JPH0686530B2 - Method for curing polyphenylene sulfide - Google Patents

Method for curing polyphenylene sulfide

Info

Publication number
JPH0686530B2
JPH0686530B2 JP61045312A JP4531286A JPH0686530B2 JP H0686530 B2 JPH0686530 B2 JP H0686530B2 JP 61045312 A JP61045312 A JP 61045312A JP 4531286 A JP4531286 A JP 4531286A JP H0686530 B2 JPH0686530 B2 JP H0686530B2
Authority
JP
Japan
Prior art keywords
curing
temperature
pps
container
polyphenylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61045312A
Other languages
Japanese (ja)
Other versions
JPS62205126A (en
Inventor
孝之 峯
敏典 杉江
文弘 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP61045312A priority Critical patent/JPH0686530B2/en
Publication of JPS62205126A publication Critical patent/JPS62205126A/en
Publication of JPH0686530B2 publication Critical patent/JPH0686530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリフェニレンスルフィド(以下PPSと略
す。)の制御された硬化方法に関し、詳しくは、加熱さ
れた雰囲気を減圧、降温して硬化を停止させることを特
徴とする、特に各種成形品に有用なPPSの硬化方法に関
する。
TECHNICAL FIELD The present invention relates to a controlled curing method for polyphenylene sulfide (hereinafter abbreviated as PPS). More specifically, the curing is stopped by depressurizing and lowering the temperature of a heated atmosphere. And a method for curing PPS, which is particularly useful for various molded articles.

〔従来の技術及び問題点〕[Conventional technology and problems]

通常、PPSは分子量が低い為、硬化により増粘してから
成形に供せられる。一般に、この硬化は、粒子状のPPS
を酸素を含む雰囲気中で、PPSの融点以下の温度に加熱
し、所望の溶融粘度にまで増粘させ、硬化が進行しない
温度にまで降温することにより硬化を停止させる方法で
行なわれている。しかし、ただ単なる降温操作のみでは
降温途中に更に増粘が進むため、粘度制御が困難な状況
にある。
Normally, PPS has a low molecular weight, so it is thickened by curing before being used for molding. Generally, this curing is done in particulate PPS.
Is heated to a temperature equal to or lower than the melting point of PPS in an atmosphere containing oxygen, the viscosity is increased to a desired melt viscosity, and the temperature is lowered to a temperature at which curing does not proceed, whereby the curing is stopped. However, it is difficult to control the viscosity because the viscosity is further increased while the temperature is being lowered simply by lowering the temperature.

この問題の解決を図るため、米国特許第3793256号や特
開昭57-119926が提案されている。前者は、硬化の停止
に際し、水蒸気のような不活性ガスを用いて、硬化容器
内の酸素を含む雰囲気を置換するものである。しかし、
この方法ではPPS粒子の細孔を不活性ガスで充分置換す
ることができないため、硬化の停止操作に入っても増粘
が進む傾向にあり、事実上制御が難しい。又、水蒸気を
用いた場合、蒸気圧が高いので、硬化容器内圧が高くな
り、耐圧等の構造上の制約を受ける。これに対し後者の
方法は、硬化の停止に際し、液体の水を硬化容器内にス
プレーして雰囲気温度を硬化温度以下に急冷すると共
に、発生した水蒸気により容器内の酸素を含む雰囲気を
置換するものであり、硬化の制御方法としては満足なも
のと言える。しかし、硬化容器も急冷される為、ヒート
ショックによる装置各部の歪の発生や、疲労による装置
の劣化が問題となり、設計上の制限やトラブルが発生し
ていた。
In order to solve this problem, US Pat. No. 3,793,256 and JP-A-57-119926 are proposed. In the former, when the curing is stopped, an inert gas such as water vapor is used to replace the atmosphere containing oxygen in the curing container. But,
With this method, the pores of the PPS particles cannot be sufficiently replaced with an inert gas, so that the viscosity tends to increase even when the operation of stopping the curing is started, and it is practically difficult to control. Further, when steam is used, the vapor pressure is high, so that the internal pressure of the curing container is high, and there are structural restrictions such as pressure resistance. On the other hand, in the latter method, when the curing is stopped, liquid water is sprayed into the curing container to rapidly cool the atmosphere temperature to the curing temperature or lower, and the generated steam replaces the atmosphere containing oxygen in the container. Therefore, it can be said that the method for controlling curing is satisfactory. However, since the hardening container is also rapidly cooled, distortion of each part of the device due to heat shock and deterioration of the device due to fatigue become problems, and design restrictions and troubles occur.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者らは、かかる問題点に鑑み、硬化の停止方法に
つき鋭意検討の結果、硬化容器内雰囲気を減圧して降温
させることにより、上記問題が解決されることを見い出
し本発明に到った。
In view of such problems, the present inventors have earnestly studied about a method of stopping curing, and as a result, have found that the above problems can be solved by reducing the temperature of the atmosphere in the curing container to lower the temperature, and arrived at the present invention. .

即ち、本発明は、粒子状のPPSを酸素を含む雰囲気中
で、当該ポリマーの融点以下の温度に加熱し、所望の溶
融粘度範囲まで増粘させるPPSの硬化方法に於いて、硫
化を停止させるに際し、硬化容器内圧力を300mmHg以下
に減圧し、200℃以下に降温させることを特徴とするポ
リフェニレンスルフィドの硬化方法を提供するものであ
る。
That is, the present invention, in the atmosphere containing oxygen, the particulate PPS is heated to a temperature equal to or lower than the melting point of the polymer to increase the viscosity to a desired melt viscosity range. In this case, the method for curing polyphenylene sulfide is characterized in that the pressure inside the curing container is reduced to 300 mmHg or lower and the temperature is lowered to 200 ° C. or lower.

本発明に使用するPPSは一般式 で示される構成単位を70モル%以上含むものである。The PPS used in the present invention has the general formula It contains 70 mol% or more of the structural unit represented by.

PPSの重合方法としては、p−ジクロルベンゼンを硫黄
と炭酸ソーダの存在下で重合させる方法、極性溶媒中で
硫化ナトリウムあるいは水硫化ナトリムと水酸化ナトリ
ウム又は硫化水素と水酸化ナトリウムあるいはナトリウ
ムアミノアルカノエートの存在下で重合させる方法、p
−クロルチオフェノールの自己縮合などがあげられる
が、N−メチルピロリドン、ジメチルアセトアミドなど
のアミド系溶媒やスルホラン等のスルホン系溶媒中で硫
化ナトリウムとp−ジクロルベンゼンを反応させる方法
が適当である。この際に重合度を調節するためにカルボ
ン酸やスルホン酸のアルカリ金属塩を添加したり、水酸
化アルカリを添加することは好ましい方法である。共重
合成分として、30モル%未満であれば、メタ結合 オルソ結合 エーテル結合 スルホン結合 ビフェニル結合 カルボニル結合 置換フェニルスルフィド結合 ここでRはアルキル基、ニトロ基、フェニル基、アルコ
キシ基、カルボン酸基またはカルボン酸の金属塩酸を示
す)、3官能結合 などを含有していても、ポリマーの結晶性に大きく影響
しない範囲でかまわないが、好ましくは共重合成分は10
モル%以下がよい。特に3官能性以上のフェニル、ビフ
ェニル、ナフチルスルフィド結合などを共重合に選ぶ場
合は3モル%以下、さらに好ましくは1モル%以下がよ
い。
PPS can be polymerized by polymerizing p-dichlorobenzene in the presence of sulfur and sodium carbonate, sodium sulfide or sodium hydrosulfide and sodium hydroxide or hydrogen sulfide and sodium hydroxide or sodium aminoalkano in a polar solvent. Polymerization in the presence of anate, p
Examples include self-condensation of chlorothiophenol, and a method of reacting sodium sulfide with p-dichlorobenzene in an amide solvent such as N-methylpyrrolidone or dimethylacetamide or a sulfone solvent such as sulfolane is suitable. . At this time, it is a preferable method to add an alkali metal salt of carboxylic acid or sulfonic acid or to add an alkali hydroxide in order to adjust the degree of polymerization. If it is less than 30 mol% as a copolymerization component, a meta bond Ortho-join Ether bond Sulfone bond Biphenyl bond Carbonyl bond Substituted phenyl sulfide bond Here, R represents an alkyl group, a nitro group, a phenyl group, an alkoxy group, a carboxylic acid group or a metal carboxylic acid of carboxylic acid), a trifunctional bond It does not matter if it contains such a compound as long as it does not significantly affect the crystallinity of the polymer, but the copolymerization component is preferably 10
It is preferably not more than mol%. Particularly, when a phenyl, biphenyl, naphthyl sulfide bond or the like having a functionality of 3 or more is selected for the copolymerization, the content is preferably 3 mol% or less, more preferably 1 mol% or less.

かかるPPSの具体的な製造法としては、例えば(1)ハ
ロゲン置換芳香族化合物と硫化アルカリとの反応(米国
特許第2513188号、特公昭44-27671号および特公昭45-33
68号参照)、(2)チオフェノール類のアルカリ触媒又
は銅塩等の共存下における縮合反応(米国特許第327416
5号および米国特許第1160660号参照)、(3)芳香族化
合物を塩化硫黄とのルイス酸触媒共存下に於ける縮合反
応(特公昭46-27255号およびベルギー特許第29437号参
照)、(4)特公昭52-12240,特公昭54-8719,特公昭5
3-25588,特公昭57-334,特開昭55-43139,USP4350810,U
SP4324886等に記載される高分子量PPSの製造法等が挙げ
られる。
As a specific method for producing such PPS, for example, (1) a reaction between a halogen-substituted aromatic compound and an alkali sulfide (US Pat. No. 2513188, JP-B-44-27671 and JP-B-45-33)
68), (2) Condensation reaction of thiophenols in the presence of an alkali catalyst or a copper salt (US Pat. No. 327416).
5 and U.S. Pat. No. 1,160,660), (3) A condensation reaction of an aromatic compound with sulfur chloride in the presence of a Lewis acid catalyst (see Japanese Patent Publication No. 46-27255 and Belgian Patent No. 29437), (4) ) JP-B-52-12240, JP-B-54-8719, JP-B-5
3-25588, JP-B-57-334, JP-A-55-43139, USP4350810, U
The production method of high molecular weight PPS described in SP4324886 and the like can be mentioned.

本発明に於いては、上記未硬化PPSに必要に応じて硬化P
PSを混合して使用することも可能である。
In the present invention, in the above-mentioned uncured PPS, if necessary, cured P
It is also possible to mix and use PS.

本発明に使用する粒子状PPSの粒子径、嵩密度の範囲に
は特に制限はないが、作業性の観点あるいは釜収率(釜
容積あたりのPPS仕込量)の面より、粒子径は数ミクロ
ン以上、嵩密度は0.20g/cm3以上が好ましい。
The particle size of the particulate PPS used in the present invention and the range of the bulk density are not particularly limited, but from the viewpoint of workability or the yield of the kettle (the charged amount of PPS per kettle volume), the particle diameter is several microns. As described above, the bulk density is preferably 0.20 g / cm 3 or more.

本発明の硬化方法は酸素含有雰囲気下、PPSの融点以下
の温度で、粉末状のPPSを所望の溶融粘度範囲に到達す
るまで加熱し、減圧、降温することによって実施され
る。PPSの硬化は酸素含有雰囲気中で行なわれ、例えば
酸素、空気及びこれらと窒素等の不活性ガスとの混合気
体が用いられる。本発明の硬化方法に於いては、PPSの
融点以下の温度で、好ましくは融点以下5〜100℃の範
囲で加熱しなければならない。加熱温度が高過ぎると、
PPS粒子同志が融着し易くなり、粒径が著しく大きくな
ったり、容器壁への付着が生じ、好ましくない。逆に加
熱温度が低すぎる場合は、硬化に長時間を必要とし、経
済的でない。又加熱時間は一般的には10分〜3日間、通
常は1時間〜1日である。
The curing method of the present invention is carried out by heating powdered PPS at a temperature equal to or lower than the melting point of PPS in an oxygen-containing atmosphere until reaching a desired melt viscosity range, and reducing the pressure and temperature. Curing of PPS is performed in an oxygen-containing atmosphere, and for example, oxygen, air, and a mixed gas of these and an inert gas such as nitrogen are used. In the curing method of the present invention, heating must be performed at a temperature below the melting point of PPS, preferably within the range of 5 to 100 ° C below the melting point. If the heating temperature is too high,
It is not preferable because the PPS particles are easily fused with each other and the particle size is significantly increased or adheres to the container wall. On the contrary, if the heating temperature is too low, it takes a long time to cure, which is not economical. The heating time is generally 10 minutes to 3 days, usually 1 hour to 1 day.

本発明では、硬化を停止させるに際し、硬化容器を減圧
して降温させることを特徴とする。硬化停止に於ける硬
化容器内圧力は、300mmHg以下、好ましくは100mmHg以
下、更に好ましくは20mmHg以下が適する。容器内圧力が
300mmHgより高くなると、減圧、降温操作に入っても、
増粘が止めにくくなり、硬化の制御の点から好ましくな
い。本発明に於いては硬化容器を減圧しながら雰囲気温
度を200℃以下に降温する必要がある。200℃以下になる
と、粒子状PPSはもはや酸素を含む雰囲気中でも硬化が
進まなくなるので、減圧が常圧に戻しても良い。しか
し、200℃より高い温度で減圧から常圧に戻すのは、硬
化が再び進行する恐れがあり、不適当である。尚、本発
明でのPPSの硬化は、PPSのメルトフローレート(ASTM12
38-70に準じて測定。測定温度315.6℃、荷重5Kg、単位g
/10分)が1〜2000、好ましくは50〜500となるように行
なわれる。
The present invention is characterized in that when the curing is stopped, the temperature of the curing container is reduced to lower the temperature. When the curing is stopped, the pressure in the curing container is 300 mmHg or less, preferably 100 mmHg or less, more preferably 20 mmHg or less. The pressure inside the container
If it is higher than 300 mmHg, even if depressurizing and cooling operations are started,
It becomes difficult to stop thickening, which is not preferable from the viewpoint of curing control. In the present invention, it is necessary to reduce the atmosphere temperature to 200 ° C. or lower while depressurizing the curing container. If the temperature is 200 ° C. or lower, the particulate PPS will no longer cure even in an atmosphere containing oxygen, so the reduced pressure may be returned to normal pressure. However, returning from reduced pressure to normal pressure at a temperature higher than 200 ° C. is not appropriate because curing may progress again. It should be noted that the curing of PPS in the present invention is performed by the melt flow rate of PPS (ASTM12
Measured according to 38-70. Measurement temperature 315.6 ℃, load 5Kg, unit g
/ 10 minutes) is 1 to 2000, preferably 50 to 500.

本発明の硬化方法に於いては、通常の硬化に用いる装
置、例えば米国特許3354129号に記載の強制加熱空気循
環式乾燥機、米国特許3793256号の流動層、米国特許371
7620号の2重螺旋型攪拌翼付容器固定型加熱混合装置、
図−1に示す容器回転型加熱装置、回転乾燥機および真
空攪拌乾燥機などの硬化装置に減圧を可能とする装置を
設置したものを用いることができる。
In the curing method of the present invention, a device used for ordinary curing, for example, a forced heating air circulation dryer described in US Pat. No. 3354129, a fluidized bed of US Pat. No. 3793256, US Pat.
7620 No. double spiral type mixing vessel with fixed agitating heating mixer,
A curing device such as the container rotary heating device, the rotary dryer and the vacuum stirring dryer shown in FIG. 1 provided with a device capable of reducing the pressure can be used.

本発明の硬化方法により得られたPPSは、強度、耐熱
性、寸法安定性等のエンジニアリングプラスチックとし
ての性能を改善するために、任意の充填剤を組成物中70
重量%以下含有せしめることができる。充填剤として具
体的には、ガラス繊維、炭素繊維、チタン酸カリウム、
アスベスト、炭化ケイ素、セラミック繊維、金属繊維、
窒化ケイ素などの繊維状強化剤硫酸バリウム、硫酸カル
シウム、カオリン、クレー、パイロフイライト、ベント
ナイト、セリサイト、ゼオライト、マイカ、雲母、ネフ
ェリンシナイト、タルク、アタルバルジャイト、ウオラ
ストナイト、PMF、フェライト、硅酸カルシウム、炭酸
カルシウム、炭酸マグネシウム、ドロマイト、三酸化ア
ンチモン、酸化亜鉛、酸化チタン、酸化マグネシウム、
酸化鉄、二酸化モリブテン、黒鉛、石コウ、ガラスビー
ズ、ガラスバルーン、石英粉などの無機充填剤アラミド
繊維などの有機系の強化剤などが挙げられる。これらの
強化剤又は充填剤を加える場合、公知のシリンカップリ
ング剤を用いることができる。
The PPS obtained by the curing method of the present invention contains an optional filler in the composition in order to improve its performance as an engineering plastic such as strength, heat resistance and dimensional stability.
It can be contained in an amount of not more than wt%. Specifically as a filler, glass fiber, carbon fiber, potassium titanate,
Asbestos, silicon carbide, ceramic fiber, metal fiber,
Fibrous reinforcing agents such as silicon nitride barium sulfate, calcium sulfate, kaolin, clay, pyrophyllite, bentonite, sericite, zeolite, mica, mica, nepheline sinite, talc, atharbarugite, wollastonite, PMF, ferrite , Calcium silicate, calcium carbonate, magnesium carbonate, dolomite, antimony trioxide, zinc oxide, titanium oxide, magnesium oxide,
Examples include iron oxide, molybdenum dioxide, graphite, gypsum, glass beads, glass balloons, inorganic fillers such as quartz powder, and organic reinforcing agents such as aramid fibers. When adding these reinforcing agents or fillers, known syrin coupling agents can be used.

また、本発明の硬化方法により得られたPPSは、ポリフ
ェニレンオキサイド、ポリアリレート、ポリアミド、ポ
リブチレンテレフタレート、ポリエーテルエーテルケト
ン、ポリイミド等の熱可塑性樹脂、ノボラック型エポキ
シ樹脂等のエポキシ樹脂、ポリエチレン、ポリプロピレ
ン等のポリオレフィン類、マレイン酸変性ポリプロピレ
ン等のα−オレフィン共重合体、あるいはナイロン11/
ポリエーテル系ポリアミドエラストマー等の熱可塑性エ
ラストマーSBR、水添SBR等を含有せしめることができ
る。
Further, PPS obtained by the curing method of the present invention, polyphenylene oxide, polyarylate, polyamide, polybutylene terephthalate, polyether ether ketone, thermoplastic resin such as polyimide, epoxy resin such as novolac type epoxy resin, polyethylene, polypropylene. Polyolefins such as α-olefin copolymers such as maleic acid modified polypropylene, or nylon 11 /
Thermoplastic elastomer SBR such as polyether polyamide elastomer, hydrogenated SBR, etc. may be contained.

本発明により得られたPPSの組成物の調製は、種々の公
知の方法で可能である。例えば、原料を予めタンブラー
又はヘンシエルミキサーのような混合機で均一に混合
し、1軸または2軸の押出機に供給して230〜400℃で溶
融混練したのち、ペレット化する方法をとることができ
る。
The composition of PPS obtained by the present invention can be prepared by various known methods. For example, the raw materials may be uniformly mixed in advance with a mixer such as a tumbler or a Henschel mixer, supplied to a single-screw or twin-screw extruder, melt-kneaded at 230 to 400 ° C, and then pelletized. You can

〔発明の効果〕〔The invention's effect〕

本発明の硬化方法は、粒子状PPSの硬化の停止に際して
減圧し、降温することにより、厳密な粘度制御を可能と
する硬化方法であり、工業的意義は大きい。
The curing method of the present invention is a curing method that enables strict viscosity control by reducing the pressure and lowering the temperature when the curing of the particulate PPS is stopped, and has great industrial significance.

本発明の硬化方法により得られたPPSは、電気・電子・
機械部品等の射出成形品や圧縮成形品等の従来用途以外
にも繊維、シート、フィルム、チューブ等の押出成形
品、ブロー成形品、トランスファー成形品用等厳しい粘
度制御が要求される分野にも用いることができる。
The PPS obtained by the curing method of the present invention is
In addition to conventional applications such as injection molded products such as machine parts and compression molded products, it is also used in fields requiring strict viscosity control such as extrusion molded products such as fibers, sheets, films, tubes, blow molded products and transfer molded products. Can be used.

〔実施例〕〔Example〕

次に本発明を実施例により具体的に説明する。 Next, the present invention will be specifically described with reference to examples.

実施例1 メルトフローレート(以下、MFRと略す。ASTM1238-70に
準じて測定。測定温度315.6℃、荷重5Kg、単位g/10分)
4,500の粒子状PPS3Kgを、図−1に示す気体導入部・気
体排気部及び熱媒循環式ジャケットを備えた30l容器回
転型の二重円垂型加熱素に仕込んだ。次に回転数3RPMで
容器の回転を開始して、ジャケットに熱媒を循環させ、
熱媒温度を室温から260℃てま1.5時間で昇温した。260
℃に加熱した空気を3l/分の流量で容器内に導入しなが
ら、熱媒温度260℃で5時間加熱し、容器内よりPPS粉末
をサンプリングし、迅速にMFRを求めたところ、131と所
望の溶融粘度まで達していた。直ちに減圧を開始し、10
分間で容器内圧力を50mmHgまで下げ、以後圧力50mmHgで
保持した。減圧開始と同時に加熱を停止し、容器内雰囲
気温度を2.0時間で190℃まで降温した。190℃で減圧を
常圧に切替え、室温まで冷却した後、粒子状PPSを取出
し、MFRを求めたところ128であった。硬化停止操作、す
なわち減圧、降温開始時に比べてMFRはほとんど変化し
ていない結果から、本発明法が硬化の制御に優れている
ことがわかった。
Example 1 Melt flow rate (hereinafter abbreviated as MFR. Measured according to ASTM 1238-70. Measurement temperature 315.6 ° C., load 5 Kg, unit g / 10 minutes)
3,500 Kg of particulate PPS was charged into a double-convection heating element of a 30-l container rotating type equipped with a gas introducing part, a gas exhausting part and a heat medium circulation type jacket shown in Fig. 1. Next, start the rotation of the container at a rotation speed of 3 RPM, circulate the heat medium in the jacket,
The temperature of the heating medium was raised from room temperature to 260 ° C in 1.5 hours. 260
While introducing air heated to ℃ at a flow rate of 3 l / min into the container, heating at a heating medium temperature of 260 ℃ for 5 hours, PPS powder was sampled from inside the container, and MFR was quickly calculated. Had reached the melt viscosity of. Start depressurizing immediately and
The pressure in the container was lowered to 50 mmHg in a minute, and thereafter the pressure was maintained at 50 mmHg. The heating was stopped at the same time as the depressurization was started, and the atmospheric temperature in the container was lowered to 190 ° C. in 2.0 hours. The reduced pressure was changed to normal pressure at 190 ° C., and after cooling to room temperature, the particulate PPS was taken out and the MFR was determined to be 128. It was found that the method of the present invention is excellent in the control of the curing from the result that the MFR hardly changed as compared with the curing termination operation, that is, the start of the pressure reduction and the temperature reduction.

比較例1 5時間後のMFRの測定後、減圧しないで空気を窒素に切
替えること以外は実施例1と同様にして硬化を行った。
5時間後のMFRは130、室温まで冷却後のMFRは119であ
り、硬化停止操作、すなわち空気を窒素に切替え降温開
始時に比べ、MFRが小さくなっており、硬化の制御に不
充分であった。
Comparative Example 1 After measuring the MFR after 5 hours, curing was performed in the same manner as in Example 1 except that the air was switched to nitrogen without depressurizing.
The MFR after 5 hours was 130, and the MFR after cooling to room temperature was 119. Compared to the operation to stop the curing, that is, when the air was switched to nitrogen and the temperature was lowered, the MFR became smaller, which was insufficient for controlling the curing. .

比較例2 減圧による容器内圧力を400mmHgとする以外は実施例1
と同様にして硬化を行った。5時間後のMFRが133である
のに対し、室温冷却後のMFRは121であり、硬化の制御と
しては不充分である事が判った。
Comparative Example 2 Example 1 except that the pressure in the container due to the reduced pressure was 400 mmHg.
Curing was carried out in the same manner as in. It was found that the MFR after 5 hours was 133, whereas the MFR after cooling at room temperature was 121, which was insufficient for controlling the curing.

実施例2 実施例1の減圧による容器内圧力を2mmHgとして硬化を
行った。5時間後のMFRは129であり、室温冷却後のMFR
も128とほとんど同じであった。この結果によれば、厳
密な溶融粘度制御が可能なことが判る。又、340℃×1
時間に於ける揮発分を測定したところ、硬化前のPPS1.8
重量%、実施例1のPPS1.2重量%に対し、本実施例のPP
Sは0.5重量%と低減することも判った。
Example 2 Curing was performed by setting the pressure in the container due to the reduced pressure in Example 1 to 2 mmHg. MFR after 5 hours is 129, MFR after cooling to room temperature
Was almost the same as 128. According to this result, it is understood that strict melt viscosity control is possible. Also, 340 ℃ × 1
When the volatile matter in time was measured, PPS1.8 before curing
% By weight, and 1.2% by weight of PPS in Example 1, the PP of this Example
It was also found that S was reduced to 0.5% by weight.

【図面の簡単な説明】[Brief description of drawings]

図−1は本発明の方法を実施する際に用いられる気体導
入部及び気体排気部を備えた容器回転型加熱装置の概略
図である。 1……回転式容器、2……熱媒ジャケット、3……熱媒
入口ライン、4……熱媒出口ライン、5……ロータリー
ジョイント、6……軸受、7……容器の蓋、8……フィ
ルター、9……気体導入ライン、10……気体排出ライ
ン、11……ブッシュ、12……テフロンシール、13……駆
動ギア、14……モーター及び変速機、15……駆動チェー
ン、16……支柱、17……温度計、18……流動計、19……
加熱器、20……エアポンプ、21……フィルター、22……
切替バルブ、23……窒素ガスライン、24……空気ライ
ン、25……液留、26……フィルター。
FIG. 1 is a schematic view of a container rotating type heating device equipped with a gas introducing part and a gas exhausting part used for carrying out the method of the present invention. 1 ... Rotary container, 2 ... Heat medium jacket, 3 ... Heat medium inlet line, 4 ... Heat medium outlet line, 5 ... Rotary joint, 6 ... Bearing, 7 ... Container lid, 8 ... ... filter, 9 ... gas introduction line, 10 ... gas discharge line, 11 ... bush, 12 ... Teflon seal, 13 ... drive gear, 14 ... motor and transmission, 15 ... drive chain, 16 ... … Supports, 17 …… Thermometer, 18 …… Rheometer, 19 ……
Heater, 20 …… Air pump, 21 …… Filter, 22 ……
Switching valve, 23 …… Nitrogen gas line, 24 …… Air line, 25 …… Distillation, 26 …… Filter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粒子状のポリフェニレンスルフィドを酸素
を含む雰囲気中で、当該ポリマーの融点以下の温度に加
熱し、所望の溶融粘度範囲まで増粘させるポリフェニレ
ンスルフィドの硬化方法に於いて、硬化を停止させるに
際し、硬化容器内圧力を300mmHg以下に減圧し、200℃以
下に降温させることを特徴とするポリフェニレンスルフ
ィドの硬化方法。
1. A method for curing polyphenylene sulfide, which comprises heating particulate polyphenylene sulfide to a temperature below the melting point of the polymer in an atmosphere containing oxygen to increase the viscosity to a desired melt viscosity range. In this case, the method for curing polyphenylene sulfide is characterized in that the pressure inside the curing container is reduced to 300 mmHg or lower and the temperature is lowered to 200 ° C or lower.
JP61045312A 1986-03-04 1986-03-04 Method for curing polyphenylene sulfide Expired - Lifetime JPH0686530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045312A JPH0686530B2 (en) 1986-03-04 1986-03-04 Method for curing polyphenylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045312A JPH0686530B2 (en) 1986-03-04 1986-03-04 Method for curing polyphenylene sulfide

Publications (2)

Publication Number Publication Date
JPS62205126A JPS62205126A (en) 1987-09-09
JPH0686530B2 true JPH0686530B2 (en) 1994-11-02

Family

ID=12715790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045312A Expired - Lifetime JPH0686530B2 (en) 1986-03-04 1986-03-04 Method for curing polyphenylene sulfide

Country Status (1)

Country Link
JP (1) JPH0686530B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887904B2 (en) * 2006-05-19 2012-02-29 東レ株式会社 Polyphenylene sulfide resin, process for producing the same, and molded article comprising the same

Also Published As

Publication number Publication date
JPS62205126A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
JP3989785B2 (en) Process for producing polyarylene sulfide
JP4635344B2 (en) Method for producing polyarylene sulfide resin
JP3531755B2 (en) Method for producing high molecular weight polyarylene sulfide
JP3599124B2 (en) Method for producing polyarylene sulfide
JP3614486B2 (en) Production method of polyarylene sulfide with excellent adhesion
JP2005041922A (en) Method for producing polyarylene sulfide resin
JPH08157718A (en) Polyarylene sulfide resin composition
JPH0686530B2 (en) Method for curing polyphenylene sulfide
JPS62197422A (en) Production of polyphenylene sulfide
US4868275A (en) Preparation of poly (arylene sulfide) from dihalo aromatic hydroxyl compound
JP3617049B2 (en) Method for producing modified polyarylene sulfide
JPH07742B2 (en) Polyphenylene sulfide resin composition
JPH0579100B2 (en)
JPH01139625A (en) Production of polyarylene sulfide
US5286784A (en) Poly(phenylene sulfide) resin composition
JPH08118502A (en) High molecular weight polyarylene sulfide for hot-water supplying tube
JP2725778B2 (en) Method for producing polyarylene sulfide resin composition
JPH0820645A (en) High molecular weight polyarylene sulfide for injection-molded container
JPH0361702B2 (en)
WO2019004169A1 (en) Method for producing polyarylene sulfide resin
EP0408274B1 (en) Method for preparing a poly(phenylene sulfide) resin composition
JPH11335653A (en) Welding rod for polyarylene sulfide molded product
JPH09151321A (en) Polyarylene sulfide resin composition
JP3984661B2 (en) Polyarylene sulfide resin composition
JP3783221B2 (en) Polyarylene sulfide resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term