JPH0687672A - Boron carbide/carbon fiber composite sintered compact for wall material of nuclear fusion reactor - Google Patents

Boron carbide/carbon fiber composite sintered compact for wall material of nuclear fusion reactor

Info

Publication number
JPH0687672A
JPH0687672A JP4236811A JP23681192A JPH0687672A JP H0687672 A JPH0687672 A JP H0687672A JP 4236811 A JP4236811 A JP 4236811A JP 23681192 A JP23681192 A JP 23681192A JP H0687672 A JPH0687672 A JP H0687672A
Authority
JP
Japan
Prior art keywords
carbon fiber
boron carbide
wall material
fusion reactor
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4236811A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakamoto
広志 坂本
Shigeru Kikuchi
菊池  茂
Ryutaro Jinbo
龍太郎 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4236811A priority Critical patent/JPH0687672A/en
Publication of JPH0687672A publication Critical patent/JPH0687672A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a wall material for a nuclear fusion reactor having remarkably improved heat conductivity and thermal shock resistance without losing the conventional characteristics by combining boron carbide with carbon fibers in a specified ratio and sintering them. CONSTITUTION:This composite sintered compact for the wall material of a nuclear fusion reactor consists of 90-50vol.% boron carbide and 10-50vol.% carbon fibers. In this composite sintered compact, the carbon fibers are preferably oriented so that the angle between the fibers and the direction of heat conduction is regulated to <=+ or -30 deg.. The aspect ratio of the carbon fibers is preferably >=100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、現在の原子力発電に変
わるエネルギ源として期待されている核融合炉の中枢で
ある超高真空、高温で水素放電によるプラズマ中で使用
する第一炉壁材に関する。
BACKGROUND OF THE INVENTION The present invention relates to the first reactor wall material used in plasma produced by hydrogen discharge at ultrahigh vacuum and high temperature, which is the center of a fusion reactor expected as an energy source to replace current nuclear power generation. Regarding

【0002】[0002]

【従来の技術】現在、世界的にエネルギ生産に伴う、地
球の環境汚染が大きな社会問題となってきており、クリ
ーンなエネルギ源である重水素を用いた核融合炉の研究
開発が盛んに行われている。
2. Description of the Related Art At present, global environmental pollution associated with energy production has become a major social problem, and research and development of a fusion reactor using deuterium, which is a clean energy source, has been actively conducted. It is being appreciated.

【0003】現在、わが国では国家的規模で核融合炉の
研究開発が進められている。核融合装置の代表例として
トカマク型があり、その構成要素は材料をはじめ各分野
にわたっている。その第一壁に使用される材料は、超高
温高速中性子照射、高粒子束の水素プラズマ照射等に耐
え得る材料でなければならない。その他、種々の要求項
目があり、現在これら要求を満足する材料は開発されて
いない。しかし、核融合炉実用化のキーポイントである
ため各所で検討されている。特に具備しなければならな
い項目に、低原子番号であることが重要である。すなわ
ち、高温プラズマから高い熱負荷及び粒子負荷を受けた
場合に、スパッタリング,蒸発,昇華などを通じて炉壁
材がプラズマ中に不純物として混入する。この混入物の
多少は核融合炉炉壁材の損傷、ひいては性能に大きな影
響を与える。これを出来るだけ少なくするためには、低
原子番号の材料ほど優れていることは既に立証されてい
る。現状での検討及び研究結果等では比較的低原子番号
で低誘導放射化材料である炭素は、高速中性子による放
射化の影響が少ないことなどから有力候補材の一つとな
っている。とくに熱伝導率、熱衝撃性等の面で改良され
つつあるC/Cコンポジットの方が、従来の炭素より数
段優れているとされている。特開平1− 129188号公
報に見られるように、構造を含め数多く提出されてい
る。しかし、核融合炉壁材としては前述した長所もある
が、化学スパッタリングや中性子照射により損傷やエロ
ージョンを受けやすい元素本来の欠点を克服することは
非常に困難である。また、一部、特開昭60−98385 号公
報に開示されているように、炭素より低原子番号である
ベリリウムも有望視されている。しかし、ベリリウムが
毒性を持つためあまり積極的には検討はされていない。
At present, in Japan, research and development of nuclear fusion reactors are underway on a national scale. The tokamak type is a typical example of a nuclear fusion device, and its constituent elements span various fields including materials. The material used for the first wall must be a material that can withstand ultra-high temperature fast neutron irradiation, high-particle flux hydrogen plasma irradiation, and the like. In addition, there are various requirements, and materials satisfying these requirements have not yet been developed. However, it is being studied at various places because it is a key point for commercialization of fusion reactors. It is important to have a low atomic number as an item that must be provided in particular. That is, when a high heat load and a high particle load are applied from the high temperature plasma, the furnace wall material is mixed into the plasma as impurities through sputtering, evaporation, sublimation and the like. The amount of this contaminant has a great influence on the damage of the wall material of the fusion reactor and eventually on the performance. It has already been proven that lower atomic number materials are superior in order to reduce this as much as possible. In the present examination and research results, carbon, which is a relatively low atomic number and low induction activation material, is one of the promising candidates because it is less affected by activation by fast neutrons. In particular, the C / C composite, which is being improved in terms of thermal conductivity, thermal shock resistance, etc., is said to be several times superior to conventional carbon. As can be seen in JP-A-1-129188, a large number of documents including structures have been submitted. However, although the fusion reactor wall material has the above-mentioned advantages, it is very difficult to overcome the inherent drawbacks of the element that is easily damaged or eroded by chemical sputtering or neutron irradiation. In addition, beryllium, which has a lower atomic number than carbon, is also considered to be promising, as disclosed in JP-A-60-98385. However, because beryllium is toxic, it has not been actively investigated.

【0004】また、炭化ケイ素などファインセラミック
スも高温特性が良いので検討されてはいるが、放熱を促
進させるための冷却装置材である金属との接合等の問題
を含めて解決しなければならない課題が多い。そのた
め、本発明者らは炭素より原子番号の小さい金属ホウ素
に着目した。
Fine ceramics such as silicon carbide have been studied because they have good high temperature characteristics, but problems to be solved including problems such as joining with a metal as a cooling device material for promoting heat dissipation. There are many. Therefore, the present inventors have focused on metallic boron having an atomic number smaller than that of carbon.

【0005】炭素より低原子番号であり核融合炉壁材と
しての金属ホウ素は、このような炭素材の欠点を補う性
質を持ち、プラズマ混入による輻射損失の抑制作用があ
り、プラズマ温度の上昇を容易にする。また、従来より
大きな熱中性子吸収断面積を持つことが知られており、
原子炉の制御や遮蔽に用いられている。しかし、金属ホ
ウ素は炭化ホウ素を含めて熱伝導率が低く、熱衝撃に弱
い。そのため発明者らは核融合炉壁材として炭化ホウ素
の改善を考えた。
Metallic boron, which has a lower atomic number than that of carbon and serves as a wall material for a nuclear fusion reactor, has a property of compensating for the drawbacks of such a carbon material, has an effect of suppressing radiation loss due to plasma inclusion, and increases plasma temperature. make it easier. It is also known to have a larger thermal neutron absorption cross section than before,
It is used to control and shield reactors. However, metallic boron, including boron carbide, has low thermal conductivity and is vulnerable to thermal shock. Therefore, the inventors considered improving boron carbide as a fusion reactor wall material.

【0006】[0006]

【発明が解決しようとする課題】上記した理由により核
融合炉壁材となる基本材料として、発明者らは炭化ホウ
素を選定した。しかし、上述したように炭化ホウ素は熱
伝導率が低く、熱衝撃に弱い。熱伝導率が低い場合、放
熱性が悪く種々の悪影響があり好ましくない。また、核
融合炉壁材は高温から室温までの広い温度範囲に曝され
るため耐熱衝撃が高くなければならない。この大きな欠
点を持つために、低原子番号材料でありながら有望視さ
れていない。そこで、低原子番号である利点を活かし、
熱伝導率及び熱衝撃性を改良すべく検討をした。
For the above reasons, the inventors have selected boron carbide as the basic material for the fusion reactor wall material. However, as described above, boron carbide has low thermal conductivity and is weak against thermal shock. When the thermal conductivity is low, the heat dissipation is poor and there are various adverse effects, which is not preferable. In addition, the fusion reactor wall material is exposed to a wide temperature range from high temperature to room temperature, and thus must have high thermal shock resistance. Due to this major drawback, it is not a promising material despite its low atomic number. Therefore, taking advantage of the low atomic number,
A study was conducted to improve thermal conductivity and thermal shock resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、核融合炉壁材
としては低原子番号材料である炭素及び炭化ホウ素とも
単独の場合は、それぞれ長所,欠点を持っている。そこ
で、両者を複合化することより単独の長所を損なう事な
く欠点の改善してより特性を向上させるように検討をし
た。
The present invention has advantages and disadvantages when carbon and boron carbide, which are low atomic number materials, are used alone as a fusion reactor wall material. Therefore, by combining the two, studies were made to improve the defects and further improve the characteristics without impairing the advantages of each.

【0008】[0008]

【作用】本発明による炭化ホウ素/炭素繊維複合焼結体
は単独の炭化ホウ素に比べて熱伝導率及び熱衝撃性が数
段改善され、従来から持っている特性を失うことなく、
低原子番号の利点を活かした核融合炉壁材として優れた
効果を発揮する。
The boron carbide / carbon fiber composite sintered body according to the present invention has several steps improved in thermal conductivity and thermal shock resistance as compared with a single boron carbide, and does not lose its conventional properties.
It exerts an excellent effect as a wall material for a fusion reactor that takes advantage of the low atomic number.

【0009】[0009]

【実施例】【Example】

〈実施例1〉母材として市販の炭化ホウ素粉末(平均粒
径1.5μm )、添加物として炭素繊維(パン系 熱伝
導率120w/m・k 8.0μmφ×1.0mm)及び炭
素粉末(平均粒径2.5μm )を用いて複合焼結体を作
製した。すなわち、母材炭化ホウ素及び添加物のそれぞ
れの所定量を混合して、ホットプレスにより2050℃
で焼結した。また、比較のため炭化ホウ素単独の焼結体
も同時に焼結した。この焼結体の表面付着物をグライン
ダで取り除いて清浄化した後、試験に供した。図1に焼
結体の断面組織の模擬図を示す。(a)は繊維を一方向
に配向した場合、(b)は無配向の場合、(c)は粉末
を添加した場合である。この試験片を用いて、初めに熱
伝導率について検討した。なお、炭素繊維の場合、図1
の(a)に示した一方向に配向したものについては配向
した繊維に平行(P)方向と直角(V)方向の2種類に
ついて熱伝導率を測定した。図2に炭素粉末添加も含め
た複合焼結体の熱伝導率の測定結果を示す。(a)の配
向した試料の配向と平行方向の熱伝導率が、著しく向上
している。5vol %では効果は少ないが、10vol%以
上の添加では顕著に認められる。他の試料及び配向した
繊維の垂直方向の熱伝導率は単独炭化ホウ素の熱伝導率
とほとんど同じであり、向上には寄与していない。図3
は図2に示した(a)の炭素繊維30vol %添加試料の、
繊維の角度を変化させて熱伝導率を測定した結果であ
る。図から明らかなように繊維の角度が30°までは熱
伝導率の向上が認められるが、それ以上になると母材と
添加物の界面の影響あるいは空孔の増加等によりその効
果がなくなる。このため炭化ホウ素の熱伝導率の向上に
は、配向した炭素繊維と熱伝導方向とのなす角度が±30
°以下になるように配列するのが適当である。図4は図
3と同様に炭素繊維30vol %添加試料を用いて、アス
ペクト比を変化させて熱伝導率を測定した結果である。
アスペクト比50までは熱伝導率の増加は少ないが、1
00以上になるとその上昇は大きい。この結果から熱伝
導率の上昇には、アスペクト比は100以上が好適であ
る。なお、本実施例ではパン系炭素繊維の測定結果を示
したが、他に熱伝導率が良好なピッチ系炭素繊維があ
る。ピッチ系炭素繊維(熱伝導率250w/m・k)につ
いても同様の実験を行ったところ、アスペクト比につい
ては同様の結果が得られたが、熱伝導率は約2倍優れて
いた。このことから、熱伝導率の高いピッチ系炭素繊維
を用いた方がより優れている。また、本実施例で、炭素
繊維の径は一般に市販されている8μmのものを用いた
が、5μm以下及び30μm以上の場合は、強度,熱伝
導率等ともに本実施例の値を越えることはなかった。こ
のため、繊維の径は作業性,経済性等を考慮すると、8
〜15μmが良い。
Example 1 Commercially available boron carbide powder (average particle size: 1.5 μm) as a base material, carbon fiber (pan-based thermal conductivity 120 w / m · k 8.0 μm φ × 1.0 mm) and carbon powder (as an additive) A composite sintered body was produced using an average particle size of 2.5 μm. That is, a predetermined amount of each of the base material boron carbide and the additive is mixed and hot-pressed at 2050 ° C.
Sintered with. For comparison, a sintered body of boron carbide alone was simultaneously sintered. The surface deposits of this sintered body were removed by a grinder for cleaning and then subjected to a test. FIG. 1 shows a simulated view of the sectional structure of the sintered body. (A) shows the case where the fibers are oriented in one direction, (b) shows the case where the fibers are not oriented, and (c) shows the case where the powder is added. Using this test piece, the thermal conductivity was first examined. In the case of carbon fiber,
In the case of the unidirectionally oriented one shown in (a), the thermal conductivity was measured for two types of the oriented fiber (parallel (P) direction and right angle (V) direction). FIG. 2 shows the measurement results of the thermal conductivity of the composite sintered body including the addition of carbon powder. The thermal conductivity in the direction parallel to the orientation of the (a) oriented sample is remarkably improved. At 5 vol%, the effect is small, but when added at 10 vol% or more, it is noticeable. The thermal conductivities of the other samples and the oriented fibers in the vertical direction are almost the same as the thermal conductivities of the single boron carbide and do not contribute to the improvement. Figure 3
Of the sample containing 30 vol% of the carbon fiber of (a) shown in FIG.
It is the result of measuring the thermal conductivity by changing the angle of the fiber. As is apparent from the figure, the thermal conductivity is improved up to the fiber angle of 30 °, but if it is more than 30 °, the effect disappears due to the influence of the interface between the base material and the additive or the increase of pores. Therefore, in order to improve the thermal conductivity of boron carbide, the angle between the oriented carbon fiber and the heat conduction direction is ± 30
It is suitable to arrange so that it becomes less than or equal to °. Similar to FIG. 3, FIG. 4 shows the results of measuring the thermal conductivity by changing the aspect ratio using a sample containing 30 vol% carbon fiber.
There is little increase in thermal conductivity up to an aspect ratio of 50, but 1
When it is over 00, the increase is large. From this result, an aspect ratio of 100 or more is suitable for increasing the thermal conductivity. In addition, although the measurement result of the bread-based carbon fiber is shown in this example, there is another pitch-based carbon fiber having good thermal conductivity. A similar experiment was conducted on pitch-based carbon fibers (thermal conductivity 250 w / m · k), and similar results were obtained for the aspect ratio, but the thermal conductivity was about twice as excellent. From this, it is better to use the pitch-based carbon fiber having high thermal conductivity. Further, in this example, the commercially available carbon fiber having a diameter of 8 μm was used. However, in the case of 5 μm or less and 30 μm or more, the strength, the thermal conductivity, etc. do not exceed the values of this example. There wasn't. Therefore, considering the workability and economy, the fiber diameter is 8
~ 15 μm is good.

【0010】〈実施例2〉実施例1で炭化ホウ素の熱伝
導率の向上に有効であった炭素繊維添加試料について曲
げ試験を行った。図5にその結果を示す。炭素繊維添加
量50vol %添加試料まではその低下が少ない。しか
し、60vol %以上の添加では、曲げ強さが著しく低下
している。図6は破壊じん性値K1c 測定結果を示す。
熱伝導率と同様に5vol %では効果がすくないが、10
vol %以上では炭素繊維添加の影響が表われて増加す
る。しかし、60vol %以上の添加量では反対に低下し
てしまう。破壊じん性値及び曲げ強さの低下は、核融合
炉壁材を含めて構造材料の破壊に関係することから好ま
しくない。このことから炭化ホウ素の熱伝導率向上のた
めに添加する炭素繊維の添加量は10〜50vol %が適
量である。
Example 2 A bending test was conducted on a carbon fiber-added sample which was effective in improving the thermal conductivity of boron carbide in Example 1. The result is shown in FIG. The decrease is small up to the sample containing 50 vol% of carbon fiber added. However, when it is added in an amount of 60 vol% or more, the bending strength is remarkably reduced. FIG. 6 shows the results of measurement of fracture toughness K 1 c.
Similar to thermal conductivity, 5 vol% is less effective, but 10
Above vol%, the effect of carbon fiber addition appears and increases. However, if it is added in an amount of 60 vol% or more, it will decrease. The decrease in fracture toughness value and bending strength is not preferable because it is related to the fracture of structural materials including the wall material of the fusion reactor. From this, the amount of carbon fiber added for improving the thermal conductivity of boron carbide is 10 to 50 vol%.

【0011】〈実施例3〉実施例1及び2において熱伝
導率及び機械的性質の良好であった、図1の(a)試料の
耐熱衝撃性について検討した。比較のため単独の炭化ホ
ウ素についても耐熱衝撃性を測定した。図7は所定の温
度に30min 保持し、20℃の水中に急冷した後に曲げ
試験を行った結果である。単独の炭化ホウ素は250℃
からの急冷で割れが生じて、曲げ強さが一気に低下し
た。これに比べて炭化ホウ素/炭素繊維複合焼結体は5
00℃から低下しはじめ、700℃からの急冷で単独の
炭化ホウ素の250℃からの急冷の場合と同程度になっ
ている。しかも、曲げ強さは一気に低下せず、徐々に進
行している。炭素繊維添加により割れの開始温度を高温
側にずらし、また、割れの進行を遅らせることができ
る。このように、炭素繊維を添加することにより炭化ホ
ウ素の耐熱衝撃性が大幅に改善された。
Example 3 The thermal shock resistance of the sample (a) of FIG. 1 having good thermal conductivity and mechanical properties in Examples 1 and 2 was examined. For comparison, thermal shock resistance was also measured for boron carbide alone. FIG. 7 shows the results of a bending test after holding at a predetermined temperature for 30 minutes and quenching in water at 20 ° C. 250 ° C for single boron carbide
The quenching caused cracks and the bending strength dropped at once. Compared with this, the boron carbide / carbon fiber composite sintered body is 5
The temperature begins to drop from 00 ° C., and when it is rapidly cooled from 700 ° C., it is almost the same as when the single boron carbide is rapidly cooled from 250 ° C. Moreover, the bending strength does not decrease at once, but gradually progresses. By adding carbon fiber, the crack initiation temperature can be shifted to the high temperature side, and the progress of cracking can be delayed. In this way, the thermal shock resistance of boron carbide was significantly improved by adding carbon fiber.

【0012】[0012]

【発明の効果】本発明の核融合炉壁材としての炭化ホウ
素/炭素繊維複合焼結体は、熱伝導率が大幅に改善さ
れ、耐熱衝撃性の向上と割れの進行を緩和することがで
きる。
EFFECTS OF THE INVENTION The boron carbide / carbon fiber composite sintered body as a fusion reactor wall material of the present invention has a significantly improved thermal conductivity, and can improve thermal shock resistance and mitigate the progress of cracking. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の効果を確認するために作製した試験片
の断面図。
FIG. 1 is a cross-sectional view of a test piece manufactured to confirm the effect of the present invention.

【図2】図1の試料について添加量を変化させて熱伝導
率を測定した特性図。
FIG. 2 is a characteristic diagram in which the thermal conductivity was measured for the sample of FIG. 1 while changing the addition amount.

【図3】炭素繊維の配向角度を変化させて熱伝導率を測
定した特性図。
FIG. 3 is a characteristic diagram in which the thermal conductivity is measured by changing the orientation angle of carbon fibers.

【図4】炭素繊維のアスペクトを変化させて熱伝導率を
測定した特性図。
FIG. 4 is a characteristic diagram in which the thermal conductivity is measured by changing the aspect of carbon fiber.

【図5】炭素繊維の添加量を変化させて曲げ強さを測定
した特性図。
FIG. 5 is a characteristic diagram in which bending strength is measured by changing the amount of carbon fiber added.

【図6】炭素繊維の添加量を変化させて破壊じん性を測
定した特性図。
FIG. 6 is a characteristic diagram in which fracture toughness was measured by changing the amount of carbon fiber added.

【図7】本発明の炭化ホウ素/炭素繊維複合焼結体の耐
熱衝撃性を測定した特性図。
FIG. 7 is a characteristic diagram in which the thermal shock resistance of the boron carbide / carbon fiber composite sintered body of the present invention is measured.

【符号の説明】[Explanation of symbols]

P…本発明の炭素繊維を熱伝導に平行配向した試料、V
…炭素繊維を熱伝導に垂直配向した試料、b…炭素繊維
無配向試料、c…炭素粉末添加試料。
P ... A sample in which the carbon fiber of the present invention is oriented parallel to heat conduction, V
... a sample in which carbon fibers are vertically oriented for heat conduction, b ... a non-oriented sample of carbon fibers, c ... a sample in which carbon powder is added.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭化ホウ素90〜50vol %/炭素繊維1
0〜50vol %からなることを特徴とする核融合炉壁用
複合焼結体。
1. Boron carbide 90 to 50 vol% / carbon fiber 1
A composite sintered body for a fusion reactor wall, comprising 0 to 50 vol%.
【請求項2】炭化ホウ素/炭素繊維からなる複合焼結体
において、前記炭素繊維を熱伝導方向とのなす角度が±
30゜以下になるように配向させたことを特徴とする核
融合炉壁材用炭化ホウ素/炭素繊維複合焼結体。
2. In a composite sintered body of boron carbide / carbon fiber, an angle formed by the carbon fiber and a heat conduction direction is ±.
A boron carbide / carbon fiber composite sintered body for a fusion reactor wall material, characterized by being oriented so as to have an angle of 30 ° or less.
【請求項3】請求項1において、複合化する炭素繊維の
アスペクト比が100以上である核融合炉壁材用炭化ホ
ウ素/炭素繊維複合焼結体。
3. The boron carbide / carbon fiber composite sintered body for a fusion reactor wall material according to claim 1, wherein the carbon fiber to be composited has an aspect ratio of 100 or more.
JP4236811A 1992-09-04 1992-09-04 Boron carbide/carbon fiber composite sintered compact for wall material of nuclear fusion reactor Pending JPH0687672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236811A JPH0687672A (en) 1992-09-04 1992-09-04 Boron carbide/carbon fiber composite sintered compact for wall material of nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236811A JPH0687672A (en) 1992-09-04 1992-09-04 Boron carbide/carbon fiber composite sintered compact for wall material of nuclear fusion reactor

Publications (1)

Publication Number Publication Date
JPH0687672A true JPH0687672A (en) 1994-03-29

Family

ID=17006135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236811A Pending JPH0687672A (en) 1992-09-04 1992-09-04 Boron carbide/carbon fiber composite sintered compact for wall material of nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPH0687672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631138A1 (en) * 1985-09-14 1987-03-26 Sony Corp VOLTAGE SOURCE WITH DC CONVERTER
CN111410537A (en) * 2020-03-24 2020-07-14 中国科学院上海硅酸盐研究所 Boron carbide-based complex phase ceramic material with linear conductive characteristic and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631138A1 (en) * 1985-09-14 1987-03-26 Sony Corp VOLTAGE SOURCE WITH DC CONVERTER
CN111410537A (en) * 2020-03-24 2020-07-14 中国科学院上海硅酸盐研究所 Boron carbide-based complex phase ceramic material with linear conductive characteristic and preparation method thereof

Similar Documents

Publication Publication Date Title
Ren et al. Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0. 4Sb1. 6Te3 thermoelectric material
Tian et al. Damage tolerance and extensive plastic deformation of β‐Yb2Si2O7 from room to high temperatures
Li et al. Anomalous thermodynamic properties and phase stability of δ− Pu 1− x M x (M= Ga and Al) alloys from first-principles calculations
Prikhna et al. Presence of oxygen in Ti-Al-C MAX phases-based materials and their stability in oxidizing environment at elevated temperatures
Wu et al. Fabrication and characteristics of plasma facing SiC/C functionally graded composite material
Koyanagi et al. Response of isotopically tailored titanium diboride to neutron irradiation
Dukenbayev et al. The investigation of various type irradiation effects on aluminum nitride ceramic
Wang et al. Microstructure and properties of B4Cp/Al composite prepared by microwave sintering with low temperature
Yang et al. Flash sintering of ultra‐high pure alumina ceramics with fine microstructure
Hu et al. Comparative investigation of ultrafast thermal shock of Ti3AlC2 ceramic in water and air
Ji et al. High temperature oxidation resistance of Ti3SiC2 in air and low oxygen atmosphere
Kim et al. Synthesis and characteristics of ternary Be–Ti–V beryllide pebbles as advanced neutron multipliers
Sairam et al. Competition between densification and microstructure development during spark plasma sintering of B4C–Eu2O3
JPH0687672A (en) Boron carbide/carbon fiber composite sintered compact for wall material of nuclear fusion reactor
Fan et al. Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Mohamad et al. Thermal and mechanical properties of U3Si and USi3
Li et al. Preliminary exploration of a WTaVTiCr high-entropy alloy as a plasma-facing material
Deng et al. The 3d-shell electrons in NiAl-based alloys containing Cr and Co studied by positron annihilation
Zhang et al. Determination of interdiffusion coefficients of Si and Al in Ti3SiC2–Ti3AlC2 diffusion couple at 1373‐1673 K
Zhao et al. High-entropy [([Nd. sub. 0.2][Sm. sub. 0.2][Eu. sub. 0.2][Y. sub. 0.2][Yb. sub. 0.2]). sub. 4][Al. sub. 2][O. sub. 9] with good high-temperature stability, low thermal conductivity, and anisotropic thermal expansivity.
Fujitsuka et al. Thermal shock experiments for carbon materials by electron beams
Bonal et al. Simulation experimental investigation of plasma off-normal events on advanced silicon doped CFC-NS31
Ding et al. Ultra-Fast Thermal Shock Evaluation of Ti2AlC Ceramic. Materials 2022, 15, 6877
Hopkins et al. Radiation effects on structural ceramics in fusion
Yamamoto et al. De Haas-van Alphen effect and Fermi surfaces in UC