JPH0685607A - High band component restoring device - Google Patents

High band component restoring device

Info

Publication number
JPH0685607A
JPH0685607A JP23120592A JP23120592A JPH0685607A JP H0685607 A JPH0685607 A JP H0685607A JP 23120592 A JP23120592 A JP 23120592A JP 23120592 A JP23120592 A JP 23120592A JP H0685607 A JPH0685607 A JP H0685607A
Authority
JP
Japan
Prior art keywords
audio signal
original audio
component
frequency
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23120592A
Other languages
Japanese (ja)
Inventor
Hachiro Yokota
八郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP23120592A priority Critical patent/JPH0685607A/en
Publication of JPH0685607A publication Critical patent/JPH0685607A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

PURPOSE:To restore the high band component omitted from an original audio signal. CONSTITUTION:The frequency of an original audio signal is analyzed by a frequency analyzing part 16. Then a tone color component including a pair of a fundamental tone and a harmonic is extracted out of the original audio signal band by an extracting part 18 based on the analyzing result of the part 16. Then an extrapolation means 30 estimates the harmonic component of a high band from the original audio signal band and extrapolates the harmonic component into the original audio signal with use of the tone color component extracted by the part 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高域成分復元装置に係
り、特に原オーディオ信号が帯域制限されているために
欠落した成分を復元することで音質向上を図った高域成
分復元装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency band component restoration device, and more particularly to a high frequency band component restoration device for improving sound quality by restoring a component missing due to band limitation of an original audio signal.

【0002】[0002]

【従来の技術】コンパクトディスク、DAT等のディジ
タルオーディオでは、サンプリング周波数fsに対し、
fs/2以上の原オーディオ信号成分が存在すると所謂
折り返し雑音が生じるので、原オーディオ信号は帯域が
fs/2以下に制限されてディジタル記録されている。
コンパクトディスクではfs=44.1kHz の1種類、DA
Tではfs=48kHz ,44kHz 等の複数種類となっている
が、いずれにしても、ディジタルオーディオ信号をサン
プリング周波数fsのままD/AコンバータでD/A変
換すると、D/Aコンバータ出力がパルス幅を持つこと
から、f特の高域レスポンスが低下したり(アパーチャ
効果)、また、サンプリング周波数fsが低いことで量
子化雑音が目立ったりする。このため、通常は、ディジ
タルオーディオ信号をD/A変換する前に、ディジタル
フィルタを通してサンプリング周波数を、4倍、8倍等
のn倍に上げるオーバーサンプリングを行い、nfsの
サンプリング周波数でD/A変換し、高域レスポンスの
低下を回避したり、量子化雑音を低減したりする処理が
なされている。
2. Description of the Related Art In digital audio such as compact discs and DAT, the sampling frequency fs is
The presence of the original audio signal component of fs / 2 or more causes so-called aliasing noise, so that the band of the original audio signal is digitally recorded with the band limited to fs / 2 or less.
For compact discs, one type of fs = 44.1kHz, DA
In T, there are multiple types such as fs = 48kHz, 44kHz, etc. In any case, if the digital audio signal is D / A converted by the D / A converter with the sampling frequency fs, the D / A converter output has a pulse width. Therefore, the high frequency response of f characteristic is lowered (aperture effect), and the quantization noise is conspicuous due to the low sampling frequency fs. Therefore, normally, before D / A conversion of a digital audio signal, oversampling is performed through a digital filter to raise the sampling frequency to n times such as 4 times or 8 times, and the D / A conversion is performed at a sampling frequency of nfs. However, processing for avoiding a decrease in high-frequency response or reducing quantization noise is performed.

【0003】[0003]

【発明が解決しようとする課題】ところで、オーディオ
信号は、単一周波数の純音成分だけから成る場合は少な
く、通常は基音と倍音の組み合わせから成る音色成分が
1又は複数含まれている。しかしながら、図4に示す如
く、原ディジタルオーディオ信号の帯域がfs/2以下
に制限されていることにより、基音f1 と倍音f2 〜f
4 の組み合わせから成る音色成分では、fs/2以上の
倍音f3 ,f4 の成分が欠落しており、ディジタルフィ
ルタでn倍オーバーサンプリングしたからといって、欠
落した倍音成分は復元しない。よって、基音と倍音の組
み合わせから成る音色成分については、生の音楽を忠実
に再現した再生ができないという問題があった。以上か
ら、本発明の目的は、原オーディオ信号で欠落している
高域成分を復元できるようにした高域成分復元装置を提
供することである。
By the way, an audio signal is rarely composed of a pure tone component of a single frequency, and usually contains one or a plurality of tone color components composed of a combination of a fundamental tone and an overtone. However, as shown in FIG. 4, since the band of the original digital audio signal is limited to fs / 2 or less, the fundamental tone f 1 and the overtones f 2 to f 2
The tonal components comprising a combination of 4, fs / 2 or more harmonic f 3, components f 4 are missing, just because the n-times oversampling digital filter, missing harmonics is not restored. Therefore, there is a problem in that the tone color component composed of the combination of the fundamental tone and the overtone cannot be reproduced faithfully reproducing the live music. From the above, an object of the present invention is to provide a high-frequency component restoration device capable of restoring high-frequency components missing in the original audio signal.

【0004】[0004]

【課題を解決するための手段】上記課題は本発明におい
ては、原オーディオ信号に対し周波数分析を行う周波数
分析手段と、周波数分析手段での分析結果から原オーデ
ィオ信号帯域中に基音と倍音が組で存在する音色成分を
抽出する抽出手段と、抽出手段で抽出された音色成分を
用いて、原オーディオ信号帯域より高域側の倍音成分を
予測し原オーディオ信号に外挿する外挿手段を備えたこ
とにより達成される。
SUMMARY OF THE INVENTION In the present invention, the above-mentioned problem is solved by a frequency analysis means for performing frequency analysis on an original audio signal, and a combination of a fundamental tone and an overtone in the original audio signal band based on the analysis result of the frequency analysis means. And an extrapolation means for extrapolating to the original audio signal by predicting a harmonic component higher than the original audio signal band using the timbre component extracted by the extracting means. Will be achieved.

【0005】[0005]

【作用】本発明によれば、原オーディオ信号に対し周波
数分析を行い、分析結果から原オーディオ信号帯域中に
基音と倍音が組で存在する音色成分を抽出し、抽出した
音色成分を用いて、原オーディオ信号帯域より高域側の
倍音成分を予測し原オーディオ信号に外挿する。これに
より、原オーディオ信号で欠落した倍音成分を復元し、
生の音楽を忠実に再現した再生が可能となる。
According to the present invention, frequency analysis is performed on an original audio signal, a tone color component having a fundamental tone and a harmonic overtone in the original audio signal band is extracted from the analysis result, and the extracted tone color component is used. The overtone component on the high frequency side of the original audio signal band is predicted and extrapolated to the original audio signal. This restores the overtone component that was missing in the original audio signal,
Playback that faithfully reproduces live music becomes possible.

【0006】[0006]

【実施例】図1は本発明の実施例構成図である。図中、
10は音楽信号がディジタル記録されたコンパクトディ
スク、12はコンパクトディスクの記録信号を読み取
り、16ビット長でサンプリング周波数fs(=44.1kH
z )のディジタルオーディオ信号(原オーディオ信号)
DS0 を出力するディク読み取り部である。ディジタル
オーディオ信号DS0 は折り返し歪みの発生を防ぐため
帯域がfs/2以下に制限されている。14はディスク
読み取り部から出力された原ディジタルオーディオ信号
に対し、n倍のオーバーサンプリングを行い高域レスポ
ンスの改善を行うディジタルフィルタである。ディジタ
ルフィルタは、16ビット長の高精度でディジタルオー
ディオ信号DS1 を出力する。
1 is a block diagram of an embodiment of the present invention. In the figure,
10 is a compact disc on which a music signal is digitally recorded, 12 is a signal recorded on the compact disc, and the sampling frequency fs is 16 bits (= 44.1 kH).
z) digital audio signal (original audio signal)
This is a disk reader that outputs DS 0 . The band of the digital audio signal DS 0 is limited to fs / 2 or less in order to prevent the occurrence of aliasing distortion. Reference numeral 14 is a digital filter for improving the high frequency response by oversampling the original digital audio signal output from the disc reading section by n times. The digital filter outputs the digital audio signal DS 1 with a high precision of 16 bits.

【0007】16はディジタルオーディオ信号DS0
対し周波数分析を行う周波数分析部であり、該周波数分
析部はFFT処理でディジタルオーディオ信号DS0
対し時間軸−周波数軸変換を行ってリアルタイムに周波
数分析を行う。18は周波数分析部16での分析結果よ
り、ディジタルオーディオ信号帯域内(fs/2以下)
に、基音と倍音の組み合わせから成る音色成分を抽出す
る抽出部、20は抽出部で抽出された音色成分から所定
の予測関数を用いて、該音色成分が本来fs/2〜nf
s/2の帯域で有しているべき倍音を予測し、該予測し
た倍音をnfsのサンプリング周波数による14ビット
長のディジタルオーディオ信号DS2 (時間軸上デー
タ)として出力する予測部である。
Reference numeral 16 is a frequency analysis section for performing frequency analysis on the digital audio signal DS 0 , and the frequency analysis section performs time-frequency-axis conversion on the digital audio signal DS 0 by FFT processing to analyze the frequency in real time. I do. 18 is within the digital audio signal band (fs / 2 or less) according to the analysis result of the frequency analysis unit 16.
An extraction unit for extracting a tone color component composed of a combination of a fundamental tone and an overtone, and 20 using a predetermined prediction function from the tone color component extracted by the extraction unit so that the tone color component is originally fs / 2 to nf.
This is a prediction unit that predicts a harmonic overtone that should be included in the band of s / 2, and outputs the predicted harmonic overtone as a 14-bit digital audio signal DS 2 (time-axis data) having a sampling frequency of nfs.

【0008】予測部20は、抽出部18で抽出された各
音色成分につき、基音と倍音の周波数関係及びレベル関
係から、予測関数を用いて、fs/2〜nfs/2の帯
域に存在すべき倍音の周波数とレベルを予測計算する。
予測関数は、例えば、抽出部18で抽出された或る1つ
の音色成分が図2(1)に示す如く、f1 の基音、f2
〜f4 の倍音となっていたとき、fs/2に近い方の2
つの倍音f3 ,f4 のレベルを結んだ直線を予測関数F
とし、 fi =f4 +(i−4)・(f4 −f3 ) 但し、i=5、6、7、・・・・、 fs/2<fi <nfs/2 となる各f5 、f6 、・・・を予測倍音の周波数、
5 、f6 、・・・での直線F上のレベルを予測倍音の
レベルとする。そして、予測部20は各予測倍音につ
き、時間軸上での合成波形に係るディジタルオーディオ
信号を出力する。抽出部18で抽出した音色成分が複数
個存在するときは、各音色成分毎に、倍音の予測を行
い、全て合成した波形に係るディジタルオーディオ信号
を出力する。
The predicting unit 20 should exist in the band of fs / 2 to nfs / 2 by using a predictive function for each tone color component extracted by the extracting unit 18 from the frequency relationship and the level relationship between the fundamental tone and the overtone. Predictive calculation of harmonic overtone frequency and level.
Prediction function, for example, one certain tonal components extracted by the extraction unit 18 as shown in FIG. 2 (1), the f 1 fundamental, f 2
~ When it is a harmonic overtone of f 4 , 2 of the closer to fs / 2
Prediction function F is a straight line connecting the levels of the three overtones f 3 and f 4.
And f i = f 4 + (i−4) · (f 4 −f 3 ), where i = 5, 6, 7, ..., Fs / 2 <f i <nfs / 2 5 , f 6 , ... are frequencies of predicted overtones,
The level on the straight line F at f 5 , f 6 , ... Is the predicted overtone level. Then, the prediction unit 20 outputs a digital audio signal related to the synthesized waveform on the time axis for each predicted overtone. When there are a plurality of tone color components extracted by the extraction unit 18, overtone prediction is performed for each tone color component, and a digital audio signal related to all synthesized waveforms is output.

【0009】なお、或る1つの音色成分について、Fの
傾きが例えば、−6dB/octより小さいとき、fs/2〜
nfs/2の範囲の倍音は存在しないとしてもよい。ま
た、図2(2)に示す如く、抽出部18で抽出された或
る1つの音色成分がf1 の基音、f2 の倍音となってい
たとき、基音f1 と倍音f2 のレベルを結んだ直線を予
測関数Fとし、 fi =f2 +(i−2)・(f2 −f1 ) 但し、i=3、4、5、・・・・、 fs/2<fi <nfs/2 となる各f3 、f4 、・・・を予測倍音の周波数、
3 、f4 、・・・での直線F上のレベルを予測倍音の
レベルとする。
For a certain timbre component, if the slope of F is, for example, less than -6 dB / oct, fs / 2 to fs / 2
There may be no overtones in the nfs / 2 range. Further, as shown in FIG. 2 (2), the extraction unit 18 with the extracted one certain tonal components is f 1 fundamental, when it the harmonics f 2, the level of the fundamental tone f 1 and harmonic f 2 a straight line that connects the prediction function F, f i = f 2 + (i-2) · (f 2 -f 1) However, i = 3,4,5, ····, fs / 2 <f i < The frequencies of the predicted overtones are f 3 , f 4 , ...
The level on the straight line F at f 3 , f 4 , ... Is the predicted overtone level.

【0010】22はディジタルフィルタから出力された
ディジタルオーディオ信号DS1 をD/A変換する16
ビット長のD/Aコンバータであり、ディジタルオーデ
ィオ信号DS1 がn倍オーバーサンプリングされている
ことから、fs/2付近の高域レスポンスが改善され、
量子化雑音の少ないfs/2以下のアナログオーディオ
信号AS1 を出力する。24は予測部20から出力され
たディジタルオーディオ信号DS2 をD/A変換する1
4ビット長のD/Aコンバータであり、fs/2〜nf
sの帯域に入る倍音のアナログオーディオ信号AS2
出力する。26は加算器であり、アナログオーディオ信
号AS1 とAS2 を加算して、アナログオーディオ信号
AS3 として出力する。28はカットオフ周波数fc
nfs/2のLPFであり、アナログオーディオ信号A
3 に含まれるnfs/2以上の折り返し歪み成分をカ
ットする。予測部20、D/Aコンバータ22と24、
加算器26により、高域倍音成分外挿手段30が構成さ
れている。なお、周波数分析部16、抽出部18、予測
部20はマイクロコンピュータやDSP(ディジタルシ
グナルプロセッサ)を用いて実現することができる。
Reference numeral 22 denotes a D / A converter for the digital audio signal DS 1 output from the digital filter 16
It is a bit-length D / A converter, and since the digital audio signal DS 1 is oversampled n times, the high frequency response near fs / 2 is improved,
An analog audio signal AS 1 of fs / 2 or less with little quantization noise is output. Reference numeral 24 is a D / A converter for the digital audio signal DS 2 output from the prediction unit 20.
A 4-bit D / A converter, fs / 2 to nf
It outputs an overtone analog audio signal AS 2 in the s band. An adder 26 adds the analog audio signals AS 1 and AS 2 and outputs the result as an analog audio signal AS 3 . 28 is an LPF having a cut-off frequency f c of nfs / 2, and is an analog audio signal A
The aliasing distortion component of nfs / 2 or more contained in S 3 is cut. Predictor 20, D / A converters 22 and 24,
The adder 26 constitutes a high-frequency overtone component extrapolating means 30. The frequency analysis unit 16, the extraction unit 18, and the prediction unit 20 can be realized by using a microcomputer or DSP (digital signal processor).

【0011】次に上記した実施例の動作を、n=4とし
た場合について簡単に説明する。ディスク読み取り部1
2でコンパクトディスク10から読み取られたディジタ
ルオーディオ信号DS0 は、サンプリング周波数fs=
44.1kHz で、帯域がfs/2以下に制限されている。デ
ィジタルオーディオ信号DS0 はディジタルフィルタ1
4で4倍のオーバーサンプリングがなされ、サンプリン
グ周波数4fsのディジタルオーディオ信号DS1 に変
換されたのち、D/Aコンバータ22でD/A変換され
てアナログオーディオ信号AS1 として出力される。こ
のアナログオーディオ信号AS1 は、fs/2以下の原
オーディオ信号につき、ディジタルフィルタ14のオー
バーサンプリングにより、アパーチャ効果によるfs/
2近くのレスポンス低下の回避と量子化雑音の低減が図
られたものとなる。
Next, the operation of the above-mentioned embodiment will be briefly described when n = 4. Disk reading unit 1
The digital audio signal DS 0 read from the compact disc 10 at 2 has a sampling frequency fs =
At 44.1kHz, the band is limited to fs / 2 or less. Digital audio signal DS 0 is digital filter 1
The signal is oversampled four times at 4, converted into a digital audio signal DS 1 having a sampling frequency of 4fs, and then D / A converted at a D / A converter 22 and output as an analog audio signal AS 1 . This analog audio signal AS 1 is an original audio signal of fs / 2 or less and is fs / due to the aperture effect due to the oversampling of the digital filter 14.
The reduction of the response near 2 and the reduction of the quantization noise are achieved.

【0012】一方、ディジタルーオーディオ信号DS0
は、周波数分析部16で周波数分析されたのち、抽出部
18でfs/2以下の帯域に存在する基音と1又は複数
の倍音の組み合わせからなる1又は複数の音色成分が抽
出される。そして、抽出部18で抽出した各音色成分毎
に、予測部20でfs/2〜2fsの帯域に存在すべき
倍音が予測され、予測した倍音全てが合成された時間軸
上でのディジタルオーディオ信号DS2 がサンプリング
周波数4fsで出力される。ディジタルオーディオ信号
DS2 はD/Aコンバータ24でD/A変換されてアナ
ログオーディオ信号AS2 として出力され、加算器26
で帯域fs/2以下のアナログオーディオ信号AS1
合成されてアナログオーディオ信号AS3 として出力さ
れる。よって、アナログオーディオ信号AS3 は、図3
に示す如く、fs/2以下の帯域にアパーチャ効果が改
善され、かつ、量子化歪みが軽減された原オーディオ信
号成分(SA1 )を含み、fs/2〜2fsの帯域に、
本来、存在すべき倍音成分が外挿された信号成分(SA
2 )を含むものとなる。アナログオーディオ信号AS3
はLPF28で2fs以上の折り返し歪み成分が除去さ
れた後、外部出力される。
On the other hand, the digital audio signal DS 0
Is subjected to frequency analysis by the frequency analyzing unit 16, and then the extracting unit 18 extracts one or a plurality of timbre components that are a combination of a fundamental tone and one or a plurality of overtones existing in a band of fs / 2 or less. Then, for each timbre component extracted by the extraction unit 18, the prediction unit 20 predicts overtones that should exist in the band of fs / 2 to 2fs, and a digital audio signal on the time axis in which all the predicted overtones are combined. DS 2 is output at a sampling frequency of 4fs. The digital audio signal DS 2 is D / A converted by the D / A converter 24 and output as the analog audio signal AS 2 , and the adder 26
Is combined with an analog audio signal AS 1 having a band of fs / 2 or less and output as an analog audio signal AS 3 . Therefore, the analog audio signal AS 3 is shown in FIG.
As shown in, the original audio signal component (SA 1 ) whose aperture effect is improved and the quantization distortion is reduced is included in the band of fs / 2 or less, and the band of fs / 2 to 2fs is
Originally, a signal component (SA
2 ) is included. Analog audio signal AS 3
After the aliasing distortion component of 2 fs or more is removed by the LPF 28, is output to the outside.

【0013】この実施例によれば、原オーディオ信号で
はカットされていた高域の倍音成分を復元して、生の音
楽に忠実な音楽再生が可能となる。そして、原オーディ
オ信号に純音(単一周波数のサイン波)として含まれて
いる音色成分については、倍音の外挿はなされないの
で、原オーディオ帯域でのTHDが悪化したり、再生音
に歪みが生じたりすることはない。
According to this embodiment, it is possible to reproduce the high-frequency overtone component that was cut in the original audio signal and reproduce the music faithfully to the live music. Since the overtone is not extrapolated with respect to the timbre component contained in the original audio signal as a pure tone (single frequency sine wave), THD in the original audio band is deteriorated and the reproduced sound is distorted. It does not happen.

【0014】なお、上記した実施例では、アナログ領域
でfs/2以下の原オーディオ信号に対しfs/2〜n
fsの予測倍音を外挿するようにしたが、ディジタル領
域で行うようにしてもよい。また、fsは44.1kHz に限
られず、これ以上又はこれ以下であってもよく、更に、
nも2、8、16等であってもよい。以上、本発明を実
施例、変形例等により説明したが、本発明は請求の範囲
に記載した本発明の主旨に従い種々の変形が可能であ
り、本発明はこれらを排除するものではない。
In the above embodiment, fs / 2 to n are applied to the original audio signal of fs / 2 or less in the analog domain.
Although the predicted overtone of fs is extrapolated, it may be performed in the digital domain. Also, fs is not limited to 44.1 kHz, and may be higher or lower than this.
n may also be 2, 8, 16 or the like. Although the present invention has been described above with reference to the embodiments and modifications, the present invention can be modified in various ways according to the gist of the present invention described in the claims, and the present invention does not exclude these.

【0015】[0015]

【発明の効果】以上本発明によれば、原オーディオ信号
に対し周波数分析を行う周波数分析手段と、周波数分析
手段での分析結果から原オーディオ信号帯域中に基音と
倍音が組で存在する音色成分を抽出する抽出手段と、抽
出手段で抽出された音色成分を用いて、原オーディオ信
号帯域より高域側の倍音成分を原オーディオ信号に外挿
する外挿手段を備え、原オーディオ信号に対し周波数分
析を行い、分析結果から原オーディオ信号帯域中に基音
と倍音が組で存在する音色成分を抽出し、抽出した音色
成分を用いて、原オーディオ信号帯域より高域側の倍音
成分を予測し原オーディオ信号に外挿するように構成し
たから、原オーディオ信号で欠落した倍音成分を復元
し、生の音楽を忠実に再現した再生が可能となる。
As described above, according to the present invention, the frequency analysis means for performing frequency analysis on the original audio signal and the timbre component in which the fundamental tone and the overtone exist as a set in the original audio signal band based on the analysis result by the frequency analysis means. And an extrapolation means for extrapolating the overtone component on the high frequency side of the original audio signal band to the original audio signal by using the timbre component extracted by the extracting means. Analysis is performed, and the tonal components in which the fundamental and overtones exist as a set in the original audio signal band are extracted from the analysis results, and the extracted tonal components are used to predict the overtone components in the higher range of the original audio signal band. Since it is configured to be extrapolated to the audio signal, it is possible to reproduce the overtone component that is missing in the original audio signal and faithfully reproduce the live music.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】図1中の予測部の動作を示す線図である。FIG. 2 is a diagram showing an operation of a prediction unit in FIG.

【図3】加算器出力のスペクトラムを示す線図である。FIG. 3 is a diagram showing a spectrum of an adder output.

【図4】原オーディオ信号と倍音の関係を示す線図であ
る。
FIG. 4 is a diagram showing a relationship between an original audio signal and overtones.

【符号の説明】[Explanation of symbols]

16 周波数分析部 18 抽出部 20 予測部 30 外挿手段 16 frequency analysis unit 18 extraction unit 20 prediction unit 30 extrapolation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原オーディオ信号に対し周波数分析を行
う周波数分析手段と、 周波数分析手段での分析結果から原オーディオ信号帯域
中に基音と倍音が組で存在する音色成分を抽出する抽出
手段と、 抽出手段で抽出された音色成分を用いて、原オーディオ
信号帯域より高域側の倍音成分を予測し原オーディオ信
号に外挿する外挿手段と、 を備えたことを特徴とする高域成分復元装置。
1. A frequency analysis means for performing a frequency analysis on an original audio signal, and an extraction means for extracting a timbre component in which a fundamental tone and a harmonic overtone exist as a set in the original audio signal band from an analysis result of the frequency analysis means, A high-frequency component restoration characterized by including extrapolation means for predicting a harmonic component on the higher frequency side of the original audio signal band by using the timbre component extracted by the extraction means and extrapolating to the original audio signal. apparatus.
JP23120592A 1992-08-31 1992-08-31 High band component restoring device Withdrawn JPH0685607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23120592A JPH0685607A (en) 1992-08-31 1992-08-31 High band component restoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23120592A JPH0685607A (en) 1992-08-31 1992-08-31 High band component restoring device

Publications (1)

Publication Number Publication Date
JPH0685607A true JPH0685607A (en) 1994-03-25

Family

ID=16919990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23120592A Withdrawn JPH0685607A (en) 1992-08-31 1992-08-31 High band component restoring device

Country Status (1)

Country Link
JP (1) JPH0685607A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350401A (en) * 1993-06-03 1994-12-22 Nec Corp Digital filter
WO2002009092A1 (en) * 2000-07-21 2002-01-31 Kabushiki Kaisha Kenwood Frequency interpolating device for interpolating frequency component of signal and frequency interpolating method
WO2002035517A1 (en) * 2000-10-24 2002-05-02 Kabushiki Kaisha Kenwood Apparatus and method for interpolating signal
WO2002050814A1 (en) * 2000-12-07 2002-06-27 Kabushiki Kaisha Kenwood System and method for signal interpolation
WO2003003345A1 (en) * 2001-06-29 2003-01-09 Kabushiki Kaisha Kenwood Device and method for interpolating frequency components of signal
WO2003019533A1 (en) * 2001-08-24 2003-03-06 Kabushiki Kaisha Kenwood Device and method for interpolating frequency components of signal adaptively
JP2003108197A (en) * 2001-07-13 2003-04-11 Matsushita Electric Ind Co Ltd Audio signal decoding device and audio signal encoding device
JP2003255997A (en) * 2002-03-06 2003-09-10 Toshiba Corp Method and device for audio signal reproduction
JP2003533108A (en) * 2000-04-27 2003-11-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Infrastructure bus
WO2005027095A1 (en) * 2003-09-16 2005-03-24 Matsushita Electric Industrial Co., Ltd. Encoder apparatus and decoder apparatus
WO2005036527A1 (en) * 2003-10-07 2005-04-21 Matsushita Electric Industrial Co., Ltd. Method for deciding time boundary for encoding spectrum envelope and frequency resolution
WO2005040749A1 (en) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. Spectrum encoding device, spectrum decoding device, acoustic signal transmission device, acoustic signal reception device, and methods thereof
WO2005057550A1 (en) * 2003-12-15 2005-06-23 Matsushita Electric Industrial Co., Ltd. Audio compression/decompression device
WO2006046587A1 (en) * 2004-10-28 2006-05-04 Matsushita Electric Industrial Co., Ltd. Scalable encoding apparatus, scalable decoding apparatus, and methods thereof
JPWO2004104987A1 (en) * 2003-05-20 2006-07-20 松下電器産業株式会社 Method and apparatus for extending the bandwidth of an audio signal
JP2006201802A (en) * 1999-01-27 2006-08-03 Coding Technologies Ab Device for improving performance of information source coding system
WO2008015726A1 (en) * 2006-07-31 2008-02-07 Pioneer Corporation Band spreading device and method
WO2008015732A1 (en) * 2006-07-31 2008-02-07 Pioneer Corporation Band expanding device and method
WO2008053970A1 (en) * 2006-11-02 2008-05-08 Panasonic Corporation Voice coding device, voice decoding device and their methods
JP2008129542A (en) * 2006-11-24 2008-06-05 Fujitsu Ltd Decoding device and decoding method
WO2008096862A1 (en) * 2007-02-09 2008-08-14 Yamaha Corporation Audio processing device
US7483830B2 (en) 2000-03-07 2009-01-27 Nokia Corporation Speech decoder and a method for decoding speech
WO2009081568A1 (en) * 2007-12-21 2009-07-02 Panasonic Corporation Encoder, decoder, and encoding method
JP2011248378A (en) * 2004-05-19 2011-12-08 Panasonic Corp Encoder, decoder, and method therefor
US9245534B2 (en) 2000-05-23 2016-01-26 Dolby International Ab Spectral translation/folding in the subband domain
JP2016024454A (en) * 2014-07-25 2016-02-08 三菱電機株式会社 Voice band spreading device and voice band spreading method
US9761234B2 (en) 2001-11-29 2017-09-12 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
US9792919B2 (en) 2001-07-10 2017-10-17 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate applications
US9842600B2 (en) 2002-09-18 2017-12-12 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350401A (en) * 1993-06-03 1994-12-22 Nec Corp Digital filter
JP2006201802A (en) * 1999-01-27 2006-08-03 Coding Technologies Ab Device for improving performance of information source coding system
US9245533B2 (en) 1999-01-27 2016-01-26 Dolby International Ab Enhancing performance of spectral band replication and related high frequency reconstruction coding
US8935156B2 (en) 1999-01-27 2015-01-13 Dolby International Ab Enhancing performance of spectral band replication and related high frequency reconstruction coding
JP4519784B2 (en) * 1999-01-27 2010-08-04 ドルビー インターナショナル アクチボラゲット Device for improving performance of information source coding system
JP4519783B2 (en) * 1999-01-27 2010-08-04 ドルビー インターナショナル アクチボラゲット Device for improving performance of information source coding system
JP2006201801A (en) * 1999-01-27 2006-08-03 Coding Technologies Ab Device for improving performance of information source coding system
US7483830B2 (en) 2000-03-07 2009-01-27 Nokia Corporation Speech decoder and a method for decoding speech
JP2003533108A (en) * 2000-04-27 2003-11-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Infrastructure bus
US9691400B1 (en) 2000-05-23 2017-06-27 Dolby International Ab Spectral translation/folding in the subband domain
US9691399B1 (en) 2000-05-23 2017-06-27 Dolby International Ab Spectral translation/folding in the subband domain
US10008213B2 (en) 2000-05-23 2018-06-26 Dolby International Ab Spectral translation/folding in the subband domain
US9786290B2 (en) 2000-05-23 2017-10-10 Dolby International Ab Spectral translation/folding in the subband domain
US9697841B2 (en) 2000-05-23 2017-07-04 Dolby International Ab Spectral translation/folding in the subband domain
US9691403B1 (en) 2000-05-23 2017-06-27 Dolby International Ab Spectral translation/folding in the subband domain
US9691401B1 (en) 2000-05-23 2017-06-27 Dolby International Ab Spectral translation/folding in the subband domain
US9691402B1 (en) 2000-05-23 2017-06-27 Dolby International Ab Spectral translation/folding in the subband domain
US10311882B2 (en) 2000-05-23 2019-06-04 Dolby International Ab Spectral translation/folding in the subband domain
US9245534B2 (en) 2000-05-23 2016-01-26 Dolby International Ab Spectral translation/folding in the subband domain
US10699724B2 (en) 2000-05-23 2020-06-30 Dolby International Ab Spectral translation/folding in the subband domain
WO2002009092A1 (en) * 2000-07-21 2002-01-31 Kabushiki Kaisha Kenwood Frequency interpolating device for interpolating frequency component of signal and frequency interpolating method
US6879265B2 (en) 2000-07-21 2005-04-12 Kabushiki Kaisha Kenwood Frequency interpolating device for interpolating frequency component of signal and frequency interpolating method
WO2002035517A1 (en) * 2000-10-24 2002-05-02 Kabushiki Kaisha Kenwood Apparatus and method for interpolating signal
WO2002050814A1 (en) * 2000-12-07 2002-06-27 Kabushiki Kaisha Kenwood System and method for signal interpolation
WO2003003345A1 (en) * 2001-06-29 2003-01-09 Kabushiki Kaisha Kenwood Device and method for interpolating frequency components of signal
US7400651B2 (en) 2001-06-29 2008-07-15 Kabushiki Kaisha Kenwood Device and method for interpolating frequency components of signal
JPWO2003003345A1 (en) * 2001-06-29 2004-10-21 株式会社ケンウッド Apparatus and method for interpolating frequency components of a signal
US10540982B2 (en) 2001-07-10 2020-01-21 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate audio coding applications
US9865271B2 (en) 2001-07-10 2018-01-09 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate applications
US9799341B2 (en) 2001-07-10 2017-10-24 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate applications
US9799340B2 (en) 2001-07-10 2017-10-24 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate audio coding applications
US9792919B2 (en) 2001-07-10 2017-10-17 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate applications
US10297261B2 (en) 2001-07-10 2019-05-21 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate audio coding applications
US10902859B2 (en) 2001-07-10 2021-01-26 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate audio coding applications
JP2003108197A (en) * 2001-07-13 2003-04-11 Matsushita Electric Ind Co Ltd Audio signal decoding device and audio signal encoding device
US7680665B2 (en) 2001-08-24 2010-03-16 Kabushiki Kaisha Kenwood Device and method for interpolating frequency components of signal adaptively
WO2003019533A1 (en) * 2001-08-24 2003-03-06 Kabushiki Kaisha Kenwood Device and method for interpolating frequency components of signal adaptively
US9761236B2 (en) 2001-11-29 2017-09-12 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
US11238876B2 (en) 2001-11-29 2022-02-01 Dolby International Ab Methods for improving high frequency reconstruction
US9792923B2 (en) 2001-11-29 2017-10-17 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
US9779746B2 (en) 2001-11-29 2017-10-03 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
US9761237B2 (en) 2001-11-29 2017-09-12 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
US9761234B2 (en) 2001-11-29 2017-09-12 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
US10403295B2 (en) 2001-11-29 2019-09-03 Dolby International Ab Methods for improving high frequency reconstruction
US9818418B2 (en) 2001-11-29 2017-11-14 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
US9812142B2 (en) 2001-11-29 2017-11-07 Dolby International Ab High frequency regeneration of an audio signal with synthetic sinusoid addition
JP2003255997A (en) * 2002-03-06 2003-09-10 Toshiba Corp Method and device for audio signal reproduction
US10685661B2 (en) 2002-09-18 2020-06-16 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
US11423916B2 (en) 2002-09-18 2022-08-23 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
US10013991B2 (en) 2002-09-18 2018-07-03 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
US10418040B2 (en) 2002-09-18 2019-09-17 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
US9842600B2 (en) 2002-09-18 2017-12-12 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
US9990929B2 (en) 2002-09-18 2018-06-05 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
US10115405B2 (en) 2002-09-18 2018-10-30 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
US10157623B2 (en) 2002-09-18 2018-12-18 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
JPWO2004104987A1 (en) * 2003-05-20 2006-07-20 松下電器産業株式会社 Method and apparatus for extending the bandwidth of an audio signal
JP4669394B2 (en) * 2003-05-20 2011-04-13 パナソニック株式会社 Method and apparatus for extending the bandwidth of an audio signal
WO2005027095A1 (en) * 2003-09-16 2005-03-24 Matsushita Electric Industrial Co., Ltd. Encoder apparatus and decoder apparatus
US7451091B2 (en) 2003-10-07 2008-11-11 Matsushita Electric Industrial Co., Ltd. Method for determining time borders and frequency resolutions for spectral envelope coding
WO2005036527A1 (en) * 2003-10-07 2005-04-21 Matsushita Electric Industrial Co., Ltd. Method for deciding time boundary for encoding spectrum envelope and frequency resolution
US8275061B2 (en) 2003-10-23 2012-09-25 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
WO2005040749A1 (en) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. Spectrum encoding device, spectrum decoding device, acoustic signal transmission device, acoustic signal reception device, and methods thereof
US8315322B2 (en) 2003-10-23 2012-11-20 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
US8208570B2 (en) 2003-10-23 2012-06-26 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
US7949057B2 (en) 2003-10-23 2011-05-24 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
WO2005057550A1 (en) * 2003-12-15 2005-06-23 Matsushita Electric Industrial Co., Ltd. Audio compression/decompression device
JP2011248378A (en) * 2004-05-19 2011-12-08 Panasonic Corp Encoder, decoder, and method therefor
US8019597B2 (en) 2004-10-28 2011-09-13 Panasonic Corporation Scalable encoding apparatus, scalable decoding apparatus, and methods thereof
WO2006046587A1 (en) * 2004-10-28 2006-05-04 Matsushita Electric Industrial Co., Ltd. Scalable encoding apparatus, scalable decoding apparatus, and methods thereof
WO2008015732A1 (en) * 2006-07-31 2008-02-07 Pioneer Corporation Band expanding device and method
US8144762B2 (en) 2006-07-31 2012-03-27 Pioneer Corporation Band extending apparatus and method
WO2008015726A1 (en) * 2006-07-31 2008-02-07 Pioneer Corporation Band spreading device and method
WO2008053970A1 (en) * 2006-11-02 2008-05-08 Panasonic Corporation Voice coding device, voice decoding device and their methods
JP2008129542A (en) * 2006-11-24 2008-06-05 Fujitsu Ltd Decoding device and decoding method
WO2008096862A1 (en) * 2007-02-09 2008-08-14 Yamaha Corporation Audio processing device
JP2008197247A (en) * 2007-02-09 2008-08-28 Yamaha Corp Audio processing device
WO2009081568A1 (en) * 2007-12-21 2009-07-02 Panasonic Corporation Encoder, decoder, and encoding method
US8423371B2 (en) 2007-12-21 2013-04-16 Panasonic Corporation Audio encoder, decoder, and encoding method thereof
JP2016024454A (en) * 2014-07-25 2016-02-08 三菱電機株式会社 Voice band spreading device and voice band spreading method

Similar Documents

Publication Publication Date Title
JPH0685607A (en) High band component restoring device
KR0164590B1 (en) Apparatus for generating recording or reproducing sound source data
EP1630790B1 (en) Method and device for extending the audio signal band
Valimaki Discrete-time synthesis of the sawtooth waveform with reduced aliasing
JP3137995B2 (en) PCM digital audio signal playback device
JP4446072B2 (en) Audio signal output device
JP3810257B2 (en) Voice band extending apparatus and voice band extending method
JP3659489B2 (en) Digital audio processing apparatus and computer program recording medium
Godsill et al. The restoration of pitch variation defects in gramophone recordings
Kefauver et al. Fundamentals of digital audio
JP2617990B2 (en) Audio signal recording medium and reproducing apparatus therefor
JP2004163681A (en) Device and computer program for speech signal processing
JP5103606B2 (en) Signal processing device
JPH04150617A (en) D/a converter
JP3297792B2 (en) Signal expansion apparatus and method
JP2005309464A (en) Method and device to eliminate noise and program
JP3460037B2 (en) Digital recording device
JPH0644713B2 (en) Sound recording method
JPH07193502A (en) Data conversion device
JP3233295B2 (en) PCM data compression and decompression method
JP3223491B2 (en) Playback device
JP3263797B2 (en) Audio signal transmission equipment
US5790494A (en) Digital audio recorder and digital audio recording and reproducing system
JP2824731B2 (en) Signal reproduction method and signal recording / reproduction method
JPH03237695A (en) Sound recording and reproducing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102