JPH0685316A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH0685316A
JPH0685316A JP25586892A JP25586892A JPH0685316A JP H0685316 A JPH0685316 A JP H0685316A JP 25586892 A JP25586892 A JP 25586892A JP 25586892 A JP25586892 A JP 25586892A JP H0685316 A JPH0685316 A JP H0685316A
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting device
reflection
multilayer reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25586892A
Other languages
Japanese (ja)
Inventor
Migaku Katayama
琢 片山
Takehisa Koyama
剛久 小山
Katsuhiko Morita
克彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP25586892A priority Critical patent/JPH0685316A/en
Priority to US08/112,669 priority patent/US5406095A/en
Publication of JPH0685316A publication Critical patent/JPH0685316A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor light emitting device having a reflection layer wherein the maximum reflectance is maintained and further the half-width of the reflection spectrum is widened. CONSTITUTION:A semiconductor light emitting device 1 has, between a clad layer 6 and buffer layer 3, a superposed multilayer reflection layer 4 composed of superposed multilayer reflection layers 4a and 4b with their thickness intentionally varied. For example, the multilayer reflection layer 4a is formed by superposing 25 sets of an Al0.1Ga0.9As semiconductor layer of 76nm in thickness and an Al0.7Ga0.3As semiconductor layer of 80nm in thickness. The multilayer reflection layer 4b is formed by superposing 25 sets of an Al0.1Ga0.9As semiconductor layer of 70nm in thickness and an Al0.7Ga0.3As semiconductor layer of 75nm in thickness. The reflection center wavelength of these multilayer reflection layers 4a and 4b is 850nm and 910nm, respectively. The half-width of both is 70-80nm or so; however, it is widened to 120nm by superposition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、面発光型の半導体発光
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor light emitting device.

【0001】[0001]

【従来の技術】近年、光通信や、表示器として面発光型
半導体発光装置が多く使用されている。これらの発光ダ
イオードは、GaAs基板結晶などの上にLPE(液相
成長法)法やMOCVD(有機金属気相成長法)法等の
結晶成長法を用いてPN接合を形成し、半導体発光装置
として製造されている。ところが、上記のGaAs基板
結晶は、PN接合を形成している半導体結晶よりもバン
ドギャップが小さいので、この基板結晶に到達した光の
ほとんどを吸収してしまう。そこで従来では基板結晶を
エッチング除去して発光出力の損失を防いでいた。この
ように、基板結晶をエッチング除去するためには、膜厚
約100μm以上の半導体結晶層を形成しなくてはなら
ないが、従来ではLPE法等の厚膜成長技術を用いて厚
膜を形成していた。
2. Description of the Related Art In recent years, surface-emitting type semiconductor light-emitting devices have been widely used as optical communication and display devices. These light emitting diodes are used as semiconductor light emitting devices by forming a PN junction on a GaAs substrate crystal or the like by using a crystal growth method such as LPE (liquid phase epitaxy) method or MOCVD (metal organic chemical vapor deposition) method. Being manufactured. However, since the GaAs substrate crystal has a smaller bandgap than the semiconductor crystal forming the PN junction, most of the light that reaches the substrate crystal is absorbed. Therefore, conventionally, the substrate crystal is removed by etching to prevent the loss of light emission output. As described above, in order to remove the substrate crystal by etching, it is necessary to form a semiconductor crystal layer having a film thickness of about 100 μm or more, but conventionally, a thick film is formed using a thick film growth technique such as the LPE method. Was there.

【0002】しかし近年では、LPE法よりも組成や膜
厚の制御性及び均一性に優れたMOCVD法や、MBE
(分子線エピタキシー法)法を用いて半導体発光装置を
製造しようとする試みが行われている。しかしながら、
これらMOCVD法やMBE法は薄膜制御性や再現性に
は優れているが、逆に基板結晶を除去できるまでの厚膜
を成長させることはできない。そこでMOCVD法やM
BE法によって半導体発光装置を製造するに当たって、
半導体発光装置の出力向上のために近年注目されている
のが多層反射層である。以下、図面と共に多層反射膜を
設けた半導体発光装置、特に発光ダイオードについての
従来例について説明する。
However, in recent years, the MOCVD method and the MBE method, which have better controllability and uniformity of composition and film thickness than the LPE method,
Attempts have been made to manufacture semiconductor light emitting devices using the (molecular beam epitaxy) method. However,
These MOCVD method and MBE method are excellent in thin film controllability and reproducibility, but conversely cannot grow a thick film until the substrate crystal can be removed. Therefore, MOCVD method and M
In manufacturing a semiconductor light emitting device by the BE method,
In recent years, a multilayer reflective layer has attracted attention for improving the output of a semiconductor light emitting device. Hereinafter, a conventional example of a semiconductor light emitting device provided with a multilayer reflective film, particularly a light emitting diode, will be described with reference to the drawings.

【0003】図5は、従来の多層反射膜を設けた発光ダ
イオードの構造の一例を示す斜視図である。図5におい
て、発光ダイオード11は、基板結晶2上にバッファ層
3、多層反射層10、クラッド層6、活性層7、クラッ
ド層8を順次積層した構造になっている。前記多層反射
層10は、例えばGaAs層とAlGaAs層とを1組
として25組積層したものである。この多層反射層10
は、積層する半導体層、即ちGaAs層とAlGaAs
層との屈折率差が大きく、また積層数が多いほど反射特
性は向上する。また、このように積層された多層反射層
10の反射中心波長λp は、積層する半導体結晶層1層
の膜厚をd、屈折率をnとすると、λp =4ndで与え
られる。この多層反射層10の反射スペクトルを図6に
示す。図6によれば、反射中心波長880nm付近の反
射率は99%以上と良好な値を示している。
FIG. 5 is a perspective view showing an example of the structure of a conventional light emitting diode provided with a multilayer reflective film. In FIG. 5, the light emitting diode 11 has a structure in which a buffer layer 3, a multilayer reflective layer 10, a clad layer 6, an active layer 7, and a clad layer 8 are sequentially laminated on a substrate crystal 2. The multilayer reflective layer 10 is formed by stacking 25 GaAs layers and AlGaAs layers, for example. This multilayer reflective layer 10
Is a stacked semiconductor layer, that is, a GaAs layer and an AlGaAs
The greater the difference in refractive index from the layers and the greater the number of layers, the more improved the reflection characteristics. The reflection center wavelength λ p of the multilayer reflective layer 10 thus laminated is given by λ p = 4 nd, where d is the thickness of one semiconductor crystal layer to be laminated and n is the refractive index. The reflection spectrum of this multilayer reflective layer 10 is shown in FIG. According to FIG. 6, the reflectance near the reflection center wavelength of 880 nm is 99% or more, which is a good value.

【0004】このような多層反射層10を設けた発光ダ
イオード11において、活性層7でクラッド層8側に発
光した光はそのまま発光面9より出力されるが、クラッ
ド層6側に出力した光は多層反射層10に反射されて発
光面9より出力される。図7は、この発光ダイオード1
1(実線)と多層反射層を持たない発光ダイオード(一
点鎖線)との発光出力を示した図である。図7によれ
ば、発光ダイオード11の発光出力は多層反射層11を
持たない発光ダイオードに比べ多層反射層10の反射中
心波長880nm付近で大幅に改善されている。
In the light emitting diode 11 provided with such a multilayer reflection layer 10, the light emitted to the clad layer 8 side in the active layer 7 is directly output from the light emitting surface 9, but the light output to the clad layer 6 side is The light is reflected by the multilayer reflective layer 10 and output from the light emitting surface 9. FIG. 7 shows this light emitting diode 1.
FIG. 3 is a diagram showing light emission outputs of 1 (solid line) and a light emitting diode having no multilayer reflection layer (dashed line). According to FIG. 7, the light emission output of the light emitting diode 11 is significantly improved in the vicinity of the reflection center wavelength of 880 nm of the multilayer reflection layer 10 as compared with the light emitting diode without the multilayer reflection layer 11.

【0005】このように多層反射層10を基板結晶2と
活性層7との間に設けることで、活性層7から発光した
光は、基板結晶2に到達する前に多層反射層10に反射
されるので、基板結晶が光を吸収してしまうことで起こ
る発光出力の損失を無くすことができた。これによっ
て、基板結晶2を除去することなく高出力の発光ダイオ
ードを製造することができた。
By thus providing the multilayer reflective layer 10 between the substrate crystal 2 and the active layer 7, the light emitted from the active layer 7 is reflected by the multilayer reflective layer 10 before reaching the substrate crystal 2. Therefore, it is possible to eliminate the loss of light emission output caused by the substrate crystal absorbing light. As a result, a high-power light emitting diode could be manufactured without removing the substrate crystal 2.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述したよう
な発光ダイオード11によれば、図6に示したように、
多層反射層10の反射中心波長(880nm)付近では
最高反射率は99%以上を実現している。しかし、多層
反射層10の反射スペクトルの半値幅としては70〜8
0nm程度である。前述したように多層反射層の反射特
性は、積層する半導体層との屈折率差が大きく、また積
層数が多いほど反射特性は向上するが、実際には結晶成
長の容易性や、成長時間等の問題から適正値が存在し、
このような構造の多層反射層では、上記のような値が限
界である。よって、図7の一点鎖線で示しているように
実際の活性層7の発光スペクトル幅は一般的にそれより
も大きいため、このような多層反射層10を実際に発光
ダイオードに組み込んでも、発光パターンの短波長側と
長波長側では、基板結晶による光の吸収が起こり利得が
急激に落ちてしまう。また、多層反射層10の反射スペ
クトルの反射中心波長λp は、前述したようにλp =4
ndで表されるが、多層反射層10の半導体層の成長の
段階で、膜厚が1〜2%程度ずれると、多層反射層10
の反射スペクトルの反射中心波長がずれてしまうため発
光の効率良い反射が損なわれてしまう。
However, according to the light emitting diode 11 as described above, as shown in FIG.
In the vicinity of the reflection center wavelength (880 nm) of the multilayer reflective layer 10, the maximum reflectance is 99% or more. However, the half-value width of the reflection spectrum of the multilayer reflective layer 10 is 70 to 8
It is about 0 nm. As described above, the reflective characteristics of the multilayer reflective layer have a large difference in refractive index from the semiconductor layers to be laminated, and the greater the number of laminated layers, the better the reflective characteristics. There is a proper value from the problem of
In the multilayer reflective layer having such a structure, the above values are the limits. Therefore, as shown by the alternate long and short dash line in FIG. 7, the actual emission spectrum width of the active layer 7 is generally larger. Therefore, even if such a multilayer reflective layer 10 is actually incorporated in a light emitting diode, the emission pattern is On the short-wavelength side and the long-wavelength side, the light is absorbed by the substrate crystal and the gain sharply decreases. Further, the reflection center wavelength λ p of the reflection spectrum of the multilayer reflection layer 10 is λ p = 4 as described above.
Although represented by nd, if the film thickness deviates by about 1 to 2% at the stage of growth of the semiconductor layer of the multilayer reflective layer 10, the multilayer reflective layer 10
Since the center wavelength of the reflection of the reflection spectrum of is shifted, the efficient reflection of light emission is impaired.

【0007】そこで、本発明は上記の点に着目してなさ
れたものであり、最高反射率を維持したまま反射スペク
トルの半値幅を広くすることによって活性層の発光波長
を広くカバーした反射を行い、また膜厚が1〜2%ずれ
た場合でも効率の良い反射特性を実現した多層反射層を
設けた半導体発光装置を提供することを目的とするもの
である。
Therefore, the present invention has been made by paying attention to the above-mentioned point, and by performing the reflection covering a wide emission wavelength of the active layer by widening the half value width of the reflection spectrum while maintaining the maximum reflectance. Another object of the present invention is to provide a semiconductor light emitting device provided with a multilayer reflective layer that realizes efficient reflection characteristics even when the film thickness deviates by 1 to 2%.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するための手段として、活性層内で発生した光が、こ
の活性層と平行な面に形成した光取出し面より出力する
半導体発光装置において、前記半導体発光装置は、前記
活性層から発光した光の中で前記光取出し面と逆側に発
光した光を光取出し面側へ反射するための反射層を有
し、かつ前記反射層は、少なくとも2種以上の屈折率の
異なった半導体結晶層を交互に複数組積層した多層反射
層を、反射中心波長を異ならせて少なくとも2個以上多
重化した多重化多層反射層であることを特徴とする半導
体発光装置を提供しようとするものである。
As a means for achieving the above object, the present invention provides semiconductor light emission in which light generated in an active layer is output from a light extraction surface formed on a surface parallel to the active layer. In the device, the semiconductor light emitting device has a reflection layer for reflecting, to the light extraction surface side, the light emitted from the active layer on the side opposite to the light extraction surface, and the reflection layer. Is a multi-layered multi-layered reflection layer in which at least two or more multi-layered reflection layers in which a plurality of semiconductor crystal layers having different refractive indices are alternately laminated are made to have different reflection center wavelengths. It is intended to provide a characteristic semiconductor light emitting device.

【0009】また、本発明は、上記目的を達成するため
の手段として、前記半導体発光装置において、前記多重
化多層反射層は、前記多層反射層ごとに膜厚だけを変え
て積層した前記半導体結晶層で形成した多層反射層を多
重化して形成したことを特徴とする半導体発光装置を提
供しようとするものである。
As a means for achieving the above-mentioned object, the present invention provides the semiconductor light emitting device, wherein the multiplex multilayer reflective layer is formed by changing the thickness of each multilayer reflective layer. An object of the present invention is to provide a semiconductor light emitting device characterized in that a multilayer reflective layer formed by layers is formed by being multiplexed.

【0010】[0010]

【実施例】以下、添付図面を参照して従来例と同様に発
光ダイオードを例にとって本発明の一実施例を説明す
る。なお、前述した従来例で説明した発光ダイオード1
1と同様の部分に付いては説明を省略する。また、活性
層7の発光中心波長も従来例同様880nmとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings, taking a light emitting diode as an example as in the conventional example. The light emitting diode 1 described in the above-mentioned conventional example
The description of the same parts as 1 will be omitted. Further, the emission center wavelength of the active layer 7 is set to 880 nm as in the conventional example.

【0011】図1は、本発明の一実施例の半導体発光装
置の構造を示す概略斜視図である。図1において、発光
ダイオード1は、クラッド層6とバッファ層3との間に
意図的に膜厚を変えた多層反射層4aと多層反射層4b
とを多重化させた多重化多層反射層4を設けてある。こ
こで多層反射層4aは、例えばAl0.1 Ga0.9 As半
導体層76nmとAl0.7 Ga0.3 As半導体層80n
mとを1組として25組積層した多層反射層4aであ
る。また、多層反射層4bはAl0.1 Ga0.9 As半導
体層70nmとAl0.7 Ga0.3 As半導体層75nm
とを1組として25組積層した多層反射層4bである。
このように形成された多層反射層4a,4bの反射中心
波長はそれぞれ850nm、910nmとなり、その反
射スペクトルを、図2(A)、及び図2(B)に示す。
FIG. 1 is a schematic perspective view showing the structure of a semiconductor light emitting device according to an embodiment of the present invention. In FIG. 1, the light emitting diode 1 includes a multilayer reflective layer 4 a and a multilayer reflective layer 4 b in which the film thickness is intentionally changed between the cladding layer 6 and the buffer layer 3.
There is provided a multi-layered multilayer reflective layer 4 in which and are multiplexed. Here, the multilayer reflective layer 4a includes, for example, an Al 0.1 Ga 0.9 As semiconductor layer 76 nm and an Al 0.7 Ga 0.3 As semiconductor layer 80n.
It is a multilayer reflective layer 4a in which 25 sets of m and m are stacked. The multilayer reflective layer 4b is made of Al 0.1 Ga 0.9 As semiconductor layer 70 nm and Al 0.7 Ga 0.3 As semiconductor layer 75 nm.
It is a multilayer reflective layer 4b in which 25 sets are laminated with 1 set as a set.
The reflection center wavelengths of the multilayer reflection layers 4a and 4b thus formed are 850 nm and 910 nm, respectively, and the reflection spectra thereof are shown in FIGS. 2 (A) and 2 (B).

【0012】図2(A),(B)に示すように、多層反
射層4a,4bのそれぞれの半値幅は70〜80nmで
あるが、これらの多層反射層4a,4bを図1に示すよ
うに多重化したとき、その多重化多層反射層4の反射ス
ペクトルは、図3に示すように反射中心波長880nm
で半値幅120nmの反射スペクトルとなる。即ち、多
重化多層反射層4の反射スペクトルは、多層反射層4
a,4bの反射スペクトルを合成したものになる。よっ
て、多層反射層4a,4bの膜厚dは、前述したように
λp =4ndで表されるが、それぞれの多層反射層4
a,4bの膜厚dは、多層反射層4aと多層反射層4b
とを多重化した多重化多層反射反射層4としたとき、図
3に示すようにその反射スペクトルの最高反射率部分が
直線的になるように選ばれる。このように反射層の反射
スペクトルの半値幅を広くすることで、図4で示すよう
に活性層7の発光のほぼ全域の発光出力の向上を実現で
きる。半値幅が広いことで、膜厚のずれによる発光出力
の低下もなくなる。
As shown in FIGS. 2A and 2B, the half-value widths of the multilayer reflective layers 4a and 4b are 70 to 80 nm, and these multilayer reflective layers 4a and 4b are as shown in FIG. 3 has a reflection center wavelength of 880 nm as shown in FIG.
The reflection spectrum has a half width of 120 nm. That is, the reflection spectrum of the multiplexed multilayer reflective layer 4 is
It is a combination of the reflection spectra of a and 4b. Therefore, the film thickness d of the multilayer reflective layers 4a and 4b is represented by λ p = 4nd as described above.
The film thickness d of a and 4b is the same as the multilayer reflective layer 4a and the multilayer reflective layer 4b.
When the multi-layered multilayer reflection layer 4 is formed by multiplexing and, the highest reflectance portion of the reflection spectrum is selected to be linear as shown in FIG. By thus widening the half-value width of the reflection spectrum of the reflective layer, it is possible to improve the emission output of almost the entire emission of the active layer 7, as shown in FIG. Since the full width at half maximum is wide, there is no reduction in light emission output due to the film thickness deviation.

【0013】なお、本実施例では、発光ダイオードを例
にとって説明したが、本発明はそれに限定されることは
なく、他の半導体発光装置においても使用可能であり、
また基板結晶上で本発明の反射層を組み込んだ半導体発
光素子を、アレイ化する場合でも使用可能である。さら
に、本実施例は多層反射層を二重にした多重化多層反射
層であるが、もっと多重化することでさらに広い半値幅
の多重化多層反射層を得ることができる。そして、本実
施例中で用いた具体的な数字(膜厚や積層数など)は、
説明のために用いた一例であって、本発明はその数値に
限定されることがないのは勿論である。
In the present embodiment, the light emitting diode has been described as an example, but the present invention is not limited to this, and can be used in other semiconductor light emitting devices.
It can also be used in the case of forming an array of semiconductor light-emitting devices incorporating the reflection layer of the present invention on the substrate crystal. Further, although the present embodiment is a multiplex multilayer reflective layer in which the multiple multilayer reflective layers are doubled, it is possible to obtain a multiple multilayer reflective layer having a wider half width by further multiplexing. The specific numbers (film thickness, number of layers, etc.) used in this example are
It is an example used for explanation, and it goes without saying that the present invention is not limited to the numerical values.

【0014】[0014]

【発明の効果】以上説明したように本発明の半導体発光
装置によれば最高反射率は維持したまま反射スペクトル
の半値幅を広げることができるので、発光層の発光のほ
ぼ全域の反射をカバーすることができ、発光効率のよい
高出力の半導体発光装置とすることができる。また、半
値幅を広くできることで、反射層の結晶成長の段階で膜
厚が1〜2%ずれた場合でも半導体発光装置の発光出力
が急激に低下することがない等の効果がある。
As described above, according to the semiconductor light emitting device of the present invention, the full width at half maximum of the reflection spectrum can be widened while maintaining the maximum reflectance, so that the light emission of the light emitting layer is covered over almost the entire area. Therefore, a high-output semiconductor light-emitting device with high luminous efficiency can be obtained. In addition, since the full width at half maximum can be widened, there is an effect that the light emission output of the semiconductor light emitting device does not suddenly decrease even if the film thickness deviates by 1 to 2% at the stage of crystal growth of the reflective layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体発光装置の構造を示
す概略斜視図である。
FIG. 1 is a schematic perspective view showing the structure of a semiconductor light emitting device according to an embodiment of the present invention.

【図2】図1における半導体発光装置の多重化多層反射
層のそれぞれの多層反射層の反射スペクトルを示す図で
ある。
FIG. 2 is a diagram showing a reflection spectrum of each multilayer reflective layer of the multiplexed multilayer reflective layer of the semiconductor light emitting device in FIG.

【図3】図1における半導体発光装置の多重化反射層の
反射スペクトルを示す図である。
FIG. 3 is a diagram showing a reflection spectrum of a multiple reflection layer of the semiconductor light emitting device in FIG.

【図4】図1における半導体発光装置と、反射層を設け
ていない発光ダイオードとの発光出力を示す図である。
FIG. 4 is a diagram showing light emission outputs of the semiconductor light emitting device in FIG. 1 and a light emitting diode having no reflective layer.

【図5】従来の半導体発光装置の構造の一例を示す概略
斜視図である。
FIG. 5 is a schematic perspective view showing an example of a structure of a conventional semiconductor light emitting device.

【図6】図5における半導体発光装置の多層反射層の反
射スペクトルを示す図である。
6 is a diagram showing a reflection spectrum of a multilayer reflective layer of the semiconductor light emitting device in FIG.

【図7】図5における半導体発光装置と、反射層を設け
ていない発光ダイオードとの発光出力を示す図である。
7 is a diagram showing the light emission output of the semiconductor light emitting device in FIG. 5 and a light emitting diode not provided with a reflective layer.

【符号の説明】[Explanation of symbols]

1 半導体発光装置 2 基板結晶 3 バッファ層 4a,4b 多層反射層 4 多重化多層反射層 6,8 クラッド層 7 活性層 9 発光面 1 Semiconductor Light Emitting Device 2 Substrate Crystal 3 Buffer Layers 4a, 4b Multilayer Reflective Layer 4 Multiplexed Multilayer Reflective Layer 6,8 Cladding Layer 7 Active Layer 9 Light Emitting Surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】活性層内で発光した光が、この活性層と平
行な面に形成した光取出し面より出力する半導体発光装
置において、 前記半導体発光装置は、前記活性層から発光した光の中
で前記光取出し面と逆側に発光した光を光取出し面側へ
反射するための反射層を有し、 かつ前記反射層は、少なくとも2種以上の屈折率の異な
った半導体結晶層を交互に複数組積層した多層反射層
を、反射中心波長を異ならせて少なくとも2個以上多重
化した多重化多層反射層であることを特徴とする半導体
発光装置。
1. A semiconductor light emitting device in which light emitted in an active layer is output from a light extraction surface formed on a surface parallel to the active layer, wherein the semiconductor light emitting device is one of the light emitted from the active layer. And a reflection layer for reflecting the light emitted on the side opposite to the light extraction surface to the light extraction surface side, and the reflection layer comprises at least two or more semiconductor crystal layers having different refractive indexes alternately. 1. A semiconductor light emitting device, comprising: a multi-layered multi-layered reflective layer in which at least two multi-layered multi-layered reflective layers having different reflection center wavelengths are multiplexed.
【請求項2】請求項1記載の半導体発光装置において、 前記多重化多層反射層は、前記多層反射層ごとに膜厚だ
けを変えて積層した前記半導体結晶層で形成した多層反
射層を多重化して形成したことを特徴とする半導体発光
装置。 【0001】
2. The semiconductor light emitting device according to claim 1, wherein the multiplex multilayer reflective layer is a multiplex multilayer reflective layer formed of the semiconductor crystal layers that are laminated by changing only the thickness of each multilayer reflective layer. A semiconductor light-emitting device characterized by being formed as follows. [0001]
JP25586892A 1992-08-27 1992-08-31 Semiconductor light emitting device Pending JPH0685316A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25586892A JPH0685316A (en) 1992-08-31 1992-08-31 Semiconductor light emitting device
US08/112,669 US5406095A (en) 1992-08-27 1993-08-26 Light emitting diode array and production method of the light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25586892A JPH0685316A (en) 1992-08-31 1992-08-31 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH0685316A true JPH0685316A (en) 1994-03-25

Family

ID=17284697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25586892A Pending JPH0685316A (en) 1992-08-27 1992-08-31 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0685316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781157B2 (en) 2001-09-05 2004-08-24 Hitachi Cable, Ltd. Light emitting device and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781157B2 (en) 2001-09-05 2004-08-24 Hitachi Cable, Ltd. Light emitting device and process for producing the same

Similar Documents

Publication Publication Date Title
EP1072072B1 (en) Surface-emitting optical device
JP5006876B2 (en) Quantum dot based optoelectronic device and method of making the same
JP2959933B2 (en) Semiconductor element
KR100449768B1 (en) Hybrid mirror structure for visible emission VCSEL
US6548824B2 (en) Semiconductor light emitting device for stably obtaining peak wave length of emission spectrum
JP3689621B2 (en) Semiconductor light emitting device
JPH05299689A (en) Surface input output photoelectric fusing element
JPH08340149A (en) Surface-luminous laser with improved pumping efficiency
JP2001068727A (en) Semiconductor light-emitting element and manufacture thereof
JPH0629612A (en) Manufacture of surface emission-type semiconductor laser and laser obtained by above manufacture
JPH06151955A (en) Semiconductor light emitting element
JP4443094B2 (en) Semiconductor light emitting device
US7495263B2 (en) Semiconductor light-emitting device and manufacturing method therefor
JP4048056B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH0685316A (en) Semiconductor light emitting device
JP3330044B2 (en) Semiconductor light emitting diode
JPH07162072A (en) Semiconductor laser having heterogeneous structure
JP2000269586A (en) Manufacture of light transmit-receive module
JPH0496381A (en) Light-emitting element
JP2003309283A (en) Semiconductor light-emitting element
JP2973612B2 (en) Semiconductor multilayer mirror
JPS62199085A (en) Semiconductor laser
JP2001339098A (en) Semiconductor light emitting element
JPH0677531A (en) Semiconductor light emitting element and its manufacture
JPH0730187A (en) Surface-emitting semiconductor laser