JPH0687979B2 - Method for producing fine metal-supported photocatalyst - Google Patents

Method for producing fine metal-supported photocatalyst

Info

Publication number
JPH0687979B2
JPH0687979B2 JP2126240A JP12624090A JPH0687979B2 JP H0687979 B2 JPH0687979 B2 JP H0687979B2 JP 2126240 A JP2126240 A JP 2126240A JP 12624090 A JP12624090 A JP 12624090A JP H0687979 B2 JPH0687979 B2 JP H0687979B2
Authority
JP
Japan
Prior art keywords
photocatalyst
fine particles
membrane
metal
fine metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2126240A
Other languages
Japanese (ja)
Other versions
JPH0422438A (en
Inventor
尋巳 山北
博史 垰田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2126240A priority Critical patent/JPH0687979B2/en
Publication of JPH0422438A publication Critical patent/JPH0422438A/en
Publication of JPH0687979B2 publication Critical patent/JPH0687979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明はエネルギー利用技術に関するものであり、詳し
く言えば、光エネルギーを利用して水素などの燃料や、
その他の有用な物質を製造するための光触媒を製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to energy utilization technology, and more specifically, it uses light energy to fuel fuel such as hydrogen,
The present invention relates to a method for producing a photocatalyst for producing other useful substances.

(b)従来の技術 昭和48年のいわゆる「石油ショック」を契機としてエネ
ルギーの多様化の必要性が認識され、石油代替エネルギ
ーの研究開発が推進されてきた。
(B) Conventional technology With the so-called "oil shock" of 1973, the need for energy diversification was recognized, and research and development of alternative oil energy has been promoted.

その中でもクリーンなエネルギーとしての太陽光エネル
ギーを他のエネルギーに変換して用いる方法が注目さ
れ、広く研究が行われている。
Among them, a method of converting sunlight energy as clean energy into another energy and using it has been noticed and widely researched.

光触媒は、光エネルギーを水素などの化学エネルギーに
変換して用いるためのものであり、最近は特に、超微粒
子の半導体を用いた光触媒も用いられ、高効率で光エネ
ルギーの変換が行われるようになった。しかし、超微粒
子の半導体だけでは、通常は光触媒としての効率は低い
ので、白金、銅などの金属を担持したものが用いられて
いる。このような金属の担持方法としては、例えば、水
とエチルアルコールの1:1の混合溶媒中に貴金属のイオ
ンを含む塩(例えば、塩化白金酸カリウム)を溶解し、
半導体の微粒子を分散し、これに水銀ランプなどの光を
照射して半導体の表面に貴金属を析出させる方法が用い
られている。しかし、この方法により貴金属を担持した
場合には、微粒子が相互に付着して表面積が低下し、光
触媒の効率の低下をまねくほか、操作が煩雑であるとい
う欠点があった。
The photocatalyst is used for converting light energy into chemical energy such as hydrogen, and recently, especially, a photocatalyst using a semiconductor of ultrafine particles is also used so that the light energy can be converted with high efficiency. became. However, since the efficiency as a photocatalyst is usually low only with ultrafine semiconductors, those carrying metals such as platinum and copper are used. As a method of supporting such a metal, for example, a salt containing a noble metal ion (for example, potassium chloroplatinate) is dissolved in a 1: 1 mixed solvent of water and ethyl alcohol,
A method has been used in which fine particles of a semiconductor are dispersed and irradiated with light from a mercury lamp or the like to deposit a noble metal on the surface of the semiconductor. However, when the noble metal is supported by this method, the fine particles adhere to each other to reduce the surface area, leading to a decrease in the efficiency of the photocatalyst, and the operation is complicated.

(c)発明の目的 本発明は上記の点に鑑み、より簡単な方法で効率の高い
金属担持光触媒を製造することを目的とするものであ
る。
(C) Object of the Invention In view of the above points, the present invention aims to produce a highly efficient metal-supported photocatalyst by a simpler method.

(d)発明の構成 本発明者らは上記の目的を達成するため鋭意研究を行っ
た結果、金属のコロイド溶液に半導体の微粒子を混合し
たのち、膜を用いて生成物を溶液から分離して取出すこ
とにより、効率の高い光触媒を製造することができるこ
とを見出した。
(D) Structure of the Invention As a result of intensive studies to achieve the above object, the present inventors have found that after mixing semiconductor fine particles with a metal colloidal solution, a product is separated from the solution using a membrane. It was found that a highly efficient photocatalyst can be produced by taking out.

本発明において使用される金属のコロイド溶液として
は、白金、金、銀、パラジウム、ルテニウム、ロジウム
などのほか、銅、ニッケルなどの金属のコロイド状粒子
を水やメタノールなどの溶媒中に分散したものが挙げら
れる。
The colloidal solution of metal used in the present invention includes platinum, gold, silver, palladium, ruthenium, rhodium and the like, as well as colloidal particles of metal such as copper and nickel dispersed in a solvent such as water or methanol. Is mentioned.

半導体微粒子としては、二酸化チタン、酸化第二鉄、チ
タン酸ストロンチウムなどの酸化物半導体のほか、硫化
カドミウム、硫化亜鉛、硫化モリブデン、セレン化カド
ミウムなどの化合物半導体の微粒子が挙げられる。これ
らの微粒子の粒径は一般に小さい方が好ましいが、通常
は1〜0.001ミクロン程度のものが用いられる。
Examples of the semiconductor fine particles include oxide semiconductors such as titanium dioxide, ferric oxide, and strontium titanate, and fine particles of compound semiconductors such as cadmium sulfide, zinc sulfide, molybdenum sulfide, and cadmium selenide. Generally, the particle size of these fine particles is preferably small, but those having a particle size of about 1 to 0.001 micron are usually used.

本発明において使用される膜としては3〜0.1ミクロン
程度の孔径を有するミクロ過膜、限外過膜のほか、
逆浸透膜が挙げられる。膜の材質・構造としては、ポリ
テトラフロロエチレン、ニトロセルロースなどの単体の
膜のほか、粗い支持体の上に超薄膜を接着した複合膜が
あるが、液を通して、生成した光触媒を通さないもので
あれば何でもよい。なお、ここに用いる膜は、その孔径
が原料の半導体微粒子より大きいものであっても、生成
物が二次粒子を形成する場合には、分離の目的を達成す
ることができる。
As the membrane used in the present invention, in addition to a micropermeation membrane having a pore size of about 3 to 0.1 micron, an ultrapermeation membrane,
A reverse osmosis membrane is mentioned. As the material and structure of the membrane, in addition to a single membrane such as polytetrafluoroethylene or nitrocellulose, there is a composite membrane in which an ultrathin film is adhered on a rough support, but the photocatalyst generated does not pass through. Anything will do. The film used here can achieve the purpose of separation even when the product forms secondary particles even if the pore size is larger than the semiconductor fine particles as the raw material.

本発明の方法において、金属のコロイド溶液と半導体微
粒子を混合した場合には、金属の超微粒子が半導体の表
面に沈降、析出するが、さらに膜によって液を除去する
ことによって、金属の半導体表面への吸着が確実なもの
になると考えられる。
In the method of the present invention, when the metal colloidal solution and the semiconductor fine particles are mixed, the ultrafine particles of the metal settle and precipitate on the surface of the semiconductor. It is thought that the adsorption of the will be reliable.

(e)発明の実施例 以下、本発明の代表的な実施例を示す。(E) Examples of the Invention Hereinafter, typical examples of the present invention will be shown.

実施例1 白金12.3mgを含む白金コロイド水溶液200mlに0.24gの二
酸化チタン微粒子(粒径約0.03ミクロン)を入れ、振盪
して、よく混合したのち約18時間静置した。この液を、
孔径0.1ミクロンの限外過膜を用いたメンブランフィ
ルターで過して、得られた灰黒色の生成物を乾燥して
約0.25gの白金担持光触媒を得た。
Example 1 To 200 ml of an aqueous platinum colloid solution containing 12.3 mg of platinum, 0.24 g of titanium dioxide fine particles (particle size: about 0.03 micron) was added, shaken, mixed well, and then allowed to stand for about 18 hours. This liquid
After passing through a membrane filter using an ultrafiltration membrane having a pore size of 0.1 micron, the obtained grayish black product was dried to obtain about 0.25 g of a platinum-supported photocatalyst.

実施例2 二酸化チタン微粒子(粒径約0.03ミクロン)0.39gを10m
lの水に分散させ、これと、銀20.5mgを含む銀コロイド
水溶液51mlを混合し、振盪したのち約18時間静置した。
この液を、限外過膜(孔径0.1ミクロン)を用いたメ
ンブランフィルターで過し、得られた黄色の生成物を
乾燥して、約0.4gの銀担持光触媒を得た。
Example 2 Titanium dioxide fine particles (particle size: about 0.03 micron) 0.39 g to 10 m
This was dispersed in water (1 l), and this was mixed with 51 ml of an aqueous silver colloid solution containing 20.5 mg of silver, and after shaking, the mixture was allowed to stand for about 18 hours.
This solution was passed through a membrane filter using an ultrafiltration membrane (pore size: 0.1 micron), and the obtained yellow product was dried to obtain about 0.4 g of a silver-supported photocatalyst.

実施例3 硫化亜鉛微粒子0.36gを水に分散させた液16mlを用意
し、これと、白金18.2mgを含む白金コロイド水溶液272m
lを混合し、振盪したのち、約20時間静置した。この液
を、限外過膜(孔径0.1ミクロン)を用いたメンブラ
ンフィルターで過し、得られたスラリーに少量の水を
加えたものを白金担持光触媒の分散液として用いた。
Example 3 16 ml of a solution prepared by dispersing 0.36 g of zinc sulfide fine particles in water was prepared, and 272 m of a platinum colloid aqueous solution containing this and 18.2 mg of platinum.
l was mixed, shaken, and then allowed to stand for about 20 hours. This solution was passed through a membrane filter using an ultrafiltration membrane (pore size: 0.1 micron), and a small amount of water was added to the obtained slurry, which was used as a dispersion liquid of a platinum-supported photocatalyst.

参考例1 実施例1で得られた光触媒のうち12mgをとり、これをメ
タノール−水(1:1)混合液35mlに分散させ、石英製の
反応容器に入れる。この反応液にアルゴンガスを充分通
じて溶存空気を除去したのち、反応液を撹拌しながら10
0Wの高圧水銀ランプの光を7.1mW/cm2の強度で4.1時間照
射して、発生したガスをガスクロマトグラフで分析し
た。その結果、26.3ml(1.1ミリモル)の水素ガスが発
生していることが分かった。
Reference Example 1 12 mg of the photocatalyst obtained in Example 1 was taken, and this was dispersed in 35 ml of a methanol-water (1: 1) mixed solution and placed in a quartz reaction vessel. Argon gas was sufficiently passed through this reaction solution to remove dissolved air, and then the reaction solution was stirred with stirring.
The light emitted from a 0 W high-pressure mercury lamp was irradiated at an intensity of 7.1 mW / cm 2 for 4.1 hours, and the generated gas was analyzed by a gas chromatograph. As a result, it was found that 26.3 ml (1.1 mmol) of hydrogen gas was generated.

(f)発明の効果 本発明は以上説明したように、半導体微粒子と金属のコ
ロイド溶液を混合したのち、膜を用いて生成した光触媒
を液から分離して取出すという簡単な方法で効率の高い
光触媒を製造するものである。本発明の方法で得られた
光触媒は、太陽光エネルギーなどを用いて、アルコール
などの有機物を含む水溶液から水素ガスを製造するとき
や、廃水中の有害物質の除去に用いることができ、太陽
エネルギーの有効利用、公害の防止などに役立ち、その
技術的、経済的効果は大きい。
(F) Effect of the Invention As described above, the present invention provides a highly efficient photocatalyst by a simple method of mixing semiconductor fine particles and a colloidal solution of a metal, and then separating the photocatalyst produced using a film from the liquid. Is manufactured. The photocatalyst obtained by the method of the present invention can be used for producing hydrogen gas from an aqueous solution containing an organic substance such as alcohol by using solar energy or the like, and can be used for removing harmful substances in waste water. It is useful for effective use of water, prevention of pollution, etc., and its technical and economic effects are great.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C01B 3/04 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area C01B 3/04 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体の微粒子と金属のコロイド溶液を混
合したのち、膜を用いて生成物を溶液から分離して取出
すことを特徴とする微細な金属担持光触媒の製造方法
1. A method for producing a fine metal-supported photocatalyst, which comprises mixing semiconductor fine particles and a colloidal solution of metal and separating the product from the solution by using a membrane.
JP2126240A 1990-05-16 1990-05-16 Method for producing fine metal-supported photocatalyst Expired - Lifetime JPH0687979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2126240A JPH0687979B2 (en) 1990-05-16 1990-05-16 Method for producing fine metal-supported photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2126240A JPH0687979B2 (en) 1990-05-16 1990-05-16 Method for producing fine metal-supported photocatalyst

Publications (2)

Publication Number Publication Date
JPH0422438A JPH0422438A (en) 1992-01-27
JPH0687979B2 true JPH0687979B2 (en) 1994-11-09

Family

ID=14930264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2126240A Expired - Lifetime JPH0687979B2 (en) 1990-05-16 1990-05-16 Method for producing fine metal-supported photocatalyst

Country Status (1)

Country Link
JP (1) JPH0687979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319451A (en) * 2004-04-06 2005-11-17 Tohoku Ricoh Co Ltd Photocatalyst and method for manufacturing the same
JP2007190528A (en) * 2006-01-23 2007-08-02 Doshisha Metal particulate fixed photocatalyst substance and its production method
CN100395895C (en) * 2003-11-05 2008-06-18 南京大学 Porous membrane semiconductor optical electrode having visible light response and photoelectrochemical reaction equipment and preparation thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568157Y2 (en) * 1993-05-31 1998-04-08 水青工業株式会社 Outlet and water purifier
JP2000334309A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Photocatalyst
KR100520479B1 (en) * 2002-11-22 2005-10-18 (주)나눅스 Photo-catalyst sol and preparation method thereof
JP4565829B2 (en) * 2003-11-21 2010-10-20 大日本印刷株式会社 Coating liquid for pattern forming body
JP4613021B2 (en) * 2004-03-10 2011-01-12 大日本印刷株式会社 Photocatalyst-containing composition and photocatalyst-containing layer
JP2015036135A (en) * 2013-08-13 2015-02-23 福岡 憲治 Calcined material for improving fuel efficiency, device for improving fuel efficiency, and method for improving fuel efficiency
CN116672901B (en) * 2023-08-04 2023-10-27 西安金沃泰环保科技有限公司 Nanofiltration material for acid-containing waste gas and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395895C (en) * 2003-11-05 2008-06-18 南京大学 Porous membrane semiconductor optical electrode having visible light response and photoelectrochemical reaction equipment and preparation thereof
JP2005319451A (en) * 2004-04-06 2005-11-17 Tohoku Ricoh Co Ltd Photocatalyst and method for manufacturing the same
JP4591920B2 (en) * 2004-04-06 2010-12-01 東北リコー株式会社 Photocatalyst and method for producing the same
JP2007190528A (en) * 2006-01-23 2007-08-02 Doshisha Metal particulate fixed photocatalyst substance and its production method

Also Published As

Publication number Publication date
JPH0422438A (en) 1992-01-27

Similar Documents

Publication Publication Date Title
Zinatloo-Ajabshir et al. Green synthesis and characterization of Dy2Ce2O7 ceramic nanostructures with good photocatalytic properties under visible light for removal of organic dyes in water
Bessekhouad et al. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions
Zinatloo-Ajabshir et al. Green synthesis of Dy2Ce2O7 ceramic nanostructures using juice of Punica granatum and their efficient application as photocatalytic degradation of organic contaminants under visible light
CN106807361B (en) A kind of unformed bismuth tungstate of bismuth-- bismuth oxide ternary organic composite photochemical catalyst and preparation method
Bahnemann et al. Photocatalytic detoxification of polluted aquifers: novel catalysts and solar applications
JPH0687979B2 (en) Method for producing fine metal-supported photocatalyst
Wu et al. Facile construction of Bi2MoO6/Bi/g-C3N4 toward efficient photocatalytic oxidation of indoor gaseous formaldehyde with a wide concentration range under visible light irradiation
Kumari et al. Novel mixed metal oxide (ZnO. La2O3. CeO2) synthesized via hydrothermal and solution combustion process–a comparative study and their photocatalytic properties
Xu et al. Understanding oxygen vacant hollow structure CeO2@ In2O3 heterojunction to promote CO2 reduction
CN111420668B (en) In-situ synthesis of alpha-Bi2O3/CuBi2O4Preparation method and application of heterojunction photocatalytic material
CN104056611B (en) One prepares nano-TiO2Method
Tian et al. Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3
CN105618039B (en) A kind of sun optical drive efficiently reduces CO2Pt ZnGa2O4The preparation of photochemical catalyst
Dai et al. Effect of preparation method on the structure and photocatalytic performance of BiOI and Bi5O7I for Hg0 removal
CN111992255B (en) Flaky g-C for removing bisphenol A in water3N4ZIF-8/AgBr composite material and preparation method thereof
CN106457100B (en) Heavy metal recovery process and the material for being conducive to this process
JP4158850B2 (en) Carbon dioxide reduction method using photocatalyst
JP3876305B2 (en) Composite photocatalyst for carbon dioxide reduction and carbon dioxide photoreduction method using the same
WO2002022497A1 (en) Photocatalyst and apparatus for the use in the production of hyd rogen
CN113976148B (en) Z-shaped C 60 Bi/BiOBr composite photocatalyst and preparation method and application thereof
Sun et al. Anatase TiO2 with Co‐exposed (001) and (101) Surface‐Based Photocatalytic Materials for Energy Conversion and Environmental Purification
CN101623635A (en) Visible light response composite photocatalyst and preparation method thereof
Yin et al. Fabrication of 2D/1D Bi2WO6/C3N5 heterojunctions for efficient antibiotics removal
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
JP6999180B2 (en) Hydrogen production method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term