JPH0686353B2 - Seed crystal contact detection method - Google Patents

Seed crystal contact detection method

Info

Publication number
JPH0686353B2
JPH0686353B2 JP2040744A JP4074490A JPH0686353B2 JP H0686353 B2 JPH0686353 B2 JP H0686353B2 JP 2040744 A JP2040744 A JP 2040744A JP 4074490 A JP4074490 A JP 4074490A JP H0686353 B2 JPH0686353 B2 JP H0686353B2
Authority
JP
Japan
Prior art keywords
seed crystal
raw material
contact
material melt
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2040744A
Other languages
Japanese (ja)
Other versions
JPH03247587A (en
Inventor
昌彦 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2040744A priority Critical patent/JPH0686353B2/en
Publication of JPH03247587A publication Critical patent/JPH03247587A/en
Publication of JPH0686353B2 publication Critical patent/JPH0686353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チョクラルスキー法による半導体単結晶の育
成方法に関するものである。
The present invention relates to a method for growing a semiconductor single crystal by the Czochralski method.

[従来の技術] 従来の化合物半導体の育成技術として、液体封止チョク
ラルスキー法がある。この方法は、第1図に示すように
圧力容器9の中に、回転及び上下移動が可能なルツボ1
を配し、その周囲に加熱のための手段2が施され、ルツ
ボの上方に回転及び上下移動が可能な上軸3が配置され
た装置を用いる。
[Conventional Technology] As a conventional technology for growing a compound semiconductor, there is a liquid-encapsulated Czochralski method. In this method, as shown in FIG. 1, a crucible 1 capable of rotating and moving up and down is placed in a pressure vessel 9.
Is used, and a means 2 for heating is provided around it, and an upper shaft 3 which can rotate and move up and down is arranged above the crucible.

原料4をルツボに入れ、加熱装置により原料を融解する
のであるが、原料中にPやAs等の低温でガス化する成分
があるため、ルツボ内にはさらに封止材5を入れて原料
融液の表面をこれで覆い、原料の組成が変化することを
防いでいる。
The raw material 4 is put into the crucible, and the raw material is melted by a heating device. However, since the raw material contains components such as P and As that are gasified at a low temperature, the sealing material 5 is further placed in the crucible to melt the raw material. The surface of the liquid is covered with this to prevent the composition of the raw material from changing.

上軸3の先端には、種結晶6が取り付けられ、ルツボ底
あるいは加熱装置横に埋設された熱電対7によって適切
な温度に調節された原料融液面に種結晶6を接触させゆ
っくりと引き上げ、結晶成長の温度環境を整えながら単
結晶を育成する。
A seed crystal 6 is attached to the tip of the upper shaft 3, and the seed crystal 6 is brought into contact with the raw material melt surface adjusted to an appropriate temperature by a thermocouple 7 embedded in the crucible bottom or on the side of the heating device and slowly pulled up. , Grow a single crystal while adjusting the temperature environment for crystal growth.

従来の引き上げでは、原料融液4の種結晶6の接触及び
分離を種結晶と原料融液の間の抵抗値の変化や、静電容
量変化等の電気的性質の変化で検地することによって行
う、あるいは操作者が炉内の様子を観察し種結晶6と原
料融液4の接触したときにできるメニスカスの出現、あ
るいは消滅を目視で判断している。
In the conventional pulling, the contact and separation of the seed crystal 6 of the raw material melt 4 are performed by detecting the change in the resistance value between the seed crystal and the raw material melt, or the change in the electrical property such as the change in capacitance. Alternatively, the operator observes the inside of the furnace and visually judges the appearance or disappearance of the meniscus formed when the seed crystal 6 and the raw material melt 4 come into contact with each other.

[発明が解決しようとする課題] 目視による接触、分離の判断は炉内の様子を確認するこ
との覗き窓が原料融液の揮発成分等で汚れて曇ってしま
った場合、あるいは圧力容器内の熱環境の対称性を保つ
ためにのぞき窓をふさぐ必要がある場合は判断すること
はできなくなってしまう等の問題点がある。
[Problems to be Solved by the Invention] Visual contact and separation can be judged by checking the inside of the furnace. When the viewing window becomes dirty and cloudy with volatile components of the raw material melt, or inside the pressure vessel. If it is necessary to close the observation window to maintain the symmetry of the thermal environment, there is a problem that the judgment cannot be made.

また、接触あるいは分離の判断の電気的特性の変化によ
り行う場合、種結晶あるいはルツボの回転による周期的
ノイズ等が観察する信号に重複され、そのままの信号を
観察していたのでは判断することが難しいために、この
ノイズを除去する必要がある。さらに接触時の電気特性
も炉の中の温度条件を変えると使用するルツボの抵抗値
等の電気的特性が温度に依存するため一定値をとらない
場合があり、さらに操業毎の信号レベルの再現性は炉内
の構造上電気的特性を統一することが難しいため悪くな
り、正確な接触の検知を行うことが難しいのが実状であ
る。
Further, in the case of making a judgment of contact or separation by changing the electric characteristics, periodic noise due to the rotation of the seed crystal or the crucible is overlapped with the observed signal, and it may be judged that the signal is observed as it is. This noise needs to be removed because it is difficult. In addition, the electrical characteristics during contact may not be constant because the electrical characteristics such as the resistance value of the crucible used depend on the temperature when the temperature conditions inside the furnace are changed, and the signal level for each operation is reproduced. Since it is difficult to unify the electrical characteristics due to the structure inside the furnace, the reality is that it is difficult to accurately detect contact.

このためより正確な接触、分離の判断をするためには、
この信号レベルの変化率で判断する必要がある。
Therefore, in order to make a more accurate contact / separation judgment,
It is necessary to judge by the change rate of this signal level.

ところが、上に述べたようにもともとノイズを含んだ信
号の変化率を計算するために信号の平滑処理を行う必要
があるが、平滑処理を行うと信号の変化率の検出能力を
鈍らせることとなり、誤動作等を引き起こす結果とな
る。
However, as mentioned above, it is necessary to perform the smoothing process of the signal in order to calculate the change rate of the signal that originally contains noise.However, the smoothing process slows down the ability to detect the change rate of the signal. , Which may result in malfunction.

接触、あるいは分離の判断が的確に行われないと種結晶
が原料融液に浸漬される量にばらつきが生じ、育成され
る結晶の成長初期条件にばらつきが生じ、最終的には結
晶の形状、及び品質にばらつきを生じさせる原因とな
る。
If the judgment of contact or separation is not performed properly, the seed crystal varies in the amount immersed in the raw material melt, the initial growth conditions of the grown crystal vary, and finally the crystal shape, It also causes variations in quality.

そこで、ノイズに強い変化率の抽出の方法を用いて、種
結晶と原料融液の接触した瞬間の種結晶と原料融液間の
電気特性の変化を正確に捕らえることにより、育成開始
時の種結晶と原料融液の相対位置の再現性を高め、結晶
育成開始の環境を正確に揃えることが必要となる。
Therefore, by using the method of extracting a change rate that is strong against noise, by accurately capturing the change in the electrical characteristics between the seed crystal and the raw material melt at the moment when the seed crystal and the raw material melt contact, the seed at the start of growth can be obtained. It is necessary to enhance the reproducibility of the relative positions of the crystal and the raw material melt and to accurately align the environment for starting the crystal growth.

[課題を解決するための手段] まず、装置には種結晶とルツボの接触、分離による電気
的特性の変化を察知できる手段を講ずる。具体的には、
第2図にその構成の概要の一例を示したように種結晶の
取り付け軸とルツボ軸との間に交流電圧を印加するため
に交流電圧装置10を取り付け、この種結晶と原料融液の
間を流れる電流を測定するために、交流電流計11を取り
付ける。
[Means for Solving the Problem] First, the apparatus is provided with means capable of detecting a change in electrical characteristics due to contact and separation between the seed crystal and the crucible. In particular,
As shown in FIG. 2 as an example of the outline of the configuration, an AC voltage device 10 is attached to apply an AC voltage between the mounting axis of the seed crystal and the crucible shaft, and the space between the seed crystal and the raw material melt is attached. An alternating current ammeter 11 is attached to measure the current flowing through.

この電流計で観測される電流値は、種結晶が原料融液と
接触した場合、第3図(A)のような変化を示す。
The current value observed by this ammeter shows a change as shown in FIG. 3 (A) when the seed crystal comes into contact with the raw material melt.

更に、取り込んだ信号のノイズを取り除き、操作者の判
断等の人為的ばらつきを排除するためにコンピュータに
よるノイズの除去及び接触、分離の判断を行う。
Further, in order to remove the noise of the captured signal and eliminate the artificial variations such as the operator's judgment, the noise removal and contact / separation judgment by the computer are performed.

ノイズを低減させるために平滑処理を行うが、処理によ
り入力データに対する処理データの応答性が低下する
為、第3図(B)の1のように信号の変化が鈍くなり検
出能力が低下する。これに対処するために、ある一定時
間過去のデータの平滑処理値(第3図(B)の2)を参
照値として用いる。
Although smoothing processing is performed in order to reduce noise, the response of the processed data to the input data is reduced by the processing, so that the signal change becomes dull and the detection capability deteriorates as indicated by 1 in FIG. 3 (B). In order to deal with this, a smoothed value (2 in FIG. 3 (B)) of data past a certain fixed time is used as a reference value.

具体的にはこの信号を入力1はそのまま、もう1つの入
力2はある一定の時間、信号の出力を遅らせる遅延装置
12を介してコンピュータ14に取り込むか、あるいはコン
ピュータにより入力の遅延処理を行った後、この2系統
の信号をそれぞれ平滑処理してその差U: U=(入力1の平滑処理)−(入力2の平滑処理)を観
察すると第3図(C)のように種結晶とルツボが接触時
には正の大きな値、分離時には負の小さな値をとり、こ
の値Uが事前に設定されているしきい値U0を越えた場合
接触あるいは分離の判断をすることができる。しきい値
U0は平滑処理後の信号のノイズレベルを基に設定すれば
良い。
Specifically, this signal is input to the input 1 as it is, and the other input 2 delays the output of the signal for a certain period of time.
After being input to the computer 14 via 12 or subjected to input delay processing by the computer, the signals of these two systems are each smoothed and the difference U: U = (smoothing processing of input 1) − (input 2 Smoothing treatment), a large positive value is obtained when the seed crystal and the crucible are in contact with each other, and a small negative value is separated when the crucible is in contact, as shown in FIG. 3C, and this value U is a preset threshold value. When U 0 is exceeded, contact or separation can be judged. Threshold
U 0 may be set based on the noise level of the smoothed signal.

[作用] 本方法は、ノイズの多い種結晶の接触信号を、平滑処理
したデータと、遅延処理した後平滑処理したデータとを
比較することにより信号の変化を確実に検出するもので
ある。
[Operation] The present method reliably detects the change in the signal by comparing the contact signal of the noisy seed crystal with the smoothed data and the delayed and smoothed data.

[実施例] GaPの液体封止チョクラルスキー法による単結晶引き上
げに於ける本発明の実施例を示す。
[Example] An example of the present invention in pulling a single crystal by the liquid sealed Czochralski method of GaP will be described.

GaPの多結晶をルツボに充填し、これを加熱装置により
加熱し原料を融解させ、種結晶とツルボの間に13Vの交
流電圧を印加してルツボ軸と種結晶軸の間の交流電流の
値を10秒周期でコンピュータに取り込んだ。
Fill the crucible with GaP polycrystal, heat it with a heating device to melt the raw material, and apply an AC voltage of 13 V between the seed crystal and the crucible to obtain the value of the alternating current between the crucible axis and the seed crystal axis. Was taken into the computer every 10 seconds.

原料融液と種結晶が接触する前はこの二点間の間に流れ
る電流は0.30±0.02mAの範囲でばらついていた。ここで
種結晶を降下させて、原料融液と接触させたところ、こ
の二点間の電流は0.34±0.02mAに上昇し、接触前の電流
の最大値と接触後の電流の最小値が同じレベルであっ
た。この信号を5サンプルの範囲で移動平均して、80秒
過去の5サンプルの移動平均値との差を計算したところ
接触時の値の変化は0.04mAとなり、この変化量は30秒間
続いて観察できた。
Before the raw material melt and the seed crystal contacted each other, the current flowing between these two points was in the range of 0.30 ± 0.02mA. Here, when the seed crystal was lowered and brought into contact with the raw material melt, the current between these two points increased to 0.34 ± 0.02 mA, and the maximum value of the current before contact and the minimum value of the current after contact were the same. It was a level. When this signal was moving averaged in the range of 5 samples and the difference from the moving average value of the 5 samples in the past 80 seconds was calculated, the change in the value at the time of contact was 0.04 mA, and this change amount was observed continuously for 30 seconds. did it.

続いて原料融液の温度を上げ種結晶を溶かし、原料融液
から分離させると、接触時には0.34±0.02mAあった電流
が0.30±0.02mAに変化した。このときコンピュータによ
る計算処理値の変化も−0.04mAとなり、やはり30秒にわ
たってその値を維持していることが観察された。
Subsequently, when the temperature of the raw material melt was raised to melt the seed crystal and separate from the raw material melt, the current, which was 0.34 ± 0.02 mA at the time of contact, changed to 0.30 ± 0.02 mA. At this time, the change in the calculated value by the computer was −0.04 mA, and it was observed that the value was maintained for 30 seconds.

その後、同じ方式で原料融液と種結晶を接触させ、コン
ピュータによる接触を検知した時点で種結晶の降下を停
止して一定時間の温度保持を行った後に結晶育成を開始
したところ、種結晶の原料融液中の浸漬量が多すぎた
り、逆に原料融液に接触する前に接触の誤判断をして種
結晶の降下を停止してしまうことは皆無となった。
After that, the raw material melt and the seed crystal were contacted in the same manner, and when the contact with the computer was detected, the crystal growth was started after stopping the descending of the seed crystal and maintaining the temperature for a certain time. There was no possibility that the amount of immersion in the raw material melt was too large, or conversely, the contact with the raw material melt was erroneously judged to stop the drop of the seed crystal before making contact.

[発明の効果] この信号処理により、ノイズの多い信号からその変化量
を再現性よく取り出すことができ、種結晶の原料接触を
正確に検知することができるようになった。
[Effects of the Invention] By this signal processing, the amount of change can be extracted with good reproducibility from a noisy signal, and contact of the seed crystal with the raw material can be accurately detected.

結晶成長開始時の原料融液への種結晶の浸漬量の再現性
が向上することにより、コーン部の角度の再現性が向上
し、さらに、結晶成長開始時のネッキング部の形状の再
現性も向上した。
By improving the reproducibility of the seed crystal immersion amount in the raw material melt at the start of crystal growth, the reproducibility of the angle of the cone part is improved, and the reproducibility of the shape of the necking part at the start of crystal growth is also improved. Improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は化合物半導体の液体封止チョクラルスキー法に
よる単結晶育成装置の説明図、第2図は本発明の信号処
理方法による処理の構成の概要を示す図、第3図(A)
は種結晶と原料融液の接触路の信号図、第3図(B)の
1は第3図(A)の平滑処理後のデータ、第3図(B)
の2は、遅延処理をした後に平滑処理を施したデータ、
第3図(C)は本発明による信号処理データである。 1……ルツボ、2……加熱装置、3……上軸 4……原料融液、5……液体封止剤、6……種結晶 7……熱電対、8……ルツボ軸、9……圧力容器 10……交流電源、11……交流電流計 12……遅延装置、13……平滑処理装置 14……演算装置、15……駆動装置 16……温度調節装置
FIG. 1 is an explanatory diagram of a single crystal growth apparatus for a liquid semiconductor Czochralski method of a compound semiconductor, FIG. 2 is a diagram showing an outline of a processing configuration by a signal processing method of the present invention, and FIG. 3 (A).
Is a signal diagram of the contact path between the seed crystal and the raw material melt, 1 in FIG. 3 (B) is the data after the smoothing treatment in FIG. 3 (A), and FIG. 3 (B)
No. 2 is data that is smoothed after delay processing,
FIG. 3C shows signal processing data according to the present invention. 1 ... crucible, 2 ... heating device, 3 ... upper shaft, 4 ... raw material melt, 5 ... liquid sealant, 6 ... seed crystal, 7 ... thermocouple, 8 ... crucible shaft, 9 ... … Pressure vessel 10 …… AC power supply, 11 …… AC ammeter 12 …… Delay device, 13 …… Smoothing device 14 …… Arithmetic device, 15 …… Drive device 16 …… Temperature control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チョクラルスキー法による単結晶育成にお
いて、結晶育成開始時のシードと原料融液との間に交流
電圧を印加し、交流電流の経時変化を電気信号データと
してコンピュータにとりこみ、該電気信号の平滑処理値
と該電気信号の遅延処理を通しての平滑処理値との差か
らとりこんだ電気信号の変化率を計算して、その変化率
から種結果と原料融液との接触を検知することを特徴と
する種結晶の接触検知方法。
1. In single crystal growth by the Czochralski method, an AC voltage is applied between a seed and a raw material melt at the start of crystal growth, and the change with time of the AC current is taken into a computer as electric signal data. The rate of change of the electric signal taken in is calculated from the difference between the smoothed value of the electric signal and the smoothed value of the electric signal through the delay processing, and the contact between the seed result and the raw material melt is detected from the rate of change. A method for detecting the contact of a seed crystal, which is characterized in that
JP2040744A 1990-02-21 1990-02-21 Seed crystal contact detection method Expired - Lifetime JPH0686353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040744A JPH0686353B2 (en) 1990-02-21 1990-02-21 Seed crystal contact detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040744A JPH0686353B2 (en) 1990-02-21 1990-02-21 Seed crystal contact detection method

Publications (2)

Publication Number Publication Date
JPH03247587A JPH03247587A (en) 1991-11-05
JPH0686353B2 true JPH0686353B2 (en) 1994-11-02

Family

ID=12589142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040744A Expired - Lifetime JPH0686353B2 (en) 1990-02-21 1990-02-21 Seed crystal contact detection method

Country Status (1)

Country Link
JP (1) JPH0686353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803614B2 (en) * 2007-11-27 2011-10-26 シャープ株式会社 Thin plate manufacturing method
JP5630369B2 (en) * 2011-05-16 2014-11-26 トヨタ自動車株式会社 Single crystal manufacturing equipment

Also Published As

Publication number Publication date
JPH03247587A (en) 1991-11-05

Similar Documents

Publication Publication Date Title
US5846318A (en) Method and system for controlling growth of a silicon crystal
US8221545B2 (en) Procedure for in-situ determination of thermal gradients at the crystal growth front
KR20010041496A (en) Open-loop method and system for controlling growth of semiconductor crystal
JPH0686353B2 (en) Seed crystal contact detection method
US5331661A (en) Method and apparatus for controlling electroslag remelting
JP4926585B2 (en) Semiconductor single crystal manufacturing method, semiconductor single crystal manufacturing apparatus, semiconductor single crystal manufacturing control program, and computer-readable recording medium recording the semiconductor single crystal manufacturing control program
US6471768B2 (en) Method of and apparatus for growing ribbon of crystal
KR101781463B1 (en) Apparatus and method for growing silicon single crystal ingot
JPH03112885A (en) Method for sensing crystal dying in pulling up single crystal
JPH0632693A (en) Method for controlling seeding of single crystal
JP2829686B2 (en) Semiconductor single crystal manufacturing equipment
KR20210109288A (en) Crystal growth controlling apparatus and method for silicon ingot growth apparatus
US6270575B1 (en) Apparatus and a method of manufacturing a crystal
JP3655355B2 (en) Method for detecting optimum melt temperature in semiconductor single crystal manufacturing process
JPH08259380A (en) Growing method for silicon crystal
Choi et al. Nondestructive characterization of the nucleation and early vertical Bridgman crystal growth of Cd sub 1-x Zn sub x Te
KR101607162B1 (en) Single crystal growing method
JPH0331674B2 (en)
JPH09208381A (en) Apparatus for pulling up single crystal
JPH0725697A (en) Automatic-control method for crystal growth
JPH054890A (en) Production of cz single crystal and its apparatus
JP3189408B2 (en) Diameter control method of pulled crystal
JP2985360B2 (en) Single crystal manufacturing equipment
JPH09165292A (en) Growing method for single crystal
JPH04202087A (en) Production of oxide single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 16