JPH0686780A - Living body optical measuring instrument - Google Patents

Living body optical measuring instrument

Info

Publication number
JPH0686780A
JPH0686780A JP4240340A JP24034092A JPH0686780A JP H0686780 A JPH0686780 A JP H0686780A JP 4240340 A JP4240340 A JP 4240340A JP 24034092 A JP24034092 A JP 24034092A JP H0686780 A JPH0686780 A JP H0686780A
Authority
JP
Japan
Prior art keywords
light
measurement
living body
measuring
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4240340A
Other languages
Japanese (ja)
Inventor
Yuichi Yamashita
優一 山下
Atsushi Maki
敦 牧
Fumio Kawaguchi
文男 川口
Yukito Shinohara
幸人 篠原
Shigeji Takagi
繁治 高木
Nobuaki Shinohara
伸顕 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Hitachi Ltd
Original Assignee
Tokai University
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Hitachi Ltd filed Critical Tokai University
Priority to JP4240340A priority Critical patent/JPH0686780A/en
Publication of JPH0686780A publication Critical patent/JPH0686780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To easily control gain value adjustment of a photodetector and integrating frequency adjustment of a measurement by a measuring person in the living body optical measuring instrument for measuring the function of a living body by using light and making it into image. CONSTITUTION:Light from a light source part 1 containing plural wavelength is made incident on an examinee 5, and also, the light which passes through the examinee 5 is caught by an optical fiber from plural parts to introduce into a multichannel photodetecting part 7. In this case, a gain value of the detector and an integrating frequency of a measurement by the photodetecting part 7 are inputted in advance by a measuring person by an input part 11. In such a way, the measurement set with a condition corresponding to a measuring condition is enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体内部の情報を光を用
いて計測する生体光計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body optical measuring device for measuring information inside a living body using light.

【0002】[0002]

【従来の技術】可視から近赤外領域の波長の光を用いて
生体機能に関する計測を行い画像化する生体光計測装
置、いわゆる光CT装置が例えば特開昭57−1152
32号もしくは特開昭60−72542号に記載されて
いる。この可視から近赤外の波長領域の光は、生体透過
性が比較的良いことが知られている。さらにこれらの光
を用いることにより生体機能を反映する生体内酸素分圧
値を血液中のヘモグロビンもしくは細胞内のチトクロ−
ムaa3もしくは筋肉中ミオグロビンなどによる光吸収
量から求めることが可能であることが知られている。と
ころが光CT装置の場合、生体は光の強い散乱体のため
に生体を透過した光の経路は生体中を広がったものとな
るため、CT画像を得るためにはそのような光を除去
し、直進光を抽出する必要がある。特願平02−031
567号に記載の光CT装置では、入射光として超短パ
ルス光(パルス幅10〜100ps)を生体に照射し、
生体を透過した光強度を時間分解計測する。これによ
り、生体中を広がり時間的に遅れた光を除去し、生体内
を直進した光を抽出している。
2. Description of the Related Art A biological optical measuring device, which is a so-called optical CT device, which measures and images a biological function by using light having a wavelength in the visible to near infrared region is disclosed in, for example, Japanese Patent Laid-Open No. 57-1152.
32 or JP-A-60-72542. It is known that light in the visible to near-infrared wavelength region has relatively good biological permeability. Furthermore, by using these lights, the oxygen partial pressure in the living body that reflects the biological function can be measured by using hemoglobin in the blood or cytochrome in the cell.
It is known that it can be determined from the amount of light absorbed by mua 3 or myoglobin in muscle. However, in the case of an optical CT device, the path of light that has passed through the living body spreads through the living body due to the strong scatterer of light, so such light is removed in order to obtain a CT image. It is necessary to extract straight light. Japanese Patent Application No. 02-031
In the optical CT device described in No. 567, a living body is irradiated with ultrashort pulsed light (pulse width 10 to 100 ps) as incident light,
Time-resolved measurement of the light intensity transmitted through the living body. As a result, the light that spreads in the living body and is delayed in time is removed, and the light that travels straight in the living body is extracted.

【0003】[0003]

【発明が解決しようとする課題】生体光計測装置では、
数cmから十数cmの生体を通過して著しく強度が低下
した光を検出しなければならないという問題が従来から
あった。そこで測定光のS/N比を向上させるために
は、計測時間を長くして測定の積算回数を増加させる
か、もしくは高感度の光検出器を用いる必要がある。し
かし、計測時間の増加は、被検者に苦痛を与えるので好
ましくない。また、高感度の光検出器を用いることに関
しては、生体光計測装置では次のような問題があった。
検出器が高感度であれば、微弱な迷光の影響を受け、そ
の結果測定光のS/N比の低下を引き起こす。この微弱
な迷光の影響を除去するためには、測定環境を極力完全
暗室化にしなければならないが、完全な暗室では被検者
に心理的な恐怖心を与えてしまい、その結果正確な生体
機能計測が困難となる問題を生じる。また、完全な暗室
状態であれば、非常時において被検者は避難する方向を
認識できないため危険である。このため出口を示す非常
灯は必要最低限の光度で設置する必要がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Conventionally, there has been a problem that it is necessary to detect light whose intensity is remarkably reduced after passing through a living body of several cm to ten and several cm. Therefore, in order to improve the S / N ratio of the measurement light, it is necessary to lengthen the measurement time to increase the number of integrations of the measurement, or to use a photodetector with high sensitivity. However, increasing the measurement time is not preferable because it causes pain to the subject. Further, regarding the use of the high-sensitivity photodetector, the biological optical measurement device has the following problems.
If the detector has high sensitivity, it will be affected by weak stray light, resulting in a decrease in the S / N ratio of the measurement light. In order to eliminate the influence of this faint stray light, it is necessary to make the measurement environment a completely dark room as much as possible, but in a completely dark room it causes psychological fear to the subject, and as a result accurate biological function This causes a problem that measurement becomes difficult. In a completely dark room, the subject cannot recognize the direction of evacuation in an emergency, which is dangerous. Therefore, it is necessary to install the emergency light indicating the exit with the minimum required light intensity.

【0004】一方、検出感度を低下させると、このよう
な迷光の影響を除去することは可能であるが、この場合
には測定光のS/N比の向上を図るために測定時間を増
加させなければならないという問題を生じる。理想的な
計測は、短時間で高S/N比を保持した測定であるが、
生体光計測装置では上記の理由によりこれらを両立させ
ることには本質的な困難が伴う。そこで実用的な測定を
効率良く行うためには、高S/N比もしくは短時間測定
のどちらかを優先させた測定を状況に応じて選択する必
要がある。たとえば、集団検診等での短時間で多数の計
測が必要な場合、高S/N比測定よりも短時間測定を優
先させて高感度短時間測定を行ない、精密検診などの場
合においては、測定の高S/N比を優先させる必要があ
るため、低感度長時間測定を行うことが望ましい。本発
明の目的は、計測条件を計測の状況、目的に応じて容易
に設定できる生体光計測装置を提供することにある。
On the other hand, if the detection sensitivity is lowered, it is possible to eliminate the influence of such stray light, but in this case, the measurement time is increased in order to improve the S / N ratio of the measurement light. Creates the problem of having to. The ideal measurement is to maintain a high S / N ratio in a short time,
In the biological optical measurement device, it is essentially difficult to make them compatible for the above reasons. Therefore, in order to efficiently perform practical measurement, it is necessary to select the measurement in which either the high S / N ratio or the short time measurement is prioritized according to the situation. For example, when a large number of measurements are required in a short time, such as in mass screening, high-sensitivity short-time measurement is performed by prioritizing short-time measurement over high S / N ratio measurement. Since it is necessary to give priority to the high S / N ratio of, it is desirable to perform low-sensitivity long-time measurement. An object of the present invention is to provide a biological optical measurement device that can easily set measurement conditions according to the measurement situation and purpose.

【0005】[0005]

【課題を解決するための手段】光源部で発生した、可視
から近赤外の波長領域にある少なくとも1つ以上の波長
の光を光伝達手段により生体に導き照射し、生体の複数
部位で生体を通過した光を少なくとも1つ以上の光伝達
手段により光検出部に導き検出し、この検出された光か
ら生体の形態もしくは機能の計測を行う生体光計測装置
において、光検出器の感度および計測の積算回数を外部
から任意に制御し、測定が終了するたびに検出器の感度
を自動的に減少させ、測定が終了するたびに光源部から
の出射光量を自動的に減少させる。
Means for Solving the Problems Light emitted from a light source unit and having at least one or more wavelengths in the visible to near-infrared wavelength region is guided to a living body by a light transmitting means, and is irradiated with the living body at a plurality of parts of the living body. In a living body optical measurement device that guides and detects light that has passed through a light detection unit by at least one or more light transmission means, and measures the form or function of a living body from the detected light, the sensitivity and measurement of the light detector The number of times of integration is arbitrarily controlled externally, the sensitivity of the detector is automatically reduced each time the measurement is completed, and the amount of light emitted from the light source unit is automatically reduced each time the measurement is completed.

【0006】[0006]

【作用】測定条件の入力部に相当する操作パネル上で、
検出器の利得値および計測の積算回数を同時に設定でき
る可変スイッチを設定する。これにより、測定者が測定
時の状況、目的に応じてこれらの測定条件を任意にかつ
容易に制御することが可能となる。
[Function] On the operation panel corresponding to the input section of the measurement condition,
Set a variable switch that can simultaneously set the gain value of the detector and the number of times of measurement integration. This allows the measurer to arbitrarily and easily control these measurement conditions according to the situation and purpose at the time of measurement.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1は本発明の一実施例を示す生体光計測
装置の構成図である。光源部1は波長500nmから1
500nm間の複数の波長の光を順に放射する。放射さ
れた光は光ファイバ2によって、多入力・多出力光スイ
ッチ3に導入され、被検体5の周囲の複数部位に接触し
ている光ファイバ4−1から4−nの中の任意の1つの
光ファイバに接続される。光ファイバ2と接続している
光ファイバを、ここでは仮に光ファイバ4−1とする
と、この光ファイバ4−1によって被検体5に光が照射
される。被検体5は遮光された検査室12で安静状態に
ある。被検体5の中を通過した光は、光ファイバ4−2
から4−nでそれぞれ捉えられ再び光スイッチ3に導入
される。さらに、これら光ファイバ4−2から4−nは
多入力・多出力光スイッチ3の内部で光ファイバ6−1
から6−mにそれぞれ一対一に接続される。これら光フ
ァイバ6−1から6−mの他の一端はマルチチャンネル
光検出部7に導入され、それぞれの光ファイバについて
独立に光強度が計測される。これらの光検出強度は図1
においてデ−タ記憶部8で記憶され、これらのデ−タは
コンピュ−タ9で処理される。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a biological optical measurement device showing an embodiment of the present invention. The light source unit 1 has a wavelength of 500 nm to 1
Light of a plurality of wavelengths between 500 nm is sequentially emitted. The emitted light is introduced into the multi-input / multi-output optical switch 3 by the optical fiber 2 and any one of the optical fibers 4-1 to 4-n in contact with a plurality of parts around the subject 5 is inspected. Connected to one optical fiber. Assuming that the optical fiber connected to the optical fiber 2 is the optical fiber 4-1 here, the subject 5 is irradiated with the light by the optical fiber 4-1. The subject 5 is at rest in the shaded examination room 12. The light that has passed through the subject 5 is the optical fiber 4-2.
4 to 4n are captured and introduced into the optical switch 3 again. Further, these optical fibers 4-2 to 4-n are connected to the optical fiber 6-1 inside the multi-input / multi-output optical switch 3.
To 6-m are connected one to one. The other ends of the optical fibers 6-1 to 6-m are introduced into the multi-channel photodetector 7, and the light intensity of each optical fiber is measured independently. These light detection intensities are shown in Fig. 1.
The data is stored in the data storage unit 8 and is processed by the computer 9.

【0008】この一連の測定が一つの波長の光で終了す
ると、コンピュ−タ−9によって光源部1を制御して測
定波長を変化させる。同様な測定を全ての波長に対して
終了すると、次に、コンピュ−タ−9によって多入力・
多出力光スイッチ3を制御して、光源部1から多入力・
多出力光スイッチ3に導入している光ファイバ2をたと
えば光ファイバ4−2に接続して、被検体5への光照射
を前回とは異なった位置から行う。この時、被検体5を
通過した光は光ファイバ4−1および光ファイバ4−3
から4−nで捉え、それぞれコンピュ−タ−10によっ
て制御された多入力・多出力光スイッチ3により光ファ
イバ6−1から6−mに一対一に接続される。このよう
にして順次被検体5への光照射位置を変化させて測定を
繰返し、最終的にコンピュ−タ−9で各波長における測
定結果の演算処理および画像処理が行われ、生体機能に
関する画像として表示部10で表示される。この一連の
測定を、測定状況に応じてより効果的におこなうため
に、測定者はあらかじめ測定モ−ド、たとえば低感度多
積算回数モ−ドおよび高感度低積算回数モ−ドを測定の
状況に応じて選択し、入力部11から入力する。この測
定モ−ドの数は、必要に応じて2個以上設定可能であ
る。
When this series of measurements is completed with light of one wavelength, the light source section 1 is controlled by the computer 9 to change the measurement wavelength. When the same measurement is completed for all wavelengths, the computer 9 then multi-inputs.
By controlling the multi-output optical switch 3, multi-input from the light source unit 1
The optical fiber 2 introduced into the multi-output optical switch 3 is connected to, for example, the optical fiber 4-2, and light irradiation to the subject 5 is performed from a position different from the previous time. At this time, the light that has passed through the subject 5 is the optical fiber 4-1 and the optical fiber 4-3.
4 to 4-n, and are connected to the optical fibers 6-1 to 6-m one to one by the multi-input / multi-output optical switch 3 controlled by the computer 10. In this way, the light irradiation position on the subject 5 is sequentially changed and the measurement is repeated, and finally the computer 9 performs arithmetic processing and image processing of the measurement result at each wavelength to obtain an image relating to biological functions. It is displayed on the display unit 10. In order to carry out this series of measurements more effectively according to the measurement situation, the measurer preliminarily measures the measurement mode, for example, the low-sensitivity high integration count mode and the high-sensitivity low integration count mode. And input from the input unit 11. The number of measurement modes can be set to two or more as required.

【0009】ここで、検査室12の内部にはランブ15
が設置してあり、被検体が検査室に入室する際および測
定終了後に検査室から退出する際にこのランプを点灯す
る。もちろんこのランプ15は測定中は消灯する。また
検査室12の出入口13は、非常時の際に被検者が容易
に脱出できるように内側から押すだけで簡単に開くよう
になっている。さらに、この出入口13の内側には、出
口を示す電源内臓型の非常灯14が必要最低限の明るさ
で設置され、これは測定中も点灯する。一連の測定が終
了すると、自動的に検出器の利得値を最低レベルに、ま
た光源部の出力を最低レベルにおのおの設定し、光検出
部および光源部の長寿命化を図る。このように測定条件
の入力部に相当する操作パネル上で、検出器の利得値お
よび計測の積算回数を同時に設定できる可変スイッチを
設定することにより、測定者が測定時の状況、目的に応
じてこれらの測定条件を任意にかつ容易に制御すること
が可能となる。
Here, inside the examination room 12, there is a ramp 15.
Is installed, and the lamp is turned on when the subject enters the examination room and when the subject leaves the examination room after the measurement is completed. Of course, this lamp 15 is turned off during measurement. Further, the entrance / exit 13 of the examination room 12 is designed to be opened simply by pushing from the inside so that the subject can easily escape in an emergency. Further, inside the entrance / exit 13, an emergency light 14 with a built-in power source, which indicates the exit, is installed with the minimum necessary brightness, and this lights up even during measurement. When a series of measurements is completed, the gain value of the detector is automatically set to the lowest level and the output of the light source unit is set to the lowest level, respectively, to prolong the life of the light detection unit and the light source unit. In this way, by setting a variable switch that can simultaneously set the gain value of the detector and the number of times the measurement is integrated on the operation panel corresponding to the input section of the measurement conditions, the measurer can adjust to the situation and purpose at the time of measurement. It is possible to control these measurement conditions arbitrarily and easily.

【0010】本発明では、検出器の感度(利得値)およ
び計測の積算回数を測定者が任意に制御することによっ
て、測定状況に応じた効率のよい計測を行うが、この効
果をモデル実験で確認した。この実験は図2に示される
装置構成で行った。波長812nm、パルス幅80ps
の光を半導体レ−ザ21から、光ファイバ22によって
散乱体試料23に照射する。この散乱体試料23はセル
光路長30mmの光学容器中に生体光散乱特性を模擬し
た稀釈牛乳を入れたものである。この試料を透過した光
は、光ファイバ24で捕らえられて、最終的に光強度時
間分解計測器25で検出する。図3に、検出器のある利
得値(これをGとする)、および計測のある積算回数
(N回とする)における検出光量の時間依存性を示す。
横軸は、入射パルス光のピ−クが試料に入射した時刻を
原点とした時の試料透過時刻を示している。また縦軸は
透過光量の相対値を示している。次に図4に、検出器の
利得値を10Gとして図3に比べて感度を10倍向上
し、計測の積算回数をN/10回として測定時間を図3
に比べて0.1倍に短縮した場合の結果を示している。
図3および図4から明らかであるが、図3の結果は計測
時間が10倍になるが計測光のS/N比が図4に比べて
良いことが判る。また今回のモデル実験では、利得値1
0G、積算回数N回の計測は、検出器の記憶容量の不足
から計測不可であった。この観点からも、有限の検出器
の記憶容量の下では、このような利得値および積算回数
の制御は有効であることが判る。
In the present invention, the operator arbitrarily controls the sensitivity (gain value) of the detector and the number of times the measurement is integrated to perform efficient measurement according to the measurement situation. confirmed. This experiment was conducted with the apparatus configuration shown in FIG. Wavelength 812nm, pulse width 80ps
Light from the semiconductor laser 21 is applied to the scatterer sample 23 by the optical fiber 22. The scatterer sample 23 is prepared by placing diluted milk simulating biological light scattering characteristics in an optical container having a cell optical path length of 30 mm. The light transmitted through this sample is captured by the optical fiber 24, and finally detected by the light intensity time-resolved measuring instrument 25. FIG. 3 shows the time dependence of the amount of detected light at a certain gain value of the detector (this is referred to as G) and a certain number of times of integration (assumed to be N times).
The horizontal axis represents the sample transmission time when the time when the peak of the incident pulsed light is incident on the sample is the origin. The vertical axis shows the relative value of the amount of transmitted light. Next, in FIG. 4, the gain value of the detector is set to 10 G to improve the sensitivity 10 times as compared with FIG.
The result is shown in the case of shortening by 0.1 times compared to.
As is clear from FIGS. 3 and 4, it can be understood that the result of FIG. 3 shows that the measurement time is 10 times longer, but the S / N ratio of the measurement light is better than that of FIG. In this model experiment, the gain value is 1
The measurement of 0 G and the number of integration times N was impossible due to the lack of the storage capacity of the detector. From this point of view, it is understood that such control of the gain value and the number of integrations is effective under the limited storage capacity of the detector.

【0011】[0011]

【発明の効果】生体の機能計測を光を用いて行い画像化
する生体光計測装置において、光検出器の利得値調整お
よび計測の積算回数調整を測定者によって容易に制御で
き、このことにより状況に応じた計測が可能となる。
EFFECTS OF THE INVENTION In a living body optical measuring apparatus for measuring the function of a living body by using light and imaging, the adjustment of the gain value of the photodetector and the adjustment of the number of times of measurement can be easily controlled by the measurer. It is possible to measure according to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の効果を確認するモデル実験構成図。FIG. 2 is a model experiment configuration diagram for confirming the effect of the present invention.

【図3】モデル実験結果を示す図。FIG. 3 is a diagram showing a model experiment result.

【図4】モデル実験結果を示す図。FIG. 4 is a diagram showing a model experiment result.

【符号の説明】[Explanation of symbols]

1…光源部、2…光ファイバ、3…多入力・多出力光ス
イッチ、4−1〜4−n…光ファイバ、5…被検体、6
−1〜6−m…光ファイバ、7…マルチチャンネル光検
出部、8…デ−タ記憶部、9…コンピュ−タ−、10…
表示部、11…入力部、12…検査室、13…出入口、
14…非常灯、15…ランプ、21…半導体レ−ザ、2
2…光ファイバ、23…試料、24…光ファイバ、25
…光強度時間分解計測器。
1 ... Light source part, 2 ... Optical fiber, 3 ... Multi-input / multi-output optical switch, 4-1 to 4-n ... Optical fiber, 5 ... Subject, 6
-1 to 6-m ... Optical fiber, 7 ... Multi-channel photodetector, 8 ... Data storage, 9 ... Computer, 10 ...
Display part, 11 ... Input part, 12 ... Examination room, 13 ... Doorway,
14 ... emergency light, 15 ... lamp, 21 ... semiconductor laser, 2
2 ... Optical fiber, 23 ... Sample, 24 ... Optical fiber, 25
… Light intensity time-resolved measuring instrument.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 文男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 篠原 幸人 神奈川県伊勢原市下粕屋143番地 学校法 人東海大学医学部内 (72)発明者 高木 繁治 神奈川県伊勢原市下粕屋143番地 学校法 人東海大学医学部内 (72)発明者 篠原 伸顕 神奈川県伊勢原市下粕屋143番地 学校法 人東海大学医学部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumio Kawaguchi 1-280 Higashi Koikeku, Kokubunji City, Tokyo Metropolitan Research Laboratory, Hitachi, Ltd. (72) Inventor Yukito Shinohara 143 Shimokasuya, Isehara City, Kanagawa School of Education (72) Inventor Shigeharu Takagi, 143 Shimokasuya, Isehara City, Kanagawa Prefectural School of Medicine Tokai University School of Medicine (72) Nobuaki Shinohara 143, Shimokasuya, Isehara City, Kanagawa Prefectural School of Medicine Tokai University

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源部で発生した、可視から近赤外の波長
領域にある少なくとも1つ以上の波長の光を光伝達手段
により生体に導き照射し、生体の複数部位で生体を通過
した光を少なくとも1つ以上の光伝達手段により光検出
部に導き検出し、この検出された光から生体の形態もし
くは機能の計測を行う生体光計測装置において、前記光
検出器の感度および計測の積算回数を外部から制御する
ことを特徴とする生体光計測装置。
1. Light that has been emitted from a light source unit and has at least one wavelength in the visible to near-infrared wavelength region guided to a living body by a light transmitting means and irradiated therewith, and has passed through the living body at a plurality of parts of the living body. In a living body optical measurement apparatus that guides and detects the light to a light detection unit by at least one or more light transmission means, and measures the form or function of the living body from the detected light, the sensitivity of the light detector and the number of times of integration of the measurement. A biological optical measurement device, which is characterized in that the device is controlled from the outside.
【請求項2】測定が終了するたびに前記検出器の感度を
自動的に減少させることを特徴とする請求項1に記載の
生体光計測装置。
2. The biological optical measurement device according to claim 1, wherein the sensitivity of the detector is automatically reduced every time measurement is completed.
【請求項3】測定が終了するたびに前記光源部からの出
射光量を自動的に減少させることを特徴とする請求項1
に記載の生体光計測装置。
3. The amount of light emitted from the light source unit is automatically reduced every time the measurement is completed.
The optical measurement device for living body according to.
JP4240340A 1992-09-09 1992-09-09 Living body optical measuring instrument Pending JPH0686780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4240340A JPH0686780A (en) 1992-09-09 1992-09-09 Living body optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240340A JPH0686780A (en) 1992-09-09 1992-09-09 Living body optical measuring instrument

Publications (1)

Publication Number Publication Date
JPH0686780A true JPH0686780A (en) 1994-03-29

Family

ID=17058033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240340A Pending JPH0686780A (en) 1992-09-09 1992-09-09 Living body optical measuring instrument

Country Status (1)

Country Link
JP (1) JPH0686780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151616A (en) * 2008-12-25 2010-07-08 Shimadzu Corp Light measuring device
JP2011530351A (en) * 2008-08-07 2011-12-22 ユニバーシティ オブ マサチューセッツ Spectroscopic sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530351A (en) * 2008-08-07 2011-12-22 ユニバーシティ オブ マサチューセッツ Spectroscopic sensor
JP2010151616A (en) * 2008-12-25 2010-07-08 Shimadzu Corp Light measuring device

Similar Documents

Publication Publication Date Title
EP0290274B1 (en) Examination apparatus for measuring oxygenation
JP5575355B2 (en) UV protection effect evaluation device
EP0525107B1 (en) Method and apparatus for measuring the concentration of absorbing substances
US5703364A (en) Method and apparatus for near-infrared quantitative analysis
US4178917A (en) Method and system for non-invasive detection of zinc protoporphyrin in erythrocytes
US4267844A (en) Medical instrument for determining jaundice
US5365066A (en) Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
JP3665061B2 (en) Quantitative and qualitative in vivo tissue analysis using time-resolved spectroscopy
EP0426358B1 (en) A non-invasive method and apparatus for measuring blood chemical concentration
US5553617A (en) Noninvasive method and apparatus for determining body chemistry
EP0760477B1 (en) Apparatus for measuring scattering medium and method for the same
KR910008650B1 (en) Liver function testing apparatus
DE2049716B2 (en) Method and device for measuring absorption in blood
JPH0749304A (en) Method and apparatus for measuring internal information of scattering absorbent
JPH07505215A (en) Method and device for measuring glucose concentration
EP0613347A4 (en) Using led harmonic wavelengths for near-infrared quantitative measurements.
EP0121404B1 (en) A photometric light absorption measuring apparatus
JP3056037B2 (en) Optical measurement method and device
EP0003015A1 (en) Apparatus for non-invasive detection of zinc protoporphyrin in erythrocytes
WO2017094188A1 (en) Skin glycation inspection device, skin glycation inspection device system, and skin glycation inspection method
US20220117525A1 (en) Sensor and system for neonatal jaundice monitoring and management
US10161877B2 (en) Optical detection system
JPH0686780A (en) Living body optical measuring instrument
JP3524976B2 (en) Concentration measuring device
JPH07120384A (en) Method and apparatus for optical measurement