JPH0685758A - Optical communication transmission system - Google Patents

Optical communication transmission system

Info

Publication number
JPH0685758A
JPH0685758A JP4237910A JP23791092A JPH0685758A JP H0685758 A JPH0685758 A JP H0685758A JP 4237910 A JP4237910 A JP 4237910A JP 23791092 A JP23791092 A JP 23791092A JP H0685758 A JPH0685758 A JP H0685758A
Authority
JP
Japan
Prior art keywords
optical
transmission
optical fiber
dispersion
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4237910A
Other languages
Japanese (ja)
Other versions
JP2919193B2 (en
Inventor
Naoya Henmi
直也 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4237910A priority Critical patent/JP2919193B2/en
Priority to AU40170/93A priority patent/AU664449B2/en
Priority to EP99124056A priority patent/EP0986198A3/en
Priority to EP93109609A priority patent/EP0575881B1/en
Priority to DE69329570T priority patent/DE69329570T2/en
Publication of JPH0685758A publication Critical patent/JPH0685758A/en
Priority to US08/452,728 priority patent/US5675429A/en
Application granted granted Critical
Publication of JP2919193B2 publication Critical patent/JP2919193B2/en
Priority to US09/413,827 priority patent/USRE37621E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To provide the optical communication transmission system at a low cost in which the production of a nonlinear effect in an optical fiber is avoided and the transmission range of over 10,000km is attained in the coherent communication. CONSTITUTION:A CPFSK optical signal subjected to phase modulation by a 5Gb/s signal being an output of an optical transmitter 3 is amplified by nearly +6dBm at an optical fiber amplifier 11 and the amplified signal is inputted to an optical fiber 101 being a 1st transmission line. The total length of the optical fiber 101 is nearly 100km and a fiber having a negative dispersion with respect to a signal optical wavelength. The signal light is amplified by nearly +6dBm at a 2nd optical amplifier repeater 12 and is inputted to an optical fiber 111 being a 2nd transmission line having a negative dispersion characteristic. Thus, the optical amplifier repeater and the optical multi-stage amplifier relay system whose length is 10,000km comprising a negative dispersion optical fiber are built up. The total transmission line dispersion is compensated by a delay equalizer 301 at an intermediate frequency band to equalize the dispersion in the transmission line at the receiver side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ伝送系にお
いて、高速・超長距離の伝送系を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a high speed and ultra long distance transmission system for an optical fiber transmission system.

【従来の技術】光通信システムは、光の広帯域性を利用
し大容量の情報を伝送できるため、将来の高度情報化社
会の伝送網用の通信システムとして大いに期待されてい
る。実際従来のマイクロ波帯あるいはミリ波帯の通信で
は難しかった10Gb/sといった超大容量通信も報告
されている。例えば1992年 Optical Co
mmunication Conference 論文
番号TuI6”Ten−Gbit/s Optical
transmitter module using
modulat or driver IC and
semiconductor modulato
r”,(T.Susuki ほか)に示されている。
2. Description of the Related Art Since an optical communication system can transmit a large amount of information by utilizing the wide band property of light, it is highly expected as a communication system for a transmission network in the future advanced information society. In fact, ultra-high capacity communication of 10 Gb / s, which has been difficult in conventional microwave or millimeter wave communication, has been reported. For example, 1992 Optical Co
Mmmunication Conference Article No. TuI6 "Ten-Gbit / s Optical
transmitter module using
module or driver IC and
semiconductor modulato
r ", (T. Susuki et al.).

【0002】しかしこのような大容量通信においては、
伝送路である光ファイバの波長分散により伝送後に大き
な波形歪をきたし、伝送特性を大いに劣化させることも
知られている。このため、光送信器に用いられる光源の
波長帯において波長分散が零となる光ファイバを用いる
伝送が報告されている。また、光ファイバ分散が完全に
零にならない場合には、この分散量を補償するため分散
補償用の光ファイバを伝送路に挿入することも考えられ
ている(特開昭62−65530号公報)。またコヒー
レント通信方式においては、受信した後の電気信号の中
間周波数ステージで遅延等化器を用いて等化する技術が
用いられている(”ChromaticDispers
ion Compensation in Coher
entOptical Communicatio
n,”IEEE,Journalof Lightwa
ve Techology,vol.8,No.3,1
990,pp367−375)参照)。
However, in such a large capacity communication,
It is also known that chromatic dispersion of an optical fiber, which is a transmission line, causes a large waveform distortion after transmission and greatly deteriorates transmission characteristics. For this reason, transmission using an optical fiber in which chromatic dispersion is zero in a wavelength band of a light source used for an optical transmitter has been reported. Further, when the optical fiber dispersion does not become completely zero, it is considered to insert an optical fiber for dispersion compensation into the transmission line in order to compensate for this dispersion amount (Japanese Patent Laid-Open No. 62-65530). . Further, in the coherent communication system, a technique of using a delay equalizer at an intermediate frequency stage of an electric signal after reception is used (“Chromatic Dispersers”).
ion Compensation in Coher
entOptical Communicatio
n, "IEEE, Journalof Lightwa
ve Technology, vol. 8, No. 3,1
990, pp367-375))).

【0003】近年エルビュームファイバ増幅器の出現に
伴い、光直接増幅中継系の検討も盛んに行われている。
このような光伝送系では光ファイバの波長分散の影響は
非常に大きいため、零波長分散光ファイバを用いた伝送
が検討されている。特に海底ケーブル用の通信方式に関
しては、伝送用の光ファイバの分散値を零にした伝送が
考えられている(”9000km,5Gb/s NRZ
Transmission Experiment
Using 274 Erbium−Doped Fi
ber Amplifiers,”N.S.Berga
no et al.,Technical Diges
t of Topical meeting on O
ptical Amplifiers and The
ir Applications 1992 post
deadline paperPD11,および ”O
ver 10,000km Straight Lin
e Transmission System Exp
eriment at2.5 Gb/s Using
In−Line Optical Amplifier
s,”T.Imai et.al.,Technica
l Digest of Topical meeti
ng on Optical Amplifiers
and Their Applications 19
92 postdeadline paper PD1
2を参照)。
With the advent of erbume fiber amplifiers in recent years, optical direct amplification repeater systems have been actively studied.
In such an optical transmission system, the influence of chromatic dispersion of the optical fiber is very large, and therefore transmission using a zero wavelength dispersion optical fiber is being studied. Especially, regarding the communication method for the submarine cable, transmission in which the dispersion value of the transmission optical fiber is set to zero is considered (“9000 km, 5 Gb / s NRZ
TRANSMISSION EXPERIMENT
Using 274 Erbium-Doped Fi
ber Amplifiers, "NS Berga
no et al. , Technical Diges
to of Topical meeting on O
optical Amplifiers and The
ir Applications 1992 post
deadline paperPD11, and "O
ver 10,000km Straight Lin
eTransmission System Exp
orientation at2.5 Gb / s Using
In-Line Optical Amplifier
s, "T. Imai et. al., Technica.
l Digest of Topical meet
ng on Optical Amplifiers
and Their Applications 19
92 postdeadline paper PD1
2).

【0004】[0004]

【発明が解決しようとする課題】光直接増幅中継系にお
いて伝送特性を劣化させる原因は、前述の光ファイバ内
の波長分散だけではない。多段直接増幅中継系における
雑音蓄積効果、光ファイバ内での非線形効果が伝送特性
を大いに劣化させることも知られている。前者の雑音蓄
積効果の影響を抑圧するためには伝送光パワーを大きく
することが、後者の非線形効果の影響を抑圧するために
は伝送光パワーを小さくすることが要求される。これら
2つの効果は相反する条件を満たすことを要求するた
め、この両者を同時に抑圧することは困難であった。ま
た、特に光ファイバ内の非線形効果に関しては不明な点
も多く、劣化原因が特定されていなかった。
The cause of degrading the transmission characteristics in the optical direct amplification repeater system is not only the above-mentioned chromatic dispersion in the optical fiber. It is also known that the noise accumulation effect in the multistage direct amplification repeater system and the nonlinear effect in the optical fiber greatly deteriorate the transmission characteristics. In order to suppress the influence of the former noise accumulation effect, it is required to increase the transmission light power, and in order to suppress the influence of the latter nonlinear effect, it is required to reduce the transmission light power. Since these two effects require satisfying contradictory conditions, it is difficult to suppress both of them at the same time. In addition, there are many unclear points especially regarding the nonlinear effect in the optical fiber, and the cause of deterioration has not been specified.

【0005】最近の伝送実験(例えば”2.5 Gbi
t/s,80−100km Spaced In−Li
ne Amplifier Transmission
Experiments Over 2,500−
4,500km,”S.Saito et.al.,T
echnecal Digest of Europi
an Conference on Optical
Communication 1991 postde
adline paper)結果によると、零分散ファ
イバを用いた伝送では伝送後に信号と光増幅器の出す自
然放出光間で生じる4光波混合効果の影響が大きく伝送
が困難となることが示されている。
Recent transmission experiments (eg "2.5 Gbi")
t / s, 80-100 km Spaced In-Li
ne Amplifier Transfer mission
Experiences Over 2,500-
4,500 km, "S. Saito et. Al., T.
echnecal Digest of Europe
an Conference on Optical
Communication 1991 postde
According to the result of ad-line paper, it is shown that in the transmission using the zero-dispersion fiber, the influence of the four-wave mixing effect generated between the signal and the spontaneous emission light emitted from the optical amplifier after the transmission is large and the transmission becomes difficult.

【0006】[0006]

【課題を解決するための手段】本発明の第1の発明の光
直接増幅中継伝送系は、光送信器と、伝送用光ファイバ
と、光直接増幅中継器と光受信器を用いる光多段直接増
幅中継系において、送信器−光増幅中継器間、前記光増
幅中継器間、あるいは光増幅器−光受信器間を接続する
それぞれの区間の前記伝送用光ファイバの分散値が前記
光送信器の送出信号光波長において零と異なる値を有す
るあるいは零となる領域が少ないことを特徴とした光通
信伝送系である。
An optical direct amplification repeater transmission system according to a first aspect of the present invention is an optical multistage direct optical system using an optical transmitter, an optical fiber for transmission, an optical direct amplification repeater and an optical receiver. In the amplification repeater system, the dispersion value of the transmission optical fiber in each section connecting the transmitter-optical amplification repeater, the optical amplification repeater, or the optical amplifier-optical receiver is equal to that of the optical transmitter. This is an optical communication transmission system characterized in that there is little area where the wavelength of the transmitted signal light is different from zero or becomes zero.

【0007】また本発明の第2の発明の光直接増幅中継
伝送系は、第1の発明の光通信伝送系において、光送信
器において光周波数、位相、あるいは偏波変調により光
信号に情報をのせ、光受信側でコヒーレント光受信を用
い、さらに全伝送路における総波長分散の影響を電気系
の分散等化器を用いて補償することを特徴とする光通信
伝送系である。
An optical direct amplification repeater transmission system according to a second aspect of the present invention is the optical communication transmission system according to the first aspect, in which information is transmitted to an optical signal by optical frequency, phase or polarization modulation in an optical transmitter. In addition, the optical communication transmission system is characterized in that the coherent optical reception is used on the optical receiving side, and the influence of the total chromatic dispersion in all transmission lines is compensated by using the dispersion equalizer of the electric system.

【0008】[0008]

【作用】本発明の光直接増幅中継系は、伝送用光ファイ
バの分散値が信号光波長で零となる領域をなくすあるい
は少なくした光伝送系である。
The optical direct amplification repeater system of the present invention is an optical transmission system in which the region where the dispersion value of the transmission optical fiber becomes zero at the signal light wavelength is eliminated or reduced.

【0009】光多段直接増幅中継系の伝送特性を劣化さ
せる要因は、多段中継後の自然放出光雑音の蓄積効果、
光ファイバの波長分散、光ファイバ内の非線形効果の3
つである。
The factors that deteriorate the transmission characteristics of the optical multistage direct amplification repeater system are the accumulation effect of spontaneous emission optical noise after the multistage repeater,
Wavelength dispersion of optical fiber, nonlinear effect in optical fiber
Is one.

【0010】自然放出光雑音の蓄積効果の影響を避ける
ためには各中継器出力を大きくする必要があるが、光フ
ァイバ内の非線形効果を抑圧するためには中継器出力を
小さくすることが要求される。前者の蓄積雑音効果は理
論的に回避できない効果である。
It is necessary to increase the output of each repeater in order to avoid the effect of the accumulation effect of spontaneous emission noise, but it is required to reduce the output of the repeater in order to suppress the nonlinear effect in the optical fiber. To be done. The former accumulated noise effect is theoretically unavoidable.

【0011】このため、超長距離伝送あるいは中継間隔
の拡大を図るためには、光ファイバ内の非線形効果を抑
圧し中継器出力レベルを大きくして伝送することが不可
欠となる。光ファイバ内の非線形効果としては、自己位
相変調効果が大きいと考えられている。しかし前述のS
aitoh等の伝送実験により、自己位相変調効果の他
に信号光と光増幅器の出力する自然放出光間の四光波混
合の影響で雑音増加をきたし結果として伝送特性を大き
く劣化させることが明確化されている。この雑音増加は
信号パワーの増大および伝送距離の増大につれて増加
し、自己位相変調効果に比較して大きなスペクトル広が
り、信号対雑音比劣化を引き起こす、このため、この光
伝送系の伝送限界はこの光ファイバ内非線形効果で主に
制限される。
Therefore, in order to carry out ultra-long-distance transmission or increase the repeater interval, it is essential to suppress nonlinear effects in the optical fiber and increase the repeater output level for transmission. The self-phase modulation effect is considered to be large as the nonlinear effect in the optical fiber. However, the above S
It has been clarified through a transmission experiment such as aitoh that noise is increased due to the effect of four-wave mixing between the signal light and the spontaneous emission light output from the optical amplifier in addition to the self-phase modulation effect, and as a result, the transmission characteristics are greatly deteriorated. ing. This noise increase increases as the signal power and the transmission distance increase, and causes a large spectrum spread and a deterioration in the signal-to-noise ratio compared to the self-phase modulation effect. Therefore, the transmission limit of this optical transmission system is It is mainly limited by non-linear effects in the fiber.

【0012】しかしながら、この4光波混合効果は波数
のマッチング条件の満足されない零分散以外のファイバ
内では生じにくい。但し、光ファイバ内に大きな信号光
パワーが存在する場合には正分散領域でも波数のマッチ
ング条件が満たされることがある。
However, this four-wave mixing effect is unlikely to occur in fibers other than zero dispersion where the matching condition of wave number is not satisfied. However, when a large signal light power exists in the optical fiber, the wave number matching condition may be satisfied even in the positive dispersion region.

【0013】このためこの雑音増加抑圧を行うためには
負分散領域で伝送することが最も効果的であり、次善策
としてマッチング条件の満足されにくい大きな正分散領
域で伝送することも有効であることがわかる。
Therefore, in order to suppress this noise increase, it is most effective to transmit in the negative dispersion region, and as a next best measure, it is also effective to transmit in a large positive dispersion region in which the matching condition is difficult to be satisfied. I understand.

【0014】そこで、本発明の第1の発明では伝送用光
ファイバとして信号光波長が零でない光ファイバを用い
ている。このことにより伝送光パワー増大時あるいは伝
送距離増大時にもこの雑音増大効果を抑圧することがで
きる。このことにより伝送後のS/N比劣化を抑圧する
ことができる。本発明は伝送路分散による波形歪あるい
は、自己位相変調による波形歪の影響が小さいとき有効
である。
Therefore, in the first aspect of the present invention, an optical fiber having a non-zero signal light wavelength is used as the transmission optical fiber. This makes it possible to suppress the noise increasing effect even when the transmission light power increases or the transmission distance increases. This makes it possible to suppress S / N ratio deterioration after transmission. The present invention is effective when the influence of waveform distortion due to transmission line dispersion or waveform distortion due to self-phase modulation is small.

【0015】コヒーレント通信においては、光の周波数
あるいは位相に情報をのせることで振幅一定で通信でき
るため前述の自己位相変調の影響も回避できる利点があ
る。また信号光波長を負分散領域に設定することで、従
来のような4光波混合に起因した線幅増大が解消され、
ひいては伝送後のS/N比が低下して生じるフロア現象
が解消される。但し分散に起因する波形劣化による固定
劣化が生じることになる。(このフロア現象の解消効果
は,前述した様に大きな正分散領域でも有効である。)
本発明の第2の発明では、このような零分散と異なる分
散領域に送信光の波長を選んだコヒーレント通信を行
い、伝送後に光ファイバ内の波長分散によって生じた固
定劣化をも中間周波数における遅延等化器を用いて補償
している。このことにより伝送後固定劣化をも抑圧した
伝送が可能となる。
In coherent communication, information can be placed on the frequency or phase of light so that the communication can be performed with a constant amplitude, so that there is an advantage that the influence of the self-phase modulation can be avoided. In addition, by setting the signal light wavelength in the negative dispersion region, the line width increase caused by four-wave mixing as in the past is eliminated,
As a result, the floor phenomenon caused by the decrease in S / N ratio after transmission is eliminated. However, fixed deterioration due to waveform deterioration due to dispersion will occur. (The effect of eliminating this floor phenomenon is effective even in the large positive dispersion region as described above.)
In the second aspect of the present invention, coherent communication in which the wavelength of the transmitted light is selected in a dispersion region different from such zero dispersion is performed, and fixed deterioration caused by chromatic dispersion in the optical fiber after transmission is delayed at the intermediate frequency. Compensation is performed using an equalizer. As a result, it becomes possible to perform transmission with fixed deterioration suppressed after transmission.

【0016】以上の様に本発明の光直接増幅中継系を用
いることで、高速・超長距離の伝送が可能となる。
As described above, by using the optical direct amplification repeater system of the present invention, high speed and ultra long distance transmission is possible.

【実施例】次に本発明について図面を参照して説明す
る。 図1は本発明の一実施例の光直接増幅中継系の構
成図である。図1(A)は光送信器、伝送用光ファイ
バ、及び光ファイバ増幅器を示したものであり、図1
(B)は光受信器の部分を示した図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an optical direct amplification repeater system of an embodiment of the present invention. FIG. 1A shows an optical transmitter, an optical fiber for transmission, and an optical fiber amplifier.
(B) is a diagram showing a portion of the optical receiver.

【0017】光送信器3は、半導体レーザ光源1への注
入電流を、変調信号源5から出力された5Gb/sの電
気信号で駆動し、CPFSK光信号変調波を出力してい
る。このCPFSK光信号変調波は、第1のエルビュー
ムドープ光ファイバ増幅器11で+6dBmにまで増幅
され、第1の伝送路用光ファイバ101に出力される。
伝送路用光ファイバ101は、半導体レーザ光源1の発
振波長1.552μmで-0.4ps/km/nmの負分散、損失2
1dBを有する100kmの光ファイバである。この伝
送路用光ファイバ101を伝送された信号は第2のエル
ビュームドープ光ファイバ増幅器12で再び+6dBm
にまで増幅され、第2の伝送路用光ファイバ111に出
力される。さらに光ファイバ111の出力光は第3の光
増幅中継器13で増幅され第3の伝送路121へ出力す
るという具合いに100段総延長距離10000kmの
光多段直接増幅中継系を構成している。ここで伝送用光
ファイバ111,121...は光ファイバ101と同
様の負分散ファイバ100kmを用いている。
The optical transmitter 3 drives the injection current to the semiconductor laser light source 1 with an electric signal of 5 Gb / s output from the modulation signal source 5, and outputs a CPFSK optical signal modulation wave. The CPFSK optical signal modulated wave is amplified to +6 dBm by the first elbum doped optical fiber amplifier 11 and output to the first transmission line optical fiber 101.
The optical fiber 101 for the transmission line has a negative dispersion of -0.4 ps / km / nm and a loss of 2 when the oscillation wavelength of the semiconductor laser light source 1 is 1.552 μm.
It is a 100 km optical fiber with 1 dB. The signal transmitted through the transmission line optical fiber 101 is again +6 dBm in the second elbum doped optical fiber amplifier 12.
And is output to the second transmission line optical fiber 111. Further, the output light of the optical fiber 111 is amplified by the third optical amplification repeater 13 and output to the third transmission line 121, thus forming an optical multistage direct amplification repeater system with a total extension distance of 100 steps of 10,000 km. Here, the transmission optical fibers 111, 121. . . Uses a negative dispersion fiber 100 km similar to the optical fiber 101.

【0018】受信器200では、最後の光伝送路191
を通過してきた信号光を半導体レーザ光源1と周波数が
10GHz異なる局発光源201と混ぜ合わせ光電変換
素子であるPINフォトダイオード51を用いてヘテロ
ダイン検波した。さらにこのヘテロダイン検波信号を遅
延検波器300を通過させ5Gb/sの電気信号を再生
した。ここでは図の遅延等化器301は用いていない。
In the receiver 200, the last optical transmission line 191
The signal light having passed through was mixed with the semiconductor laser light source 1 and a local light source 201 having a frequency different by 10 GHz, and heterodyne detection was performed using a PIN photodiode 51 which is a photoelectric conversion element. Further, this heterodyne detection signal was passed through the delay detector 300 to reproduce an electric signal of 5 Gb / s. Here, the delay equalizer 301 in the figure is not used.

【0019】前述したようにSaito等の実験による
と、零分散に信号光波長を一致させて伝送した場合には
2500km程度から受信パワーを上昇させても符号誤
り率が改善されないフロア現象が観測されている。
As described above, according to the experiment of Saito et al., When the signal light wavelength is matched with zero dispersion and transmitted, a floor phenomenon is observed in which the code error rate is not improved even if the received power is increased from about 2500 km. ing.

【0020】しかしながら本発明の第1の発明のように
伝送用ファイバを負分散領域に設定することにより非線
形効果による雑音増加効果は抑圧されフロア現象は観測
されなかった。しかしながら、伝送路の分散の影響によ
り受信感度は図2の一点鎖線に示すように7ー8dB程
度劣化した。また、コヒーレント通信に特有な多少の自
己振幅変調の影響は観測されたが、負分散領域であるこ
と、分散値が小さいことの2つの理由から大きな波形劣
化はみられなかった。
However, by setting the transmission fiber in the negative dispersion region as in the first aspect of the present invention, the noise increasing effect due to the nonlinear effect is suppressed and the floor phenomenon is not observed. However, due to the influence of the dispersion of the transmission line, the receiving sensitivity deteriorated by about 7-8 dB as shown by the alternate long and short dash line in FIG. Although some effects of self-amplitude modulation peculiar to coherent communication were observed, no significant waveform deterioration was observed for two reasons: the negative dispersion region and the small dispersion value.

【0021】さらに図1(B)に示したようにヘテロダ
イン検波した電気信号を中間周波数帯で遅延等化器30
1を用いて伝送路の分散の影響を補償することを試み
た。分散補償には従来から知られているストリップ線路
回路301を用いた。このストリップ線路回路の有する
補償量は4000ps/nmで、伝送路総分散量を補償
するように設定している。この遅延等化器を通過させた
後に遅延検波することで感度劣化量は図2の破線に示し
たように3dB以下に抑圧された。
Further, as shown in FIG. 1B, the electrical signal heterodyne-detected is delayed and equalized 30 in the intermediate frequency band.
1 was used to try to compensate for the effect of dispersion on the transmission line. A conventionally known strip line circuit 301 is used for dispersion compensation. The stripline circuit has a compensation amount of 4000 ps / nm, which is set to compensate for the total dispersion amount of the transmission line. By performing delay detection after passing through this delay equalizer, the amount of sensitivity deterioration was suppressed to 3 dB or less as shown by the broken line in FIG.

【0022】本発明にはこの他にも多数の変形例があ
る。伝送用光ファイバの分散は-0.4ps/km/nmの値に限ら
ずこれ以上これ以下の負分散領域を用いることができ
る。但し光ファイバの長手方向での分散値の分布を考慮
し、信号光波長で零分散にならないよう予め多少負分散
領域に設定する方が有効である。また、伝送用ファイバ
の分散値は負分散に限らず正分散の光ファイバを用いる
こともできる。光直接増幅中継器出力光レベルは+6d
Bmに限ることなく、それ以下の例えば+3dBm以下
でも、またそれ以上の例えば+10dBm以上でも良
い。中継段数も100段に限ることなく例えば20段、
200段、またこれ以上、以下でも良い。各光直接増幅
中継器区間長も100kmに限ることなく50km、1
50km、またこれ以上これ以下でも良い。総伝送長も
10000kmに限ることなく、例えば1000km、
2000km、20000kmのようにこれ以上これ以
下でも良い。
The present invention has many other variations. The dispersion of the optical fiber for transmission is not limited to the value of -0.4 ps / km / nm, and the negative dispersion region above this value can be used. However, in consideration of the distribution of dispersion values in the longitudinal direction of the optical fiber, it is more effective to set a slightly negative dispersion region in advance so that zero dispersion does not occur at the signal light wavelength. Further, the dispersion value of the transmission fiber is not limited to negative dispersion, and a positive dispersion optical fiber can also be used. Optical direct amplification repeater output light level is + 6d
Not limited to Bm, it may be less than that, for example, +3 dBm or less, or more than that, such as +10 dBm or more. The number of relay stages is not limited to 100 stages, for example, 20 stages,
It may be 200 steps or more or less. The length of each optical direct amplification repeater section is not limited to 100 km but 50 km, 1
It may be 50 km or more or less. The total transmission length is not limited to 10000 km, but is 1000 km, for example.
It may be more or less than this, such as 2000 km and 20000 km.

【0023】また使用するビットレートは5Gb/sに
限ることなく,例えば2.5Gb/sでも10Gb/s
でも20Gb/sあるいはそれ以上それ以下であっても
良い。
The bit rate to be used is not limited to 5 Gb / s. For example, 2.5 Gb / s may be 10 Gb / s.
However, it may be 20 Gb / s or higher or lower.

【0024】変調方式はCPFSK変調に限らず、一般
に周波数変調、位相変調、あるいは偏波変調を用いるこ
ともできる。受信方式は、ヘテロダイン検波だけでなく
直接検波あるいはホモダイン検波方式を用いることもで
きる。多段直接増幅中継系に用いる光増幅器もエルビュ
ームドープファイバ増幅器に限らず半導体レーザ増幅
器、プラセオジウムドープ光ファイバ増幅器、光ラマン
増幅器でも良い。また送信光源の波長帯も1.5μm帯
に限ることなく、1.3μm帯を用いることもできる。
The modulation method is not limited to CPFSK modulation, but generally frequency modulation, phase modulation, or polarization modulation can also be used. As the receiving method, not only heterodyne detection but also direct detection or homodyne detection can be used. The optical amplifier used in the multistage direct amplification repeater system is not limited to the erbume-doped fiber amplifier, but may be a semiconductor laser amplifier, a praseodymium-doped optical fiber amplifier, or an optical Raman amplifier. Further, the wavelength band of the transmission light source is not limited to the 1.5 μm band, and the 1.3 μm band can be used.

【0025】[0025]

【発明の効果】以上説明したように本発明を用いれば、
光直接増幅中継系において伝送路である光ファイバの分
散値を送信波長において零に一致させないことで、光フ
ァイバ内の非線形性効果の抑圧を行ったので、光直接増
幅中継系の伝送パワーの増大、ひいては超高速・超長距
離の光直接増幅中継系を容易に実現することができる。
As described above, by using the present invention,
Since the dispersion value of the optical fiber that is the transmission line in the optical direct amplification repeater system is not matched to zero at the transmission wavelength, the nonlinear effect in the optical fiber is suppressed, so the transmission power of the optical direct amplification repeater system is increased. As a result, it is possible to easily realize an ultrafast, ultralong distance optical direct amplification repeater system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための図である。FIG. 1 is a diagram for explaining an embodiment of the present invention.

【図2】本発明の伝送系を用いた際の符号誤り率特性を
説明するための図である。
FIG. 2 is a diagram for explaining a code error rate characteristic when the transmission system of the present invention is used.

【符号の説明】[Explanation of symbols]

1 半導体レーザ光源 3 光送信器 5 変調信号源 11,12,13 エルビュームドープ光ファイバ増幅
器 101,111,121,191 伝送用光ファイバ 51 PIN フォトダイオード 200 光受信器 201 局発光源 300 遅延検波器 301 遅延等化器
DESCRIPTION OF SYMBOLS 1 semiconductor laser light source 3 optical transmitter 5 modulation signal source 11, 12, 13 Elbium-doped optical fiber amplifier 101, 111, 121, 191 transmission optical fiber 51 PIN photodiode 200 optical receiver 201 local light source 300 delayed detection Unit 301 Delay equalizer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光送信器と、伝送用光ファイバと、光直
接増幅中継器と光受信器を用いる光多段直接増幅中継系
において、送信器−光増幅中継器間、前記光増幅中継器
間、あるいは光増幅器−光受信器間を接続するそれぞれ
の区間の前記伝送用光ファイバの分散値が、前記光送信
器の送出信号光波長において零と異なる値を有する、あ
るいは零となる領域が少ないことを特徴とする光通信伝
送系。
1. In an optical multistage direct amplification repeater system using an optical transmitter, a transmission optical fiber, an optical direct amplification repeater and an optical receiver, between the transmitter and the optical amplification repeater and between the optical amplification repeaters. , Or the dispersion value of the transmission optical fiber in each section connecting between the optical amplifier and the optical receiver has a value different from zero at the wavelength of the signal light transmitted from the optical transmitter, or there is little area where the value becomes zero. An optical communication transmission system characterized in that
【請求項2】 光送信器において光周波数、位相、ある
いは偏波変調により光信号に情報をのせ、光受信側でコ
ヒーレント光受信を用い、さらに全伝送路における総波
長分散の影響を電気系の分散等化器を用いて補償するこ
とを特徴とする請求項1記載の光通信伝送系。
2. An optical transmitter carries information on an optical signal by optical frequency, phase, or polarization modulation, uses coherent optical reception on the optical receiving side, and influences the total chromatic dispersion in all transmission lines by an electrical system. The optical communication transmission system according to claim 1, wherein compensation is performed using a dispersion equalizer.
JP4237910A 1992-06-22 1992-09-07 Optical communication transmission system Expired - Lifetime JP2919193B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4237910A JP2919193B2 (en) 1992-09-07 1992-09-07 Optical communication transmission system
AU40170/93A AU664449B2 (en) 1992-06-22 1993-06-09 Optical communication transmission system
EP93109609A EP0575881B1 (en) 1992-06-22 1993-06-16 Optical communication transmission system with chromatic dispersion compensation
DE69329570T DE69329570T2 (en) 1992-06-22 1993-06-16 Optical communication system with color dispersion compensation
EP99124056A EP0986198A3 (en) 1992-06-22 1993-06-16 Optical amplifier repeater and long-haul optical amplifer lumped repeating method
US08/452,728 US5675429A (en) 1992-06-22 1995-05-30 Optical communication transmission system
US09/413,827 USRE37621E1 (en) 1992-06-22 1999-10-06 Optical communication transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4237910A JP2919193B2 (en) 1992-09-07 1992-09-07 Optical communication transmission system

Publications (2)

Publication Number Publication Date
JPH0685758A true JPH0685758A (en) 1994-03-25
JP2919193B2 JP2919193B2 (en) 1999-07-12

Family

ID=17022254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4237910A Expired - Lifetime JP2919193B2 (en) 1992-06-22 1992-09-07 Optical communication transmission system

Country Status (1)

Country Link
JP (1) JP2919193B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088698A1 (en) 2008-02-07 2009-08-12 NEC Corporation Optical transmission apparatus and system
US9042726B2 (en) 2010-05-27 2015-05-26 Fujitsu Limited Optical transport network system, optical-signal transmission path selecting method, and optical transmission device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218129A (en) * 1990-01-24 1991-09-25 Kokusai Denshin Denwa Co Ltd <Kdd> High speed optical communication system for long distance
JPH03269402A (en) * 1990-03-20 1991-12-02 Fujitsu Ltd Delay equalizer unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218129A (en) * 1990-01-24 1991-09-25 Kokusai Denshin Denwa Co Ltd <Kdd> High speed optical communication system for long distance
JPH03269402A (en) * 1990-03-20 1991-12-02 Fujitsu Ltd Delay equalizer unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088698A1 (en) 2008-02-07 2009-08-12 NEC Corporation Optical transmission apparatus and system
US9042726B2 (en) 2010-05-27 2015-05-26 Fujitsu Limited Optical transport network system, optical-signal transmission path selecting method, and optical transmission device

Also Published As

Publication number Publication date
JP2919193B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
AU664449B2 (en) Optical communication transmission system
US7263296B2 (en) Optical transmission system using in-line amplifiers
US6304369B1 (en) Method and apparatus for eliminating noise in analog fiber links
Gnauck et al. 10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion
US20050157378A1 (en) Reduced four-wave mixing and raman amplification architecture
CN110855365B (en) Relay-free optical fiber transmission system and relay-free optical fiber transmission method
JPH05227103A (en) Optical communication method
Naito et al. Four 5-Gbit/s WDM transmission over 4760-km straight-line using pre-and post-dispersion compensation and FWM cross talk reduction
JP2919193B2 (en) Optical communication transmission system
US6473212B1 (en) Lightwave communication systems using semiconductor optical amplifiers
Lovkesh et al. Estimation of four wave mixing effect in pre-, post-and in-line configuration of EDFA using advanced modulation formats for 1.28 Tbps WDM system
Shimizu et al. Hybrid Lumped Repeater Using PPLN-Based High-Gain Optical Parametric Phase Conjugators and EDFAs for C+ L-Band Transmission
Kavitha et al. Mixed fiber optical parametric amplifiers for broadband optical communication systems with reduced nonlinear effects
JP3215153B2 (en) Optical amplification repeater
JPH06318914A (en) Optical communication transmission system
Park et al. 2.488 Gb/s-318 km repeaterless transmission using erbium-doped fiber amplifiers in a direct-detection system
Kimura et al. Optical QPSK Signal Quality Degradation due to Phase Error of Pump Light in Optical Parametric Phase-Sensitive Amplifier Repeaters
Kumar et al. Optimization of hybrid RAMAN-EDFA-RAMAN optical amplifier for super dense wavelength division multiplexing system
Asha et al. Chromatic Dispersion Compensation in 80Gbps Ultra High Bit Rate Long-Haul Transmission with Travelling Wave Semiconductor Optical Amplifier
Ghera et al. Performance enhancement of 3.84 Tbps DWDM long-haul system through mitigating the effect of fiber nonlinearities using optical filters and modulation formats
Ishida et al. 1.28 Tbit/s (64/spl times/20 Gbit/s) transmission over 4,200 km with 100 km repeater spacing consisting of Raman/EDF hybrid amplifiers
Matsuda et al. 90× 42.7 Gb/s (3.6 Tb/s) WDM signal transmission with triple band in-line amplifiers
Hagimoto et al. High‐speed optical transmission systems using optical fiber amplifiers
Kaur et al. Performance Investigation of 64× 20 Gbps DWDM System using Hybrid Optical Amplification for NRZ, RZ and DPSK Modulation Formats
Li et al. Performance improvement for constant amplitude NRZ-DPSK transmission through modulation-pulse-pre-shaping

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951003