JPH0685122A - Thermoelectric cooling infrared detector - Google Patents

Thermoelectric cooling infrared detector

Info

Publication number
JPH0685122A
JPH0685122A JP4236876A JP23687692A JPH0685122A JP H0685122 A JPH0685122 A JP H0685122A JP 4236876 A JP4236876 A JP 4236876A JP 23687692 A JP23687692 A JP 23687692A JP H0685122 A JPH0685122 A JP H0685122A
Authority
JP
Japan
Prior art keywords
temperature
infrared
peltier element
peltier
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4236876A
Other languages
Japanese (ja)
Inventor
Koji Hirota
耕治 廣田
Hiroyuki Tsuchida
浩幸 土田
Yukihiro Yoshida
幸広 吉田
Tomoshi Ueda
知史 上田
Shigeki Hamashima
茂樹 濱嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4236876A priority Critical patent/JPH0685122A/en
Publication of JPH0685122A publication Critical patent/JPH0685122A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

PURPOSE:To stably cool an infrared detecting element using a simply constituted thermoelectric cooling infrared detector with a Peltier element built in for the purpose. CONSTITUTION:A Peltier element 2 for cooling an infrared detecting element 1 is installed on a heat radiative base 3. It is then sealed together with the infrared detecting element 1 and a temperature detecting element 11 using a package 5 having an infrared transmission window 4 for allowing infrared rays to be applied to the infrared detecting element 1. A temperature control unit 13 controls the Peltier element 2, and the infrared detecting element 1 is thereby cooled down to a specified temperature. Another Peltier element 6 is installed outside the heat radiative base 3. The temperature of the heat radiative base 3 is detected by a temperature detecting element 12, and the temperature control unit 13 controls the Peltier element 6, maintaining the heat radiative base 3 within a specified temperature range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペルチェ素子により赤
外線検知素子を冷却する電子冷却型赤外線検知器に関す
る。赤外線検知器は、各種の温度測定,温度分布測定,
高温物体の観測,地球資源探索或いは目標物追尾制御用
等に利用されており、赤外線検知素子は、暗電流の低減
等の為に冷却して使用するものであり、77°K等の液
体窒素を用いて冷却する構成もあるが、例えば、240
°K 〜220°K程度の温度に冷却する場合はペルチ
ェ素子が用いられる。このようなペルチェ素子を用いた
電子冷却型赤外線検知器の特性改善が要望されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic cooling type infrared detector for cooling an infrared detecting element by a Peltier element. Infrared detector is used for various temperature measurement, temperature distribution measurement,
It is used for observing high-temperature objects, searching for earth resources, controlling target tracking, etc. The infrared detector is used by cooling it to reduce dark current, etc. Liquid nitrogen at 77 ° K, etc. There is also a configuration for cooling by using, for example, 240
A Peltier element is used for cooling to a temperature of about ° K to 220 ° K. It is desired to improve the characteristics of an electronic cooling type infrared detector using such a Peltier device.

【0002】[0002]

【従来の技術】従来例の赤外線検知器は、例えば、図3
に示すように、Cu等の熱伝導率の大きい材料からなる
放熱ベース23上に、比較的熱伝導率の大きいセラミッ
クの絶縁層を介してペルチェ素子22を設け、その上
に、比較的熱伝導率の大きいセラミックの絶縁層を介し
て赤外線検知素子21を設け、シリコンガラス等による
赤外線の透過窓24を有し、コバール等の熱膨張係数の
小さい材料からなるパッケージ25により赤外線検知素
子21を封止した構成を有し、パッケージ25の内部は
高真空とするか或いは乾燥窒素(N2 )が封入されてい
る。
2. Description of the Related Art A conventional infrared detector is shown in FIG.
As shown in, a Peltier element 22 is provided on a heat dissipation base 23 made of a material having a high thermal conductivity such as Cu via a ceramic insulating layer having a relatively high thermal conductivity, and a Peltier element 22 is provided thereon with a relatively high thermal conductivity. The infrared detection element 21 is provided through a ceramic insulating layer having a high rate, the infrared transmission window 24 made of silicon glass or the like is provided, and the infrared detection element 21 is sealed by a package 25 made of a material having a small thermal expansion coefficient such as Kovar. The inside of the package 25 has a high vacuum or is filled with dry nitrogen (N 2 ).

【0003】又27,28はセラミック等の絶縁板で、
その一部に導体パターンが形成されて、パッケージ25
を貫通する導出端子を形成している。又29,30は赤
外線検知素子21の電極と絶縁板27,28の導体パタ
ーンとの間を接続したボンディングワイヤ、31は温度
検知素子、33は温度制御部、34は赤外線信号処理部
である。
In addition, 27 and 28 are insulating plates such as ceramics,
A conductor pattern is formed on a part of the package, and the package 25
Forming a lead terminal penetrating through. Further, 29 and 30 are bonding wires connecting the electrodes of the infrared detecting element 21 and the conductor patterns of the insulating plates 27 and 28, 31 is a temperature detecting element, 33 is a temperature control section, and 34 is an infrared signal processing section.

【0004】ペルチェ素子22は、絶縁板27,28の
導体パターン或いは概略図示のようにパッケージ25の
絶縁部を介して導出されたリード線を介して温度制御部
33と接続され、この温度制御部33から冷却用の電流
が供給される。このペルチェ素子22の吸熱側に赤外線
検知素子21、放熱側に放熱ベース23がそれぞれ設け
られているから、ペルチェ素子22により赤外線検知素
子21が冷却される。その冷却温度は温度検知器31に
より検出されて温度制御部33に加えられる。従って、
温度制御部33は、赤外線検知素子21の冷却温度が所
定値となるようにペルチェ素子22に供給する電流を制
御する。又透過窓24を介して赤外線検知素子21に入
射された赤外線の強度に対応した信号が赤外線信号処理
部34に加えられ、目的に対応した信号処理が行われ
る。
The Peltier element 22 is connected to a temperature control section 33 via a conductor pattern of the insulating plates 27 and 28 or a lead wire led out through the insulating section of the package 25 as schematically shown. An electric current for cooling is supplied from 33. Since the infrared detection element 21 is provided on the heat absorption side of the Peltier element 22 and the heat radiation base 23 is provided on the heat radiation side, the Peltier element 22 cools the infrared detection element 21. The cooling temperature is detected by the temperature detector 31 and added to the temperature controller 33. Therefore,
The temperature control unit 33 controls the current supplied to the Peltier element 22 so that the cooling temperature of the infrared detection element 21 becomes a predetermined value. Further, a signal corresponding to the intensity of the infrared light incident on the infrared detection element 21 through the transmission window 24 is added to the infrared signal processing unit 34, and signal processing corresponding to the purpose is performed.

【0005】赤外線検知素子21としては、例えば、G
e,PbS,PbSe,PbTe,InSb,CdHg
Te,PbSnTe等が知られている。これらの中で、
CdHgTeは例えば−30℃程度に冷却して使用でき
るから、2段構成程度のペルチェ素子22を用いた電子
冷却型赤外線検知器に適用することができる。
As the infrared detecting element 21, for example, G
e, PbS, PbSe, PbTe, InSb, CdHg
Te, PbSnTe, etc. are known. Among these,
Since CdHgTe can be used after being cooled to about −30 ° C., for example, it can be applied to an electronic cooling type infrared detector using a Peltier device 22 having a two-stage structure.

【0006】又ペルチェ素子22としては、例えば、B
i・Te,Bi・Sb,Bi・Ag等の組合せ構成が直
列接続され、更に2段等の縦積み構成として、所定の冷
却温度が得られるように構成されている。又ペルチェ素
子22の放熱側となる放熱ベース23は、冷却フィン等
を設けて空冷とする場合が一般的である。
As the Peltier element 22, for example, B
A combination of i, Te, Bi, Sb, Bi, Ag, etc. is connected in series, and further in a vertically stacked structure of two stages or the like so as to obtain a predetermined cooling temperature. The heat radiation base 23 on the heat radiation side of the Peltier element 22 is generally air-cooled by providing cooling fins or the like.

【0007】[0007]

【発明が解決しようとする課題】赤外線検知器は、種々
の環境で使用されるものであり、赤外線検知素子21を
所定の温度に冷却できるようにペルチェ素子22及びそ
れを制御する温度制御部33を構成してあっても、周囲
温度が上昇すると、ペルチェ素子22の放熱側の放熱ベ
ース23の温度も上昇することになり、ペルチェ素子2
2による赤外線検知素子21の冷却温度を所定値となる
ように制御することが困難となる。そこで、放熱ベース
23を強制空冷したり、或いは冷却水等により放熱ベー
ス23を冷却する構成が用いられることになる。その場
合は、構成が大型且つ複雑化する欠点があり、更に、放
熱ベース23の温度変化が大きくなることにより、赤外
線検知素子21を所定の温度に安定して冷却することが
困難となる欠点がある。本発明は、簡単な構成で放熱ベ
ースの温度を制御し、赤外線検知素子の冷却温度を安定
化させることを目的とする。
The infrared detector is used in various environments, and the Peltier device 22 and the temperature controller 33 for controlling the infrared detector 21 so that the infrared detector 21 can be cooled to a predetermined temperature. Even if the Peltier element 2 is configured as described above, when the ambient temperature rises, the temperature of the heat radiation base 23 on the heat radiation side of the Peltier element 22 also rises.
It becomes difficult to control the cooling temperature of the infrared detecting element 21 by 2 so as to be a predetermined value. Therefore, a configuration in which the heat dissipation base 23 is forcedly cooled or the heat dissipation base 23 is cooled by cooling water or the like is used. In that case, there is a drawback that the configuration is large and complicated, and further, there is a drawback that it becomes difficult to stably cool the infrared detection element 21 to a predetermined temperature due to a large temperature change of the heat dissipation base 23. is there. It is an object of the present invention to control the temperature of a heat dissipation base with a simple structure and stabilize the cooling temperature of an infrared detection element.

【0008】[0008]

【課題を解決するための手段】本発明の電子冷却型赤外
線検知器は、図1を参照して説明すると、赤外線検知素
子1の冷却用のペルチェ素子2を放熱ベース3上に設
け、赤外線検知素子1に赤外線を入射させる為の赤外線
透過窓4を有するパッケージ5により赤外線検知素子1
と冷却用のペルチェ素子2を含めて封止し、且つ放熱ベ
ース3の外側に、この放熱ベース3の温度を制御するペ
ルチェ素子6を設けたものである。
The electronic cooling type infrared detector of the present invention will be described with reference to FIG. 1. A Peltier element 2 for cooling the infrared detecting element 1 is provided on a heat dissipation base 3 to detect infrared rays. Infrared sensing element 1 with package 5 having infrared transmissive window 4 for allowing infrared rays to enter element 1.
And the Peltier element 2 for cooling is sealed, and the Peltier element 6 for controlling the temperature of the heat radiation base 3 is provided outside the heat radiation base 3.

【0009】又放熱ベース3の温度を制御するペルチェ
素子6に、このペルチェ素子6より順次吸熱量が大きく
なるように選定した1個又は複数個のペルチェ素子を付
加したものである。
The Peltier element 6 for controlling the temperature of the heat radiating base 3 is provided with one or a plurality of Peltier elements selected so that the heat absorption amount becomes larger than that of the Peltier element 6.

【0010】又放熱ベース3の温度を検知する温度検知
素子12の検出信号を温度制御部13に加え、この温度
制御部13の制御によりペルチェ素子6及びこのペルチ
ェ素子6に付加したペルチェ素子による吸熱能力を制御
する構成とした。
Further, a detection signal of the temperature detecting element 12 for detecting the temperature of the heat radiating base 3 is applied to the temperature control section 13, and heat is absorbed by the Peltier element 6 and the Peltier element added to the Peltier element 6 under the control of the temperature control section 13. It is configured to control the ability.

【0011】[0011]

【作用】冷却用のペルチェ素子2の吸熱側に赤外線検知
素子1、放熱側に放熱ベースがそれぞれ配置されてお
り、又放熱ベース3の外側にペルチェ素子6の吸熱側を
接触させ、このペルチェ素子6により放熱ベース3の温
度を制御することにより、外気温度が上昇した場合で
も、放熱ベース3の温度を所望の温度近傍とし、冷却用
のペルチェ素子2による赤外線検知素子1の冷却温度
を、外気温度による影響から除いて、安定化することが
できる。
The infrared detecting element 1 is arranged on the heat absorbing side of the Peltier element 2 for cooling, and the heat radiating base is arranged on the heat radiating side. The heat absorbing side of the Peltier element 6 is brought into contact with the outer side of the heat radiating base 3, and this Peltier element is Even if the outside air temperature rises by controlling the temperature of the heat dissipation base 3 by 6, the temperature of the heat dissipation base 3 is brought close to the desired temperature, and the cooling temperature of the infrared detection element 1 by the Peltier element 2 for cooling is changed to the outside air temperature. It can be stabilized by exclusion from the effects of temperature.

【0012】又ペルチェ素子6に他のペルチェ素子を付
加したことにより、放熱ベース3の温度制御範囲を広く
し、広範囲の外気温度の変化に対しても、赤外線検知素
子1を安定に動作させることができる。
Further, by adding another Peltier element to the Peltier element 6, the temperature control range of the heat radiation base 3 is widened and the infrared detecting element 1 can be stably operated even when the outside air temperature changes over a wide range. You can

【0013】又温度制御部13は、放熱ベース3に取付
けた温度検知素子12の検知信号に基づいてペルチェ素
子6及びこのペルチェ素子6に付加したペルチェ素子の
吸熱能力を供給電流等により制御し、放熱ベース3の温
度を所定値に維持することができる。
The temperature control unit 13 controls the heat absorption capacity of the Peltier element 6 and the Peltier element added to the Peltier element 6 based on the detection signal of the temperature detecting element 12 attached to the heat dissipation base 3 by the supply current or the like. The temperature of the heat dissipation base 3 can be maintained at a predetermined value.

【0014】[0014]

【実施例】図1は本発明の一実施例の説明図であり、電
子冷却型赤外線検知器の概略の断面図を示し、1は赤外
線検知素子、2は冷却用のペルチェ素子、3は放熱ベー
ス、4は赤外線透過窓、5はパッケージ、6はペルチェ
素子、7,8は導体パターンを有する絶縁板、9,10
はボンディングワイヤ、11,12は温度検知素子、1
3は温度制御部、14は赤外線信号処理部である。
1 is an explanatory view of an embodiment of the present invention, showing a schematic sectional view of an electronic cooling type infrared detector, wherein 1 is an infrared detecting element, 2 is a Peltier element for cooling, and 3 is heat radiation. Base, 4 infrared transmitting window, 5 package, 6 Peltier element, 7 and 8 insulating plate having conductor pattern, 9 and 10.
Is a bonding wire, 11 and 12 are temperature detecting elements, 1
3 is a temperature control unit, and 14 is an infrared signal processing unit.

【0015】赤外線検知素子1と冷却用のペルチェ素子
2と温度検知素子11とは、赤外線透過窓4を有するパ
ッケージ5により放熱ベース3上に封止され、パッケー
ジ5の内部は高真空或いは乾燥窒素が封入されている。
又赤外線検知素子1は、ペルチェ素子2の吸熱側に絶縁
して設けられ、ボンディングワイヤ9,10と絶縁板
7,8の導体パターンとを介して赤外線信号処理部14
と接続されている。赤外線信号処理部14は、従来例と
同様に赤外線映像の表示や温度分布測定等の処理を行う
ものである。
The infrared detecting element 1, the Peltier element 2 for cooling, and the temperature detecting element 11 are sealed on the heat dissipation base 3 by a package 5 having an infrared transmitting window 4, and the inside of the package 5 is in high vacuum or dry nitrogen. Is enclosed.
The infrared detecting element 1 is provided so as to be insulated on the heat absorption side of the Peltier element 2, and the infrared signal processing section 14 is provided via the bonding wires 9 and 10 and the conductor patterns of the insulating plates 7 and 8.
Connected with. The infrared signal processing unit 14 performs processing such as infrared image display and temperature distribution measurement as in the conventional example.

【0016】又温度検知素子11は絶縁板8の導体パタ
ーンを介して温度制御部13と接続され、ペルチェ素子
2は、絶縁板8の導体パターン或いは概略図示したパッ
ケージ5の絶縁部を貫通するリード線を介して温度制御
部13と接続されている。又ペルチェ素子2の放熱側に
絶縁して放熱ベース3が設けられ、この放熱ベース3の
外側に絶縁してペルチェ素子6の吸熱側が設けられ、温
度制御部13と接続されている。又放熱ベース3の温度
を検出する温度検知素子12は温度制御部13に接続さ
れている。この実施例は、図3に示す従来例に対して、
ペルチェ素子6と温度検知素子12とを付加した構成に
相当し、それに伴って温度制御部13の制御機能が付加
されている。
The temperature detecting element 11 is connected to the temperature control section 13 through the conductor pattern of the insulating plate 8, and the Peltier element 2 is a lead penetrating the conductor pattern of the insulating plate 8 or the insulating section of the package 5 shown schematically. It is connected to the temperature control unit 13 via a wire. A heat radiation base 3 is provided so as to be insulated from the heat radiation side of the Peltier element 2, and a heat absorption side of the Peltier element 6 is provided outside the heat radiation base 3 so as to be insulated and connected to the temperature control unit 13. Further, the temperature detecting element 12 for detecting the temperature of the heat dissipation base 3 is connected to the temperature controller 13. This embodiment is different from the conventional example shown in FIG.
This corresponds to the configuration in which the Peltier device 6 and the temperature detection device 12 are added, and the control function of the temperature control unit 13 is added accordingly.

【0017】又ペルチェ素子6の放熱側は自然空冷の場
合を示しているが、熱伝導率の大きいCu等の放熱部を
設けたり、或いは放熱面積を増加する為のフィンを設け
ることができる。又温度制御部13は、放熱ベース3の
温度を温度検知素子12からの検出信号に基づいて制御
するものであり、放熱ベース3の温度を、例えば、室温
付近の25±5℃となるように制御する。即ち、温度制
御部13は、赤外線検知素子1を冷却するペルチェ素子
2を制御する機能と、放熱ベース3の温度管理用のペル
チェ素子6を制御する機能とを備えており、それぞれ温
度検知素子11,12からの検出信号を基に、ペルチェ
素子2,6に供給する電流を制御することになる。この
ような構成は、マイクロプロセッサによる制御構成或い
は他の温度制御の構成を適用することができる。
Although the heat radiation side of the Peltier element 6 is shown in the case of natural air cooling, it is possible to provide a heat radiation portion such as Cu having a high thermal conductivity or provide a fin for increasing the heat radiation area. Further, the temperature control unit 13 controls the temperature of the heat dissipation base 3 based on the detection signal from the temperature detecting element 12, and the temperature of the heat dissipation base 3 is set to, for example, 25 ± 5 ° C. near room temperature. Control. That is, the temperature control unit 13 has a function of controlling the Peltier element 2 for cooling the infrared detecting element 1 and a function of controlling the Peltier element 6 for temperature management of the heat dissipation base 3, and each of the temperature detecting elements 11 is provided. , 12 controls the current supplied to the Peltier elements 2 and 6. For such a configuration, a control configuration by a microprocessor or another temperature control configuration can be applied.

【0018】ペルチェ素子6は、パッケージ5内に設け
ることも可能であるが、パッケージ5が大型化すること
から、放熱ベース3の外側に設けることが好適である。
1段構成では放熱ベース3の温度管理として容量が不足
する場合は、2段構成等とすることも可能である。例え
ば、図2に示す本発明の他の実施例の説明図のように、
ペルチェ素子6に、このペルチェ素子6より順次吸熱量
が大きくなるように設定したペルチェ素子15,16を
付加することができる。これらの付加したペルチェ素子
15,16は、ペルチェ素子6と共に、放熱ベース3の
温度を所定値に維持するように、供給電流が制御され
る。この場合、最初はペルチェ素子6のみに電流を供給
し、それによる吸熱量が不足する場合は、付加した2段
目のペルチェ素子15にも電流を供給し、更に吸熱量が
不足する場合、3段目のペルチェ素子16にも電流を供
給するように制御することができる。それにより、広範
囲の外気温度の変化に対しても、放熱ベース3を所定の
温度に維持することができる。なお、図2に於いて、図
1と同一符号は同一部分を示す。又赤外線検知素子1の
冷却用のペルチェ素子2は、2段構成の場合を示してい
るが、1段構成或いは3段構成以上とすることも勿論可
能である。
Although the Peltier element 6 can be provided inside the package 5, it is preferable to provide it outside the heat dissipation base 3 because the package 5 becomes large.
If the capacity of the one-stage structure is insufficient for temperature management of the heat dissipation base 3, a two-stage structure or the like may be used. For example, as shown in the explanatory view of another embodiment of the present invention shown in FIG.
It is possible to add to the Peltier element 6, Peltier elements 15 and 16 which are set so that the heat absorption amount becomes larger sequentially than the Peltier element 6. The supply currents of these added Peltier elements 15 and 16 are controlled so as to maintain the temperature of the heat dissipation base 3 at a predetermined value together with the Peltier element 6. In this case, first, current is supplied only to the Peltier element 6, and if the heat absorption amount due to it is insufficient, current is also supplied to the added Peltier element 15 of the second stage, and if the heat absorption amount is further insufficient, 3 It is possible to control so as to supply a current also to the Peltier device 16 of the stage. Thereby, the heat dissipation base 3 can be maintained at a predetermined temperature even when the outside air temperature changes over a wide range. In FIG. 2, the same symbols as in FIG. 1 indicate the same parts. Further, the Peltier element 2 for cooling the infrared detecting element 1 has a two-stage configuration, but it is of course possible to have a one-stage configuration or a three-stage configuration or more.

【0019】[0019]

【発明の効果】以上説明したように、本発明は、ペルチ
ェ素子6を設けて、放熱ベース3の温度管理を行うもの
で、外気温度の上昇によっても、放熱ベース3を例えば
25℃付近に制御することができるから、パッケージ5
内のペルチェ素子2による赤外線検知素子1の冷却温度
を安定化することができる。従って、赤外線検知器とし
ての特性を向上することができる利点がある。
As described above, according to the present invention, the Peltier element 6 is provided to control the temperature of the heat radiating base 3, and the heat radiating base 3 is controlled to, for example, around 25 ° C. even when the outside air temperature rises. Package 5 because you can
It is possible to stabilize the cooling temperature of the infrared detection element 1 by the Peltier element 2 therein. Therefore, there is an advantage that the characteristics as an infrared detector can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】本発明の他の実施例の説明図である。FIG. 2 is an explanatory diagram of another embodiment of the present invention.

【図3】従来例の説明図である。FIG. 3 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 赤外線検知素子 2 冷却用のペルチェ素子 3 放熱ベース 4 赤外線透過窓 5 パッケージ 6 ペルチェ素子 11,12 温度検知素子 13 温度制御部 1 infrared detection element 2 Peltier element for cooling 3 heat dissipation base 4 infrared transmission window 5 package 6 Peltier element 11, 12 temperature detection element 13 temperature control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 知史 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 濱嶋 茂樹 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomofumi Ueda 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Shigeki Hamajima 1015, Kamiodanaka, Nakahara-ku, Kawasaki, Kanagawa Within Fujitsu Limited

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 赤外線検知素子(1)の冷却用のペルチ
ェ素子(2)を放熱ベース(3)上に設け、前記赤外線
検知素子(1)に赤外線を入射させる為の赤外線透過窓
(4)を有するパッケージ(5)により前記赤外線検知
素子(1)と前記冷却用のペルチェ素子(2)とを含め
て封止し、且つ前記放熱ベース(3)の外側に、該放熱
ベース(3)の温度を制御するペルチェ素子(6)を設
けたことを特徴とする電子冷却型赤外線検知器。
1. An infrared transmitting window (4) for providing infrared rays to the infrared detecting element (1), wherein a Peltier element (2) for cooling the infrared detecting element (1) is provided on a heat dissipation base (3). The infrared detecting element (1) and the Peltier element (2) for cooling are sealed together by the package (5) having the above, and the heat radiating base (3) is provided outside the heat radiating base (3). An electronically cooled infrared detector comprising a Peltier element (6) for controlling temperature.
【請求項2】 前記放熱ベース(3)の温度を制御する
ペルチェ素子(6)に、該ペルチェ素子(6)より順次
吸熱量が大きくなるように選定した1個又は複数個のペ
ルチェ素子に付加したことを特徴とする請求項1記載の
電子冷却型赤外線検知器。
2. A Peltier element (6) for controlling the temperature of the heat dissipation base (3), which is added to one or a plurality of Peltier elements selected so that the heat absorption amount is successively larger than that of the Peltier element (6). The electronically cooled infrared detector according to claim 1, wherein
【請求項3】 前記放熱ベース(3)の温度を検知する
温度検知素子(12)の検出信号を温度制御部(13)
に加え、該温度制御部(13)の制御により前記ペルチ
ェ素子(6)及び該ペルチェ素子(6)に付加したペル
チェ素子による吸熱能力を制御する構成としたことを特
徴とする請求項1記載の電子冷却型赤外線検知器。
3. A temperature control section (13) outputs a detection signal of a temperature detection element (12) for detecting the temperature of the heat dissipation base (3).
In addition to the above, the heat absorption capability of the Peltier element (6) and the Peltier element added to the Peltier element (6) is controlled by the control of the temperature control unit (13). Electronically cooled infrared detector.
JP4236876A 1992-09-04 1992-09-04 Thermoelectric cooling infrared detector Withdrawn JPH0685122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236876A JPH0685122A (en) 1992-09-04 1992-09-04 Thermoelectric cooling infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236876A JPH0685122A (en) 1992-09-04 1992-09-04 Thermoelectric cooling infrared detector

Publications (1)

Publication Number Publication Date
JPH0685122A true JPH0685122A (en) 1994-03-25

Family

ID=17007106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236876A Withdrawn JPH0685122A (en) 1992-09-04 1992-09-04 Thermoelectric cooling infrared detector

Country Status (1)

Country Link
JP (1) JPH0685122A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019555A1 (en) * 1994-01-13 1995-07-20 Abb Air Preheater, Inc. Hot spot detection in rotary regenerative heat exchangers
NL1008023C2 (en) * 1998-01-14 1999-07-15 Hollandse Signaalapparaten Bv Cooling device for an infrared detector.
JP2000183367A (en) * 1998-12-10 2000-06-30 Osaka Gas Co Ltd Flame sensor
JP2000183372A (en) * 1998-12-10 2000-06-30 Osaka Gas Co Ltd Flame sensor
US6332322B1 (en) 1999-04-27 2001-12-25 Nec Corporation Electronic device having a thermally isolated element
JP2006043272A (en) * 2004-08-06 2006-02-16 Pentax Corp Cooling device
CN109405978A (en) * 2018-11-28 2019-03-01 西安泰豪红外科技有限公司 A kind of infrared machine core of refrigeration mode and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019555A1 (en) * 1994-01-13 1995-07-20 Abb Air Preheater, Inc. Hot spot detection in rotary regenerative heat exchangers
NL1008023C2 (en) * 1998-01-14 1999-07-15 Hollandse Signaalapparaten Bv Cooling device for an infrared detector.
WO1999036960A1 (en) * 1998-01-14 1999-07-22 Hollandse Signaalapparaten B.V. Cooling device for an infrared detector
JP2000183367A (en) * 1998-12-10 2000-06-30 Osaka Gas Co Ltd Flame sensor
JP2000183372A (en) * 1998-12-10 2000-06-30 Osaka Gas Co Ltd Flame sensor
US6332322B1 (en) 1999-04-27 2001-12-25 Nec Corporation Electronic device having a thermally isolated element
JP2006043272A (en) * 2004-08-06 2006-02-16 Pentax Corp Cooling device
CN109405978A (en) * 2018-11-28 2019-03-01 西安泰豪红外科技有限公司 A kind of infrared machine core of refrigeration mode and preparation method thereof

Similar Documents

Publication Publication Date Title
Cole et al. Monolithic two-dimensional arrays of micromachined microstructures for infrared applications
US7489024B2 (en) TMOS-infrared uncooled sensor and focal plane array
EP0733199B1 (en) Infrared radiation imaging array with compound sensors forming each pixel
US4904090A (en) Temperature sensing arrangement
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
KR0135119B1 (en) Infrared detector
US4665276A (en) Thermoelectric sensor
US3103587A (en) Self-cooled infrared detection cell
WO1990016082A1 (en) Radiation detector array using radiation sensitive bridges
IL175991A (en) Method and apparatus for detecting radiation at one wavelength using a detector for a different wavelength
US20050081905A1 (en) Thermopile IR detector package structure
JPH0685122A (en) Thermoelectric cooling infrared detector
US4935626A (en) Broadband superconducting detector having a thermally isolated sensing element
US20230324229A1 (en) Thermographic sensor with thermo-couples on a suspended grid and processing circuits in frames thereof
GB1308953A (en) Radiation detector for apparatus for measuring moisture
US3745360A (en) Radiation circuit radiation detector
US4029521A (en) Thermoelectric detector
US3289422A (en) Cooling apparatus for infrared detecting system
Chouvaev et al. Normal-metal hot-electron microbolometer with on-chip protection by tunnel junctions
Cole et al. Monolithic arrays of micromachined pixels for infrared applications
JPH06302838A (en) Infrared detector
Malyarov Uncooled thermal IR arrays
Maierna et al. Electronic Packaging for MEMS Infrared Sensor With Filtered Optical Window
JPH02206733A (en) Infrared ray sensor
Chouvaev et al. An SNS antenna-coupled direct detector of submillimeter radiation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130