease in weldability. The range of Al is sufficient so that sufficient deoxidation can be performed and the weldability is not affected.
It should be 0.005% or more and 0.05% or less.

【0037】O:Oは上述のように, 溶接性に悪影響を
及ぼすためできる限り低いことが望ましいが低く押さえ
るほど製造コストの上昇を招く。本成分系においては,
Oは脱酸Alの添加によって0.012%以下に容易に低減で
き,しかもこのとき十分な溶接性を有するため,Oの範
囲は0.012%以下とする。
O: As described above, O has an adverse effect on weldability, so it is desirable that it be as low as possible, but the lower it is, the higher the manufacturing cost will be. In this component system,
O can be easily reduced to 0.012% or less by adding deoxidized Al, and at this time, since it has sufficient weldability, the range of O is 0.012% or less.

【0038】Cu:Cuは靭性面で非常に有効に作用し,
室温での靭性改善効果を得るためには0.1%以上必要で
ある。一方, 過剰に添加すると硬質となり加工性を害
し, また溶接性も低下する。この理由からCuの範囲は
0.1%以上0.3%未満とする。
Cu: Cu acts very effectively in terms of toughness,
0.1% or more is necessary to obtain the toughness improving effect at room temperature. On the other hand, if added excessively, it becomes hard and the workability is impaired, and the weldability also deteriorates. For this reason, the range of Cu is
0.1% or more and less than 0.3%.

【0039】Ti:TiはNbと同様に強力な炭窒化物生
成元素であり,高温強度およびクリープ破断強度を上昇
させ,加工性も改善する。しかしAlと同様, 過剰添加
すると製造性および溶接性で問題となるため1.5%以下
とする。
Ti: Ti is a strong carbonitride forming element similar to Nb, increases the high temperature strength and the creep rupture strength, and improves the workability. However, like Al, if added too much, it causes problems in manufacturability and weldability, so it is made 1.5% or less.

【0040】Zr:Zrは高温強度を上昇させ,高温酸化
特性を改善する。しかし過剰に添加すると加工性および
溶接性の低下を招くので2.0%以下とする。
Zr: Zr increases high temperature strength and improves high temperature oxidation characteristics. However, if added excessively, the workability and weldability are deteriorated, so the content is made 2.0% or less.

【0041】W:WもTiやVと同様, 高温強度を上昇
させ,加工性を改善する。しかし過剰に添加すると加工
性および溶接性の低下を招くので5.0%以下とする。
W: W, like Ti and V, also increases high temperature strength and improves workability. However, if added excessively, the workability and weldability are deteriorated, so the content is made 5.0% or less.

【0042】B:Bは熱間加工性を改善し,高温強度も
上昇させ,加工性をも改善する。しかし過剰に添加する
と熱間加工性の低下を招くため,0.01%以下とする。
B: B improves hot workability, raises high temperature strength, and also improves workability. However, if added excessively, the hot workability deteriorates, so the content is made 0.01% or less.

【0043】YおよびREM:YおよびREM(希土類元素)は
微量添加によって熱間加工性を改善し,耐酸化性特にス
ケールの密着性を改善する。しかし過剰に添加とする逆
に熱間加工性の低下を招くため0.1%以下とする。
Y and REM: Y and REM (rare earth elements) improve the hot workability by adding a trace amount and improve the oxidation resistance, especially the adhesion of scale. However, if it is added excessively, the hot workability is deteriorated.

【0044】以上のような成分組成に加えて,本発明の
目的を達成するには,すなわち1000℃での0.2%耐力を1
5N/mm2以上とするには,前記(1) 式の右辺を15以上とす
ることが必要である。すなわち, 15.0≦−1.8+0.6Cr+1.1Mo+1.5W+8.2Nb の関係を満足するように,これらの元素の含有量を規制
することが必要である。しかしこれらの元素を過剰に添
加すると加工性および溶接性が低下する可能性があり,
特に(1) 式の右辺が22.2を超えると溶接性の劣化が認め
られた。この理由から, これらの元素の添加量は, 15.0≦−1.8+0.6Cr+1.1Mo+1.5W+8.2Nb≦22.2 すなわち, 16.8≦0.6Cr+1.1Mo+1.5W+8.2Nb≦24.0 の関係を満足するように含有させるのがよい。
In addition to the above component composition, in order to achieve the object of the present invention, that is, 0.2% proof stress at 1000 ° C.
In order to achieve 5 N / mm 2 or more, it is necessary to set the right side of Eq. (1) to 15 or more. That is, it is necessary to regulate the contents of these elements so as to satisfy the relationship of 15.0≤-1.8 + 0.6Cr + 1.1Mo + 1.5W + 8.2Nb. However, if these elements are added excessively, workability and weldability may decrease,
In particular, when the right side of Eq. (1) exceeds 22.2, weldability deterioration was observed. For this reason, the addition amount of these elements is 15.0≤-1.8 + 0.6Cr + 1.1Mo + 1.5W + 8.2Nb≤22.2, that is, 16.8≤0.6Cr + 1.1Mo + 1.5W + 8.2Nb≤24.0. Is good.

【0045】次に本発明鋼板の製造に当たっては, 既述
のように最終仕上げ焼鈍において固溶強化元素を十分固
溶させるためには焼鈍温度はできる限り高い方が好まし
い。すなわち図4に示したように, 焼鈍温度が1050℃未
満では, Nbの固溶が十分でないことがその理由である
と考えられるが,顕著な高温強度の改善は期待できな
い。また図4は高温強度の上昇は焼鈍温度が1200℃を超
えると飽和することを示している。加えて,焼鈍温度が
高すぎると結晶粒が粗大化し,靭性が低下するなどの不
利な点も生じる。以上のことから最終仕上げ焼鈍温度の
範囲は1050℃以上1200℃以下とする。
Next, in the production of the steel sheet of the present invention, the annealing temperature is preferably as high as possible in order to sufficiently dissolve the solid solution strengthening element in the final finish annealing as described above. That is, as shown in FIG. 4, when the annealing temperature is lower than 1050 ° C, the reason is that the solid solution of Nb is not sufficient, but the remarkable improvement in high temperature strength cannot be expected. Further, FIG. 4 shows that the increase in high temperature strength saturates when the annealing temperature exceeds 1200 ° C. In addition, if the annealing temperature is too high, the crystal grains become coarse and the toughness decreases and other disadvantages occur. From the above, the range of final finish annealing temperature is set to 1050 ° C or higher and 1200 ° C or lower.

【0046】最終仕上げ焼鈍後の冷却速度は,焼鈍時に
固溶したNbが冷却中に析出しないように焼鈍温度から6
00℃までの間を2℃/sec以上とするのがよい。
The cooling rate after the final finish annealing is set to 6 at the annealing temperature so that Nb dissolved in the solid solution during the annealing does not precipitate during cooling.
It is recommended that the temperature up to 00 ℃ be 2 ℃ / sec or more.

【0047】最終仕上げ焼鈍時間については,1050℃以
上1200℃以下の温度で長時間焼鈍すると結晶粒および析
出物が粗大化すること,連続焼鈍を行なう際に焼鈍工程
に時間を要し, 生産性が低下することから,10分以下と
するのが実際的である。
Regarding the final finish annealing time, crystal grains and precipitates become coarse when annealed at a temperature of 1050 ° C. or higher and 1200 ° C. or lower for a long time. Since it decreases, it is practical to set it to 10 minutes or less.

【0048】なお最終仕上げ焼鈍とは素材メーカーでの
製造過程において熱間圧延および冷間圧延を経て目標板
厚にまで圧延した後の鋼帯または鋼板を仕上げ焼鈍する
ことを意味する。場合によってはこの最終仕上げ焼鈍の
あとに軽度のスキンパス圧延を施すこともある。
The final finish annealing means finishing annealing of a steel strip or a steel sheet after being rolled to a target thickness through hot rolling and cold rolling in the manufacturing process by a material manufacturer. In some cases, a light skin pass rolling may be performed after this final finish annealing.

【0049】[0049]

【実施例】表1および表2(表1の続き)に供試材の化
学成分値および最終仕上げ焼鈍温度を示した。表中のA
01からA20は本発明鋼,A21からA30は比較鋼である。
いずれの鋼も真空溶解炉にて500kg溶製し,鍛造, 熱延
により4.0mmtの熱延鋼帯とした。これを950〜1250℃で
焼鈍し2.0mmtまで冷延した。ついでこれを切断し,表中
に示した最終仕上げ焼鈍温度で焼鈍し,鋼板とした。こ
れを高温引張試験片に切削加工後, 試験に供した。表3
に本発明鋼板および比較鋼板の高温強度特性を示した。
高温強度特性はJIS G 0567に準拠した高温引張試験にお
ける0.2%耐力および引張強さで評価した。
[Examples] Tables 1 and 2 (continuation of Table 1) show the chemical composition values and final finish annealing temperatures of the test materials. A in the table
01 to A20 are inventive steels, and A21 to A30 are comparative steels.
Each of the steels was melted in a vacuum melting furnace for 500 kg, forged and hot rolled into a hot rolled steel strip of 4.0 mmt. This was annealed at 950 to 1250 ° C and cold rolled to 2.0 mmt. Then, this was cut and annealed at the final finishing annealing temperature shown in the table to obtain a steel sheet. This was subjected to a test after cutting into a high temperature tensile test piece. Table 3
Shows the high temperature strength characteristics of the steel sheet of the present invention and the comparative steel sheet.
The high temperature strength characteristics were evaluated by 0.2% proof stress and tensile strength in a high temperature tensile test according to JIS G 0567.

【0050】また溶接高温割れ性を臨界ひずみ量で評価
した。すなわち, 各鋼について厚さ1.2mmtまで冷延した
以外は前記同様の冷延焼鈍板を作製し,40mm×200mmの
試験片に加工後, 試験片の両端を保持して長手方向に引
張応力を付与した状態でTIG溶接を行い, 割れが発生し
始める最小のひずみ量を臨界ひずみ量とし,これを溶接
割れ感受性の指標とした。この溶接高温割れ特性につい
ても表3に併記した。
The weld hot cracking property was evaluated by the critical strain amount. That is, except that each steel was cold-rolled to a thickness of 1.2 mmt, cold-rolled annealed sheets similar to the above were prepared, processed into 40 mm × 200 mm test pieces, and both ends of the test pieces were held to apply tensile stress in the longitudinal direction. TIG welding was performed in the applied state, and the minimum strain amount at which cracking started to occur was defined as the critical strain amount, which was used as an index of weld cracking susceptibility. The weld hot cracking characteristics are also shown in Table 3.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】表3の結果に見られるように,本発明例の
鋼板はいずれも高温強度が非常に高いことがわかる。つ
まりNbを0.6%以上添加し,(C+N)量を0.03%以下と
しかつ1050℃以上の高い温度で最終仕上げ焼鈍を行った
鋼板は,従来のフエライト系ステンレス鋼では得られる
ことのできなかった高温高強度特性を示し, 1000℃の0.
2%耐力で15N/mm2以上の強度値が得られる。これは自動
車用エキゾーストマニホールド材に使用された従来のSU
S430LX系鋼 (表2のA21鋼に相当するもの)の2倍以上
の高温強度特性を有している。
As can be seen from the results in Table 3, all the steel sheets of the present invention have very high high temperature strength. In other words, the steel sheet with Nb content of 0.6% or more, the (C + N) content of 0.03% or less, and the final finish annealing at a high temperature of 1050 ° C or higher could not be obtained with conventional ferrite stainless steel. It shows high strength characteristics and is 0 at 1000 ℃.
A strength value of 15 N / mm 2 or more can be obtained with a 2% proof stress. This is a conventional SU used in automobile exhaust manifold materials.
It has more than twice the high temperature strength characteristics of S430LX series steel (corresponding to A21 steel in Table 2).

【0055】また,溶接性についてみると, 本発明例の
鋼はすべて3.5%以上の臨界ひずみ量を示し, 溶接性が
良好であることがわかる。したがって溶接高温割れ抵抗
の優れた製管品 (例えば自動車用エキゾーストマニホー
ルド) が得られることがわかる。
Further, regarding the weldability, it can be seen that all the steels of the examples of the present invention show a critical strain amount of 3.5% or more, and the weldability is good. Therefore, it is understood that a pipe-made product (for example, an exhaust manifold for automobiles) having excellent welding hot crack resistance can be obtained.

【0056】これに対し, 比較例A21, A22およびA28
〜A30は,いずれも高温強度を左右する元素 (C+N,
Nb, Mo) の範囲が本発明で規定する範囲から外れてい
るものであるが,これらは高い温度で焼鈍を施しても,
高温強度が本発明例の鋼より劣り, 1000℃の0.2%耐力
は全て15N/mm2未満である。
On the other hand, Comparative Examples A21, A22 and A28
~ A30 are all elements (C + N,
Although the range of Nb, Mo) is out of the range specified in the present invention, even if these are annealed at a high temperature,
The high temperature strength is inferior to that of the steel of the present invention, and the 0.2% proof stress at 1000 ° C is all less than 15 N / mm 2 .

【0057】また比較例A26のように,成分範囲が本発
明の範囲内であっても, 焼鈍温度範囲が本発明の範囲か
ら外れると十分な高温強度特性は得られない。さらにA
23〜A25, A31のようにMn,S,Al,O, Cuの含有量が
本発明の範囲から外れていると,高温強度は高いもの
の,鋼板の溶接性が劣っていることがわかる。この点に
ついては前記の(1)式の範囲から外れるA27も同様であ
り,高温強化元素の過剰添加が溶接性を低下させたもの
と考えられる。
Even if the composition range is within the range of the present invention, as in Comparative Example A26, sufficient high temperature strength characteristics cannot be obtained if the annealing temperature range is outside the range of the present invention. Furthermore A
When the contents of Mn, S, Al, O, and Cu such as 23 to A25 and A31 are out of the range of the present invention, the high temperature strength is high but the weldability of the steel sheet is poor. In this respect, the same applies to A27, which is out of the range of the above formula (1), and it is considered that excessive addition of the high temperature strengthening element deteriorates the weldability.

【0058】さらに,本発明鋼の電縫溶接管を用いて実
際のエキゾーストマニホールドを以下に述べるようにし
て試作し,自動車エンジンにて冷熱サイクルを行った。
その結果,従来の試験温度よりも 100〜200℃高い高温
試験においても従来材以上の耐久性を示し, 本発明鋼が
エキゾーストマニホールド用素材として実用性が非常に
高いものであることが確認された。
Further, an actual exhaust manifold was prototyped using the electric resistance welded pipe of the steel of the present invention as described below, and a cooling / heating cycle was carried out in an automobile engine.
As a result, it was confirmed that the steel of the present invention showed higher durability than conventional materials even in a high temperature test that was 100 to 200 ° C higher than the conventional test temperature, and that the steel of the present invention was extremely useful as a material for exhaust manifolds. .

【0059】試作したエキゾーストマニホールドの概略
を図6に示した。1は主管であり,この主管1に対して
枝管2a〜2eが接続されている。主管1および枝管2
とも素材鋼板として前記実施例のA5相当の厚みが2.0
mmの冷延焼鈍板を使用した。この鋼板から主管1の径の
パイプと枝管2の径のパイプに高周波溶接で造管し,必
要長さに切断し,主管1の穴あけと縮径加工, 枝管2の
曲げ加工, 拡管およびフランジ取付け端のフレア加工を
行ったうえ,MAG溶接で主管1の穴に各枝管2を接続
し,端部にフランジをMAG溶接で取付けた。
FIG. 6 shows an outline of a prototype exhaust manifold. Reference numeral 1 is a main pipe, and branch pipes 2a to 2e are connected to the main pipe 1. Main pipe 1 and branch pipe 2
Both have a thickness equivalent to A5 of the above embodiment of 2.0 as a material steel plate.
A cold rolled annealed plate of mm was used. From this steel plate, a pipe with the diameter of the main pipe 1 and a pipe with the diameter of the branch pipe 2 are made by high-frequency welding, cut into the required length, drilling and reducing the diameter of the main pipe 1, bending the branch pipe 2 and expanding and After flaring the flange mounting end, each branch pipe 2 was connected to the hole of the main pipe 1 by MAG welding, and the flange was attached to the end by MAG welding.

【0060】試験は温度が900℃または940℃のエ
ンジン排ガスで加熱したあと空冷する冷熱サイクルを実
施した。比較のために,前記比較例のA21相当鋼を用
いた以外は同じエキゾーストマニホールドを試作し,同
じ試験を行った。その結果,本発明例のものはいずれの
試験温度でも,比較例のものに対し約2倍のサイクル回
数まで耐久性を有した。
In the test, a cooling / heating cycle of heating with engine exhaust gas having a temperature of 900 ° C. or 940 ° C. and then air cooling was carried out. For comparison, the same exhaust manifold was prototyped except that the steel corresponding to A21 of the comparative example was used, and the same test was conducted. As a result, the example of the present invention had durability about twice as many cycles as that of the comparative example at any test temperature.

【0061】[0061]

【発明の効果】以上説明したように,本発明のフエライ
ト系ステンレス鋼板は,600℃以上特に900℃〜1000℃の
高温強度が他のフエライト系ステンレス鋼と比較して極
めて高く, 溶接性にも優れている。またこの鋼板は最終
仕上げ焼鈍を再結晶以上の温度で行っているため,高温
高強度に加え加工性にも優れる。
As described above, the ferrite-type stainless steel sheet of the present invention has extremely high high-temperature strength of 600 ° C. or higher, particularly 900 ° C. to 1000 ° C., as compared with other ferrite-type stainless steels, and has a good weldability. Are better. In addition, since this steel sheet is subjected to final finishing annealing at a temperature above recrystallization, it has excellent workability as well as high temperature and high strength.

【0062】したがって本発明によれば,溶接造管,曲
げ加工や縮径拡管加工,溶接接合等の多くの工程を経て
製造され,また600℃以上の高温度域で使用される場合
にも強度不足に起因する高温疲労破壊や熱疲労破壊など
の材料特性が改善された自動車エンジンのマニホールド
材料が提供され,自動車の高出力化と性能向上に大きく
貢献できる。
Therefore, according to the present invention, it is manufactured through many processes such as welded pipe forming, bending work, diameter reduction pipe expansion work, and welding joining, and has strength even when used in a high temperature range of 600 ° C. or higher. It provides automotive engine manifold materials with improved material properties such as high temperature fatigue fracture and thermal fatigue fracture due to shortage, and can greatly contribute to higher output and performance improvement of automobiles.

【図面の簡単な説明】[Brief description of drawings]

【図1】表示の成分系における900℃および1000℃短時
間引張試験における0.2%耐力および引張強さに及ぼす
Nb添加量の影響を示した図である。
FIG. 1 is a diagram showing the influence of the amount of Nb added on 0.2% proof stress and tensile strength in 900 ° C. and 1000 ° C. short-time tensile tests in the indicated component system.

【図2】表示の成分系における1000℃短時間引張試験に
おける0.2%耐力および引張強さに及ぼす (C+N) 量
の影響を示した図である。
FIG. 2 is a diagram showing the influence of (C + N) content on 0.2% proof stress and tensile strength in a 1000 ° C. short-time tensile test in the indicated component system.

【図3】表示の成分系における1000℃短時間引張試験に
おける0.2%耐力に及ぼす各種合金元素の影響を示した
図である。
FIG. 3 is a diagram showing the influence of various alloy elements on 0.2% proof stress in a 1000 ° C. short-time tensile test in the indicated component system.

【図4】表示の成分系における1000℃短時間引張試験に
おける0.2%耐力に及ぼす最終仕上げ焼鈍温度の影響を
示した図である。
FIG. 4 is a diagram showing the effect of final finishing annealing temperature on the 0.2% proof stress in a 1000 ° C. short-time tensile test in the indicated component system.

【図5】表示の成分系における1000℃短時間引張試験に
おける0.2%耐力に及ぼす固溶Nb量の影響を示した図で
ある。
FIG. 5 is a diagram showing the influence of the amount of solid solution Nb on the 0.2% proof stress in the 1000 ° C. short-time tensile test in the indicated component system.

【図6】自動車エンジンのエキゾーストマニホールドの
例を示す概略図である。
FIG. 6 is a schematic view showing an example of an exhaust manifold of an automobile engine.

【符号の説明】[Explanation of symbols]

1 主管 2 枝管 1 main pipe 2 branch pipes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 定幸 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 (72)発明者 奥 学 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 (72)発明者 杉野 智幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 柴田 新次 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Sadayuki Nakamura 4976 Nomura-Minami-cho, Shinnanyo-shi, Yamaguchi Prefecture Steel Research Laboratory, Nisshin Steel Co., Ltd. (72) Oku Manabu 4976 Nomura-Minami-cho, Shinnanyo-shi, Yamaguchi Prefecture Nisshin Steel Manufacturing Co., Ltd. Steel Research Laboratory (72) Inventor Tomoyuki Sugino 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd. (72) Inventor Shinji Shibata 1, Toyota Town, Aichi Prefecture Toyota Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%において,C:0.02%以下,Si:
0.6%未満,Mn:0.6%以上2.0%以下,S:0.006%以下,
P:0.04%以下,Cr:17.0%以上22.0%以下,Nb:0.6
%を超え1.5%以下,Mo:1.0%以上3.0%以下,V:0.01
%以上0.5%以下,Cu:0.1%以上0.3%未満,N:0.02%
以下,Al:0.005%以上0.05%以下,O:0.012%以下,た
だし前記の範囲において, C+N≦0.03% Mn/S≧200 16.8≦0.6Cr+1.1Mo+8.2Nb≦24.0 の関係を満足するようにこれらの元素を含有し, 残量が
Feおよび製造上の不可避的不純物からなる高温強度お
よび溶接性に優れた耐熱用フエライト系ステンレス鋼
板。
1. In mass%, C: 0.02% or less, Si:
Less than 0.6%, Mn: 0.6% to 2.0%, S: 0.006% or less,
P: 0.04% or less, Cr: 17.0% or more and 22.0% or less, Nb: 0.6
% To 1.5% or less, Mo: 1.0% to 3.0%, V: 0.01
% To 0.5%, Cu: 0.1% to less than 0.3%, N: 0.02%
Below, Al: 0.005% or more and 0.05% or less, O: 0.012% or less, but within the above range, C + N ≦ 0.03% Mn / S ≧ 200 16.8 ≦ 0.6Cr + 1.1Mo + 8.2Nb ≦ 24.0 A heat-resistant ferritic stainless steel sheet that contains the elements described above and has a balance of Fe and inevitable impurities in manufacturing, and has excellent high-temperature strength and weldability.
【請求項2】 質量%において,C:0.02%以下,Si:
0.6%未満,Mn:0.6%以上2.0%以下,S:0.006%以下,
P:0.04%以下,Cr:17.0%以上22.0%以下,Nb:0.6
%を超え1.5%以下,Mo:1.0%以上3.0%以下,V:0.01
%以上0.5%以下,Cu:0.1%以上0.3%未満,N:0.02%
以下,Al:0.005%以上0.05%以下,O:0.012%以下,を
含有し,さらに次の元素の一種または二種以上,すなわ
ち,Ti:1.5%以下, Zr:2.0%以下, W:5.0%以下,
B:0.01%以下, Y:0.1%以下, REM:0.1%以下の
一種または二種以上,を含有したうえ,前記の範囲にお
いて, C+N≦0.03% Mn/S≧200 16.8≦0.6Cr+1.1Mo+1.5W+8.2Nb≦24.0 の関係を満足するようにこれらの元素を含有し, 残量が
Feおよび製造上の不可避的不純物からなる高温強度お
よび溶接性に優れた耐熱用フエライト系ステンレス鋼
板。
2. In mass%, C: 0.02% or less, Si:
Less than 0.6%, Mn: 0.6% to 2.0%, S: 0.006% or less,
P: 0.04% or less, Cr: 17.0% or more and 22.0% or less, Nb: 0.6
% To 1.5% or less, Mo: 1.0% to 3.0%, V: 0.01
% To 0.5%, Cu: 0.1% to less than 0.3%, N: 0.02%
The following are contained: Al: 0.005% or more and 0.05% or less, O: 0.012% or less, and one or more of the following elements, that is, Ti: 1.5% or less, Zr: 2.0% or less, W: 5.0% Less than,
B: 0.01% or less, Y: 0.1% or less, REM: 0.1% or less of one or more, and within the above range, C + N ≦ 0.03% Mn / S ≧ 200 16.8 ≦ 0.6Cr + 1.1Mo + 1. A heat-resistant ferrite-type stainless steel plate containing these elements so as to satisfy the relationship of 5W + 8.2Nb ≦ 24.0, and having a balance of Fe and inevitable impurities in manufacturing, which has excellent high-temperature strength and weldability.
【請求項3】 鋼板は,製造過程における最終仕上げ焼
鈍において,1050℃以上1200℃以下の温度に10分以下加
熱され,この加熱後600℃まで2℃/sec以上の速度で冷
却されたものである請求項1または2に記載のフエライ
ト系ステンレス鋼板。
3. The steel sheet is heated to a temperature of 1050 ° C. or higher and 1200 ° C. or lower for 10 minutes or less in the final finish annealing in the manufacturing process, and then cooled to 600 ° C. at a rate of 2 ° C./sec or higher. The ferrite stainless steel plate according to claim 1 or 2.
【請求項4】 鋼板は,自動車エンジンのエキゾースト
マニホールドを構成する材料として使用される請求項
1,2または3に記載のフエライト系ステンレス鋼板。
4. The ferritic stainless steel plate according to claim 1, wherein the steel plate is used as a material for forming an exhaust manifold of an automobile engine.
JP8387793A 1992-03-19 1993-03-19 Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability Expired - Lifetime JP2923825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8387793A JP2923825B2 (en) 1992-03-19 1993-03-19 Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-92453 1992-03-19
JP9245392 1992-03-19
JP8387793A JP2923825B2 (en) 1992-03-19 1993-03-19 Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability

Publications (2)

Publication Number Publication Date
JPH0688168A true JPH0688168A (en) 1994-03-29
JP2923825B2 JP2923825B2 (en) 1999-07-26

Family

ID=26424920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8387793A Expired - Lifetime JP2923825B2 (en) 1992-03-19 1993-03-19 Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability

Country Status (1)

Country Link
JP (1) JP2923825B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064030A1 (en) * 2003-12-26 2005-07-14 Jfe Steel Corporation FERRITIC Cr-CONTAINING STEEL
WO2012020727A1 (en) 2010-08-10 2012-02-16 日新製鋼株式会社 Heat transfer element for manifold
JP2014145097A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for automotive exhaust system member suitable for high temperature press molding and manufacturing method of ferritic stainless steel molding part
EP2351868A4 (en) * 2008-10-24 2016-11-30 Nippon Steel & Sumikin Sst Ferritic stainless steel sheet for egr coolers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604714B2 (en) * 2003-12-26 2011-01-05 Jfeスチール株式会社 Ferritic Cr-containing steel material and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064030A1 (en) * 2003-12-26 2005-07-14 Jfe Steel Corporation FERRITIC Cr-CONTAINING STEEL
EP1698711A1 (en) * 2003-12-26 2006-09-06 JFE Steel Corporation Ferritic cr-containing steel
EP1698711A4 (en) * 2003-12-26 2007-06-20 Jfe Steel Corp Ferritic cr-containing steel
CN100441721C (en) * 2003-12-26 2008-12-10 杰富意钢铁株式会社 Ferritic cr-containing steel
US8790573B2 (en) 2003-12-26 2014-07-29 Jfe Steel Corporation Ferritic Cr-contained steel
EP2351868A4 (en) * 2008-10-24 2016-11-30 Nippon Steel & Sumikin Sst Ferritic stainless steel sheet for egr coolers
WO2012020727A1 (en) 2010-08-10 2012-02-16 日新製鋼株式会社 Heat transfer element for manifold
JP2014145097A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for automotive exhaust system member suitable for high temperature press molding and manufacturing method of ferritic stainless steel molding part

Also Published As

Publication number Publication date
JP2923825B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US9279172B2 (en) Heat-resistance ferritic stainless steel
TWI431122B (en) Ferritic stainless steel excellent in heat resistance and toughness
KR101878245B1 (en) Ferritic stainless steel excellent in oxidation resistance
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
US11365467B2 (en) Ferritic stainless steel
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP2004218013A (en) Ferritic stainless steel for equipment in automobile exhaust system
JP3219099B2 (en) Ferrite heat-resistant stainless steel with excellent heat resistance, low temperature toughness and weldability
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP2009235570A (en) Ferritic stainless steel having excellent heat resistance and weldability
JP6665936B2 (en) Ferritic stainless steel
JPH08239737A (en) Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP3937369B2 (en) Processing method of ferritic stainless steel pipe
JP2009235572A (en) Ferritic stainless steel having excellent heat resistance and shape-fixability
JP2005240112A (en) Ferritic stainless steel
JP2000073147A (en) Chromium-containing steel excellent in high temperature strength workability and surface property
JP6624347B1 (en) Ferritic stainless steel
JPH10158731A (en) Ferritic stainless steel pipe for engine exhaust gas passage member, excellent in high temperature strength
JPH11256286A (en) Unannealed welded steel tube for working, obtained by forming heat resistant ferritic stainless steel sheet into tube by welding
JPH0641692A (en) Steel for automobile exhaust manifold

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130507

Year of fee payment: 14