JPH0687639U - Air compressor air suction device - Google Patents

Air compressor air suction device

Info

Publication number
JPH0687639U
JPH0687639U JP3023793U JP3023793U JPH0687639U JP H0687639 U JPH0687639 U JP H0687639U JP 3023793 U JP3023793 U JP 3023793U JP 3023793 U JP3023793 U JP 3023793U JP H0687639 U JPH0687639 U JP H0687639U
Authority
JP
Japan
Prior art keywords
air
cooler
air compressor
flow path
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3023793U
Other languages
Japanese (ja)
Inventor
昭一郎 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3023793U priority Critical patent/JPH0687639U/en
Publication of JPH0687639U publication Critical patent/JPH0687639U/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

(57)【要約】 【目的】 気温の高いときでもガスタ―ビンパワ―ダウ
ンを防止する。 【構成】 空気圧縮機2の入口側に空気導入部8を設
け、この空気導入部8に第1流路10a、第2流路10bを
区画し、第2流路10aにダンパ11を、第2流路10bに冷
却器7を設ける。
(57) [Summary] [Purpose] Prevents gas turbine power down even in high temperatures. [Structure] An air introducing section 8 is provided on the inlet side of the air compressor 2, a first flow path 10a and a second flow path 10b are defined in the air introducing section 8, and a damper 11 is provided in the second flow path 10a. The cooler 7 is provided in the two flow paths 10b.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、空気圧縮機の空気吸入装置にかかり、とりわけ吸入空気の高低温 度変化によって影響を受けるガスタ―ビン出力を、その出力が空気温度変化を受 けないように冷却器を設けて吸入空気温度を常に規準値に保持できるようにした 空気圧縮機の空気吸入装置に関する。 The present invention relates to an air suction device of an air compressor, and in particular, a gas turbine output that is affected by a change in the temperature of the intake air is sucked in by providing a cooler so that the output does not receive a change in the air temperature. The present invention relates to an air intake device for an air compressor that can always maintain an air temperature at a standard value.

【0002】[0002]

【従来の技術】[Prior art]

従来、発電用として使用されているガスタ―ビンプラントは、図6に示されて いるように、空気圧縮機2で大気を吸込み、吸込んだ空気を圧縮して高圧化し、 燃焼器3に送り出し、ここで燃料を加えて、燃焼ガスを生成し、生成された燃焼 ガスをガスタ―ビン4に送って膨張仕事をさせ、膨張仕事から得た回転トルクを 発電機6に与えて空気出力を得る一方、膨張仕事後の排気を大気5に放出してい る。 A gas turbine plant conventionally used for power generation, as shown in FIG. 6, sucks in the air with an air compressor 2, compresses the sucked air into a high pressure, and sends it out to a combustor 3. Here, fuel is added to generate combustion gas, the generated combustion gas is sent to the gas turbine 4 to perform expansion work, and the rotational torque obtained from the expansion work is applied to the generator 6 to obtain air output. The exhaust gas after expansion work is released to the atmosphere 5.

【0003】 ところが、ガスタ―ビンプラントは、大気の高低温度変化を受けると、ガスタ ―ビン4の回転トルクも高低変化し、この変化は発電機6の電気出力変化にも大 きな影響を与える。However, in the gas turbine plant, when the atmospheric temperature changes, the rotational torque of the gas turbine 4 also changes, and this change also has a large effect on the electric output change of the generator 6. .

【0004】 通常、ガスタ―ビン4の回転トルク(出力)を定めるにあたり、大気の吸込量 と大気の温度15℃を基準に設計要項を決めているが、何分にも大気の温度は夏季 と冬季とでは15℃以上の差があり、このためその温度換算の比重量も大きな差が 出てくる。比重量の差は、吸込重量流量の大小にはねかえり、このため夏季のガ スタ―ビン運転の出力低下は宿命的なものとなっている。Usually, in determining the rotational torque (output) of the gas turbine 4, the design requirements are determined based on the intake amount of the atmosphere and the temperature of the atmosphere of 15 ° C. There is a difference of 15 ° C or more from the winter season, so the specific weight in terms of temperature also has a large difference. The difference in specific weight is repelled by the magnitude of the suction weight flow rate, and therefore the reduction in the output of the gas turbine operation in summer is fatal.

【0005】 かかる問題に対拠するため、最近、図6に示すように空気圧縮機2の入口側に 冷却器7を配し、空気導入部8を通過する大気を冷し、夏季でも吸入大気が設計 温度条件下、ガスタ―ビンプラントを効率よく運転できるようにする研究が進め られている。In order to counter such a problem, recently, as shown in FIG. 6, a cooler 7 is arranged on the inlet side of the air compressor 2 to cool the atmosphere passing through the air introducing portion 8 and to suck the intake air even in summer. Is conducting research to enable efficient operation of gas turbine plants under design temperature conditions.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

空気圧縮機2の入口側に冷却器7を配する場合、理論上、夏季でもガスタ―ビ ンプラントは効率の高い運転ができるけれども、反面、冷却器7を配することに よる不具合も実用上出ている。例えば、空気圧縮機2の入口側に冷却器7を配す ると、大気の流れに抵抗が出、空気圧縮機2に至るときにはその流れの乱れによ る損失が従来よりも倍加し、冷却器7がない場合にくらべガスタ―ビンから発電 機に与えられる回転トルク(出力)は約3%前後パワ―ダウンすることが確認さ れている。 When the cooler 7 is installed on the inlet side of the air compressor 2, theoretically, the gas turbine plant can be operated with high efficiency even in the summer, but on the other hand, the problem due to the cooler 7 is practically encountered. ing. For example, if a cooler 7 is arranged on the inlet side of the air compressor 2, resistance to the flow of the atmosphere is exerted, and when reaching the air compressor 2, the loss due to the turbulence of the flow doubles as compared to the conventional case, and cooling is performed. It has been confirmed that the rotating torque (output) applied to the generator from the gas turbine is about 3% less than that without the unit 7.

【0007】 したがって、空気圧縮機の入口側に冷却器を配して夏季、高い効率の下、ガス タ―ビンプラントの運転を求める場合、圧力損失の低減を考慮する必要がある。 この考案は、かかる点に鑑み、運転事情に応じて冷却器を空気導入部に適正配 置し、高い効率運転を求めた空気圧縮機の空気吸入装置を公表することを目的と している。Therefore, when a cooler is arranged on the inlet side of the air compressor to operate the gas turbine plant under high efficiency in summer, it is necessary to consider reduction of pressure loss. In view of the above point, the present invention aims to disclose an air intake device for an air compressor that appropriately arranges a cooler in an air introduction section according to operating conditions and requires high efficiency operation.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

この目的を達成するために、請求項1に記載した考案は、空気圧縮機の入口側 に、空気導入部を設け、この空気導入部は空気の流れに沿って第1流路、第2流 路に画する区画壁を設け、第1流路にはダンパを、また第2流路には冷却器を備 えたことを特徴とする。 In order to achieve this object, the device according to claim 1 is provided with an air introduction part at the inlet side of the air compressor, and the air introduction part is provided with a first flow path and a second flow path along the air flow. It is characterized in that a partition wall that defines the passage is provided, a damper is provided in the first passage, and a cooler is provided in the second passage.

【0009】 この構成において、第1流路のダンパは、冷却器運転信号、空気圧縮機運転信 号のうち、いずれか一つの信号を検知したとき、閉口することが望ましい。 請求項3に記載した考案は、空気圧縮機の入口側に、空気導入部を設け、この 空気導入部から進退自在に移動する冷却器を設けたことを特徴とする。In this configuration, it is desirable that the damper of the first flow path be closed when any one of the cooler operation signal and the air compressor operation signal is detected. The invention described in claim 3 is characterized in that an air introducing portion is provided on the inlet side of the air compressor, and a cooler that moves forward and backward from the air introducing portion is provided.

【0010】 この構成において、空気導入部を進退する冷却器は、冷却器運転信号、空気圧 縮機運転信号のうち、いずれか一つの信号を検知したとき、空気導入部の流路位 置に移動させる。In this configuration, the cooler that advances and retracts the air introduction part moves to the flow path position of the air introduction part when either one of the cooler operation signal and the air compressor operation signal is detected. Let

【0011】[0011]

【作用】[Action]

請求項1に記載した考案において、ガスタ―ビンプラント運転中、冷却器運転 信号、空気圧縮機運転信号のいずれか一つの信号でダンパは閉口するので大気は 第2流路を通過中、冷却器で好しく冷され、また何らかの事情で冷却器運転不能 の場合、ダンパが開口し、第1流路に大気が流れる。したがって、運転事情に応 じて第1、第2流路を使い分けることができるので圧力損失の低減につながる。 The invention according to claim 1, wherein during operation of the gas turbine plant, the damper is closed by one of the cooler operation signal and the air compressor operation signal, so that the atmosphere is passing through the second flow path and the cooler When the cooler cannot be operated for some reason, the damper opens and the atmosphere flows into the first flow path. Therefore, the first and second flow paths can be selectively used according to the operating conditions, which leads to a reduction in pressure loss.

【0012】 請求項3に記載した考案において、冷却器運転信号、空気圧縮機運転信号のい ずれか一つの信号で冷却器は空気導入部から進退するので、ガスタ―ビンプラン トの運転上、必要なときに冷却器を使用することができる。したがって、冷却器 を空気導入部に常時、配しておくよりは圧力損失の低減につながり好都合である 。In the device according to the third aspect of the present invention, since the cooler advances and retreats from the air introduction part by either one of the cooler operation signal and the air compressor operation signal, the operation of the gas turbine plant is The cooler can be used when needed. Therefore, it is convenient because it leads to a reduction in pressure loss rather than always providing a cooler in the air introduction section.

【0013】[0013]

【実施例】【Example】

この考案にかかる空気圧縮機の吸入装置を実施例毎に分けて説明する。 図1はこの考案にかかる第1実施例の概略図である。 全体をGTで示すガスタ―ビンプラントは、串形に配置された空気圧縮機2、 ガスタ―ビン4、発電機6を有し、燃焼器3からガスタ―ビン4に与えられる燃 焼ガスで回転トルクを得、この回転トルクを発電機6に伝え、電気出力を得てい る。 The suction device of the air compressor according to the present invention will be described separately for each embodiment. FIG. 1 is a schematic view of a first embodiment according to the present invention. The gas turbine plant, which is entirely represented by GT, has an air compressor 2, a gas turbine 4, and a generator 6 arranged in a skewer shape, and is rotated by the combustion gas supplied from the combustor 3 to the gas turbine 4. The torque is obtained and this rotational torque is transmitted to the generator 6 to obtain the electric output.

【0014】 一方、空気圧縮機2の入口側は、管路1を経て空気導入部8に結ばれている。 この空気導入部8は、入口にフィルタ9を備えるとともに大気(空気)の流れに 沿って第1流路10a、第2流路10bを画する区画壁10cが設けられており、第1 流路10aにダンパ11を、また第2流路10bに冷却器7を備えている。On the other hand, the inlet side of the air compressor 2 is connected to the air introducing section 8 via the pipe line 1. The air introduction part 8 is provided with a filter 9 at the inlet and is provided with a partition wall 10c that defines a first flow path 10a and a second flow path 10b along the flow of the atmosphere (air). A damper 11 is provided at 10a, and a cooler 7 is provided at the second flow path 10b.

【0015】 ダンパ11を開閉するシ―ケンスは、図2に示すように、中央操作室には冷却器 運転指令信号、空気圧縮機運転信号、冷却器の冷却可能状態信号、冷却器運転停 止指令信号が表示されており、これらの信号のうち、空気圧縮機運転信号または 冷却器の冷却可能状態信号のいずれか一つをキャッチされると、ダンパ11は閉口 し、また、冷却器運転停止指令信号がキャッチされると、ダンパ11は開口するよ うになっている。As shown in FIG. 2, the sequence for opening and closing the damper 11 includes a cooler operation command signal, an air compressor operation signal, a cooler coolable state signal, and a cooler operation stoppage in the central operation room. The command signal is displayed, and when either one of these signals, the air compressor operation signal or the cooler coolable state signal, is caught, the damper 11 is closed and the cooler operation is stopped. When the command signal is caught, the damper 11 opens.

【0016】 したがって、冷却器7の運転中、大気は第2流路10bの冷却器7を通過し、こ こで好ましく冷却されて空気圧縮機2に送り出されるので夏季の気温の高いとき でもガスタ―ビンプラントGTは圧力損失に伴うパワ―ダウンすることなく高い 効率の下、運転をすることができる。なお、冷却器7に事故等何らかの事情が発 生した場合、運転停止指令信号が入ると、ダンパ11は開口し、第1流路10aから 空気圧縮機2に大気が与えられて運転が続行される。Therefore, during operation of the cooler 7, the atmosphere passes through the cooler 7 of the second flow path 10b, is preferably cooled here, and is sent to the air compressor 2. Therefore, even when the temperature in summer is high, the gas temperature is reduced. -The bin plant GT can operate with high efficiency without power down due to pressure loss. In addition, in the case where an accident or some other situation occurs in the cooler 7, when the operation stop command signal is input, the damper 11 is opened, the atmosphere is given to the air compressor 2 from the first flow path 10a, and the operation is continued. It

【0017】 図3は、この考案にかかる第2実施例の概略図である。この実施例は、空気導 入部8の冷却器12を流路14を横断して進退させたものであり、冷却器12の進退は 、図4のシ―ケンスに示すように、冷却器運転指令信号、空気圧縮機運転信号、 冷却器の冷却可能状態信号のいずれか一つの信号で収納部13から流路8に進み、 また冷却器運転停止指令信号により流路14から収納部13に戻されるようになって いる。FIG. 3 is a schematic view of a second embodiment according to the present invention. In this embodiment, the cooler 12 of the air inlet 8 is moved back and forth across the flow path 14, and the forward / backward movement of the cooler 12 is performed as shown in the sequence of FIG. A signal, an air compressor operation signal, or a cooler coolable state signal advances from the storage section 13 to the flow path 8, and a cooler operation stop command signal returns from the flow path 14 to the storage section 13. It is like this.

【0018】 したがって、ガスタ―ビンプラントGTの運転上、必要なときに大気は冷却器 12により冷却することができ、冷却器12を流路14に常時設置しておく場合にくら べて圧力損失低減につながる。Therefore, the atmosphere can be cooled by the cooler 12 when necessary in the operation of the gas turbine plant GT, and the pressure loss is lower than that when the cooler 12 is always installed in the flow path 14. It leads to reduction.

【0019】[0019]

【考案の効果】[Effect of device]

以上の説明のとおり、この考案にかかる空気圧縮機の吸入装置において、空気 圧縮機の入口側に設けた空気導入部は、流路を区分けし、一の流路にダンパを、 他の一の流路に冷却器を配することにより、また空気導入部の冷却器を進退させ ることにより、運転事情に応じて冷却器を使い分けることができるので、流路を 通る大気の圧力損失を比較的少なくして空気圧縮機に送り出すことができる。し たがって、夏季の気温の高いときでもガスタ―ビンプラントは高い効率で運転す ることができる。 As described above, in the intake device for an air compressor according to the present invention, the air introduction portion provided on the inlet side of the air compressor divides the flow passage, and a damper is provided in one flow passage and another By arranging a cooler in the flow path and moving the cooler in the air introduction part back and forth, it is possible to use the cooler properly according to the operating conditions, so the pressure loss of the atmosphere passing through the flow path is relatively small. It can be sent to the air compressor with a small amount. Therefore, the gas turbine plant can operate with high efficiency even when the summer temperature is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の第1実施例を示す概略図。FIG. 1 is a schematic view showing a first embodiment of the present invention.

【図2】第1実施例の制御ブロック図。FIG. 2 is a control block diagram of the first embodiment.

【図3】この考案の第2実施例を示す概略図。FIG. 3 is a schematic view showing a second embodiment of the present invention.

【図4】第2実施例の制御ブロック図。FIG. 4 is a control block diagram of a second embodiment.

【図5】従来の実施例を示す概略図。FIG. 5 is a schematic view showing a conventional example.

【符号の説明】[Explanation of symbols]

2 空気圧縮機 3 燃焼器 4 ガスタ―ビン 6 発電機 7、12 冷却器 8 空気導入部 10a 第1流路 10b 第2流路 10c 区画壁 11 ダンパ GT ガスタ―ビンプラント 2 Air compressor 3 Combustor 4 Gas turbine 6 Generator 7, 12 Cooler 8 Air introduction part 10a 1st flow path 10b 2nd flow path 10c Partition wall 11 Damper GT Gas turbine turbine plant

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 空気圧縮機の入口側に、空気導入部を設
け、この空気導入部は空気の流れに沿って第1流路、第
2流路に画する区画壁を設け、第1流路にはダンパを、
また第2流路には冷却器を備えたことを特徴とする空気
圧縮機の空気吸入装置。
1. An air introduction part is provided on the inlet side of an air compressor, and this air introduction part is provided with partition walls that demarcate a first flow path and a second flow path along the flow of air. Dampers on the road
An air suction device for an air compressor, wherein a cooler is provided in the second flow path.
【請求項2】 第1流路のダンパは、冷却器運転信号、
空気圧縮機運転信号のうち、いずれか一つの信号を検知
したときに閉口することを特徴とする請求項1記載の空
気圧縮機の空気吸入装置。
2. The damper of the first flow path comprises a cooler operation signal,
The air intake device for an air compressor according to claim 1, wherein the air intake device is closed when any one of the air compressor operation signals is detected.
【請求項3】 空気圧縮機の入口側に、空気導入部を設
け、この空気導入部から進退自在に移動する冷却器を設
けたことを特徴とする空気圧縮機の空気吸入装置。
3. An air suction device for an air compressor, comprising: an air introduction section provided on the inlet side of the air compressor; and a cooler movable forward and backward from the air introduction section.
【請求項4】 空気導入部を進退する冷却器は、冷却器
運転信号、空気圧縮機運転信号のうち、いずれか一つの
信号を検知したとき、空気導入部の流路位置に移動する
ことを特徴とする請求項1記載の空気圧縮機の空気吸入
装置。
4. The cooler for advancing and retracting the air introducing section is configured to move to a flow path position of the air introducing section when detecting one of a cooler operating signal and an air compressor operating signal. The air suction device for an air compressor according to claim 1.
JP3023793U 1993-06-07 1993-06-07 Air compressor air suction device Pending JPH0687639U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3023793U JPH0687639U (en) 1993-06-07 1993-06-07 Air compressor air suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023793U JPH0687639U (en) 1993-06-07 1993-06-07 Air compressor air suction device

Publications (1)

Publication Number Publication Date
JPH0687639U true JPH0687639U (en) 1994-12-22

Family

ID=12298115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023793U Pending JPH0687639U (en) 1993-06-07 1993-06-07 Air compressor air suction device

Country Status (1)

Country Link
JP (1) JPH0687639U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002466A (en) * 2006-06-21 2008-01-10 General Electric Co <Ge> Air bypass system and method for gas turbine inlet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002466A (en) * 2006-06-21 2008-01-10 General Electric Co <Ge> Air bypass system and method for gas turbine inlet

Similar Documents

Publication Publication Date Title
CN1749539B (en) Method and apparatus for actively turbocharging an engine
EP0385622B1 (en) Energy recovery system for motor vehicle
CN101701546B (en) Sequential turbocharging system anti-surge control device and control method
JPS6046250B2 (en) turbo charger
CN107448277A (en) Variable cross section turbine consecutive pressurization system structure and control method
JPS62101814A (en) Device for recovering energy of engine
CN113202639A (en) Power system of electric supercharging Miller cycle engine
JPH04112921A (en) Controller for turbo-charger
JP2884725B2 (en) Control device for twin turbocharger
US2898745A (en) Automobile air conditioning and supercharging system
JPH0687639U (en) Air compressor air suction device
CN201635827U (en) Intake system of turbocharged engine
JP2914928B2 (en) Air compressor air suction device
JPH09195781A (en) Supercharger for engine
JPS59141709A (en) Exhaust gas purifying device for engine equipped with turbosupercharger
JPS5856341Y2 (en) Diesel engine exhaust energy recovery control device
JP2790753B2 (en) Engine exhaust energy recovery device
JPH0235131B2 (en)
JPS6136743Y2 (en)
JPH0429056Y2 (en)
JPH06229250A (en) Exhaust energy recovery device
JP6114446B1 (en) Low-pressure stage drive hierarchical electric turbocharger device and power system equipped with the low-pressure stage drive hierarchical electric turbocharger device
JPH0121136Y2 (en)
JPS6075721A (en) Control device for internal-combustion engine with supercharger
US3036561A (en) Two cycle engine supercharger arrangement and control