JPH0684748B2 - Fuel injection valve - Google Patents
Fuel injection valveInfo
- Publication number
- JPH0684748B2 JPH0684748B2 JP60184169A JP18416985A JPH0684748B2 JP H0684748 B2 JPH0684748 B2 JP H0684748B2 JP 60184169 A JP60184169 A JP 60184169A JP 18416985 A JP18416985 A JP 18416985A JP H0684748 B2 JPH0684748 B2 JP H0684748B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- valve
- hole
- injection
- fuel injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Fuel-Injection Apparatus (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電素子を用いた燃料噴射弁に係り、特に内燃
機関の燃料噴射装置用として好適な燃料噴射弁に関す
る。Description: TECHNICAL FIELD The present invention relates to a fuel injection valve using a piezoelectric element, and more particularly to a fuel injection valve suitable for a fuel injection device of an internal combustion engine.
圧電素子を利用した燃料噴射弁としては、特公昭49-604
3号公報に記載のものがあり、噴射ノズルは圧電素子か
らなる弁棒の下端に弁頭を一体的に有しており、弁ばね
により噴射ノズルの弁座に圧接して構成した燃料噴射ノ
ズルが開示されている。As a fuel injection valve using a piezoelectric element, Japanese Patent Publication Sho-49-604
No. 3, there is a fuel injection nozzle in which the injection nozzle integrally has a valve head at the lower end of a valve rod made of a piezoelectric element, and is pressed against a valve seat of the injection nozzle by a valve spring. Is disclosed.
この先行技術の発明は、次の点が配慮されてない。 This prior art invention does not consider the following points.
ストローク制御に用いる高変位圧電素子は一般にキュリ
ー温度(150℃程度)が低く、性能を維持できる使用温
度範囲はキュリー温度の1/3以下といわれている。従っ
て、圧電素子の自己発熱と取付部からの熱伝導による温
度上昇を考慮すると冷却手段を付加するのが好ましい。
本噴射弁は運転状態では、燃料によって冷却が進められ
ると考えられる。しかし、運転停止後は燃料の流れがな
いため冷却手段がなく、取付部からの熱伝導による温度
上昇が考えられ、圧電素子の保護という観点から信頼性
に乏しい。特に内燃機関を考えると、取付部の温度は最
高140℃程度になるといわれており、取付部の熱容量も
大きいことから適用は難しいと考えられる。The high displacement piezoelectric element used for stroke control generally has a low Curie temperature (about 150 ° C), and the operating temperature range where performance can be maintained is said to be 1/3 or less of the Curie temperature. Therefore, it is preferable to add a cooling means in consideration of self-heating of the piezoelectric element and temperature rise due to heat conduction from the mounting portion.
It is considered that the fuel is cooled by the fuel in the operating state of the injection valve. However, since there is no fuel flow after the operation is stopped, there is no cooling means, and a temperature rise due to heat conduction from the mounting portion is considered, which is unreliable from the viewpoint of protecting the piezoelectric element. Considering an internal combustion engine in particular, it is said that the maximum temperature of the mounting portion is about 140 ° C., and it is considered difficult to apply because the mounting portion has a large heat capacity.
又、特公昭49-6043号公報に記載のものは、燃料は供給
口から積層圧電素子と噴射ノズルの本体との間の通路を
通って弁座へ供給されるだけのものであり、燃料に旋回
運動を与える構成,燃料噴射弁を冷却する構成および運
転停止後の冷却手段については、配慮されていないもの
である。Further, the one described in Japanese Patent Publication No. Sho 49-6043 only supplies the fuel to the valve seat from the supply port through the passage between the laminated piezoelectric element and the body of the injection nozzle. No consideration is given to the structure for giving the swirling motion, the structure for cooling the fuel injection valve, and the cooling means after the operation is stopped.
本発明の目的は、かかる欠点を解決するとともに圧電素
子を用いて内開きシート弁を構成するものである。すな
わち、圧電素子にパルス正電圧を印加し、その機械的変
位によって噴射孔を開閉して流量制御をして微細な液滴
の噴射を行う噴射弁を構成するとともに、圧電素子の冷
却手段を付加して、温度上昇に伴う性能降下を抑制し圧
電素子の信頼性向上を図ることにある。An object of the present invention is to solve such a drawback and to construct an inward opening seat valve by using a piezoelectric element. That is, a pulse positive voltage is applied to the piezoelectric element, and the mechanical displacement thereof opens and closes the injection hole to control the flow rate to form an injection valve that ejects fine liquid droplets, and also adds cooling means for the piezoelectric element. Then, it is to improve the reliability of the piezoelectric element by suppressing the performance deterioration due to the temperature rise.
上記目記を達成するために、本発明の燃料噴射弁は、圧
電素子を積層してなる中空円筒状の積層圧電部材と、該
積層圧電部材に面接触して接合されるともに弁ケースに
固定されるフランジを有する支持部材と、該弁ケースの
先端部に設けられた噴射孔と、該噴射孔の上流側に形成
された燃料流入孔と先端に該燃料流入孔と前記噴射孔と
の間で形成されるシート部と接触する弁本体を備え前記
支持部材内を往復運動するニードルを備えた燃料噴射弁
において、前記積層圧電部材の噴射孔側端面と弁本体間
の任意の位置に設けられた第2のフランジと、前記シー
ト部を閉止する如く前記フランジと前記第2のフランジ
間に設けたばね部材を有するものであって、前記燃料流
入孔が燃料に旋回運動を与えるように複数個形成され、
燃料流入孔の下流側と前記シート部間に渦巻室が形成さ
れるとともに、前記シート部が閉止されている時に前記
燃料流入孔から流入した燃料を燃料戻し孔へ流れるよう
に流路を構成し、燃料タンクと燃料噴射弁とが燃料供給
管および流量制御弁を介した燃料戻し管で連結され、制
御回路により燃料噴射弁の温度を設定温度以下になるよ
うにエンジンの停止後も前記流量制御弁を制御すること
を特徴とするものである。In order to achieve the above-mentioned items, a fuel injection valve of the present invention is a hollow cylindrical laminated piezoelectric member formed by laminating piezoelectric elements, and is joined to the laminated piezoelectric member in surface contact and fixed to a valve case. A support member having a flange, an injection hole provided at the tip of the valve case, a fuel inflow hole formed on the upstream side of the injection hole and a tip between the fuel inflow hole and the injection hole. In a fuel injection valve having a valve body that makes contact with a seat portion formed by, and a needle that reciprocates in the support member, the fuel injection valve is provided at an arbitrary position between the injection hole side end surface of the laminated piezoelectric member and the valve body. A second flange and a spring member provided between the flange and the second flange so as to close the seat portion, and a plurality of the fuel inflow holes are formed so as to give a swirling motion to the fuel. Is
A swirl chamber is formed between the downstream side of the fuel inflow hole and the seat portion, and a flow path is configured to flow the fuel flowing from the fuel inflow hole to the fuel return hole when the seat portion is closed. , The fuel tank and the fuel injection valve are connected by a fuel return pipe via a fuel supply pipe and a flow control valve, and the flow rate control is performed even after the engine is stopped so that the temperature of the fuel injection valve becomes equal to or lower than a set temperature by a control circuit. It is characterized by controlling the valve.
多数の圧電素子からなる中空円筒状の積層圧電部材と、
最先端部に噴射孔を有する中空状の弁ケースの両者に内
接してニードルを配設し、前記積層圧電部材の機械的変
位に連動してニードルを振動させて噴射孔を開閉制御す
るものであり、噴射孔を高速で開閉し流量制御を精度良
く行わせしめるとともに、開弁時間の少ない噴射領域
(パルスON時間が0.5〜1.0ms)での流量制御が可能とな
る。A hollow cylindrical laminated piezoelectric member including a large number of piezoelectric elements,
A needle is arranged inscribed in both of the hollow valve cases having an injection hole at the most distal end, and the needle is vibrated in conjunction with the mechanical displacement of the laminated piezoelectric member to control the opening and closing of the injection hole. Therefore, it is possible to open and close the injection hole at high speed to accurately control the flow rate, and it is possible to control the flow rate in the injection region (pulse ON time 0.5 to 1.0 ms) in which the valve opening time is short.
又、運転状態においては燃料の噴射制御に影響を及ぼさ
ない程度の燃料量を、ニードル内部あるいは積層圧電部
材の周辺を経て還流させることができ、燃料噴射弁を構
成する種々の部材の温度上昇を抑制でき、設定温度以下
に温度をおさえることにより部材の熱膨張による噴射流
量の変化や燃料中に気泡が混入することを防止できると
ともに多数の圧電素子よりなる積層圧電部材の温度に対
する信頼性を高めることができる。また、エンジンの運
転停止後、残存熱による燃料噴射弁の温度上昇を、燃料
噴射弁の内部あるいは外部に温度によって還流する燃料
の制御によって抑制することができ、部材の温度に対す
る信頼性は極めて高くなるというものである。又、旋回
流を与えるように燃料流入口を複数個設け渦巻室を設け
ているので弁閉止時にも圧力流体に旋回運動を与えるこ
とができるので、運動エネルギーを損うことなく薄膜状
のスプレー形状となり、微粒化を行うことができる。Further, in the operating state, a fuel amount that does not affect the fuel injection control can be recirculated through the inside of the needle or the periphery of the laminated piezoelectric member, and the temperature rise of various members forming the fuel injection valve. It is possible to suppress the change, and by controlling the temperature below the set temperature, it is possible to prevent changes in the injection flow rate due to thermal expansion of the members and to prevent bubbles from entering the fuel, and to improve the reliability of the laminated piezoelectric member consisting of multiple piezoelectric elements with respect to temperature. be able to. Further, after the engine is stopped, the temperature rise of the fuel injection valve due to the residual heat can be suppressed by controlling the fuel that recirculates inside or outside the fuel injection valve according to the temperature, and the reliability of the temperature of the members is extremely high. Is to be. Further, since a plurality of fuel inlets are provided to provide a swirling flow and a swirl chamber is provided, the swirling motion can be imparted to the pressure fluid even when the valve is closed, so that a thin film spray shape can be obtained without impairing kinetic energy. Therefore, atomization can be performed.
以下、本発明の実施例を図により説明する。第1図は本
発明の第1実施例を示す断面図、第2図は第1図のAA断
面図、第3図は本発明の第2実施例を示す断面図、第4
図は第1実施例あるいは第2実施例のいずれかの燃料噴
射弁をエンジンの吸気通路に装備した状態で、燃料の循
環量を制御する手段を示した一実施例を示す。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is a sectional view showing a second embodiment of the present invention.
The drawing shows an embodiment showing a means for controlling the amount of fuel circulation in a state where the fuel injection valve of either the first embodiment or the second embodiment is installed in the intake passage of the engine.
第1図において、20は圧電素子を多数枚積層した中空円
筒状の積層圧電部材、21は積層圧電部材20内に挿入した
支持部材で、ネジ溝を有するフランジ21aを有する。22
は最先端部に噴射孔22aとこの噴射孔22aに近傍しかつ連
通する如く設けた複数個の流入孔22bを有する中空状の
弁ケース、23は支持部材21および弁ケース22に内接して
配設されるニードルで、弁ケース22側に比較的隙間を小
さくして嵌合される。例えば隙間は10ミクロン程度であ
る。23aはニードル23の先端近傍で、弁ケース22の噴射
孔22aと流入孔22b間に形成したシートで面接触あるいは
線接触にて構成される。23bはニードル23の他端面に設
けたフランジで、積層圧電部材20を挿入後機械的(たと
えばかしめ等)に結合される。23cはフランジ23bに近接
してニードル23に設けた肉厚部で支持部材21に内接して
なりニードル23の心振れを防止する。23dは支持部材21
のフランジ21aとこの面に対応する弁ケース22間に設け
て成るとともに、その位置を弁ケース22に近接してなる
別なる小径フランジ、24はこの小径フランジ23dと支持
部材21のフランジ21a間に設けた圧縮バネでニードル23
のシート23aを弁ケース22に押圧する。25はフランジ23d
とこれに対応する弁ケース22の内面との間に設けたシー
ル材で圧力流体の積層圧電部材20側への流れを阻止す
る。26はニードル23のシート23aの上流に形成した渦巻
室、27は弁ケース22の先端部を覆って固定される弁キャ
ップ、28は弁キャップ27内に形成される圧力流体流路、
29は圧力流体入口で燃料供給管(図示せず)が結合され
る。32は積層圧電部材20に給電するための導線である。
かかる構成でニードル23のシート23aは圧縮バネの復元
力により押圧されており圧力流体の外部への燃料漏れは
阻止される。押圧力(シート力)は圧縮バネのバネ定数
の選定により調整できる。第2図は第1図のAA断面図で
あり、圧力流体に旋回運動を与える流入孔22bを示した
ものである。さらに、本実施例は積層圧電部材の冷却手
段を施している。以下主要部分について説明する。33は
内部に燃料通路33aを設けたニードルで、34は弁フタで
燃料戻り孔34aを開口する。前記燃料通路33aはニードル
33の小径フランジ23dより上流から弁フタ34に設けた燃
料戻り孔34aに連通する。In FIG. 1, 20 is a hollow cylindrical laminated piezoelectric member in which a large number of piezoelectric elements are laminated, 21 is a supporting member inserted in the laminated piezoelectric member 20, and has a flange 21a having a thread groove. twenty two
Is a hollow valve case having an injection hole 22a at the most distal end and a plurality of inflow holes 22b provided so as to be adjacent to and communicate with the injection hole 22a, and 23 is arranged inscribed in the support member 21 and the valve case 22. The needle is fitted to the valve case 22 side with a relatively small gap. For example, the gap is about 10 microns. 23a is a sheet formed between the injection hole 22a and the inflow hole 22b of the valve case 22 in the vicinity of the tip of the needle 23, and is constituted by surface contact or line contact. Reference numeral 23b is a flange provided on the other end surface of the needle 23, and is mechanically (for example, caulked) coupled after the laminated piezoelectric member 20 is inserted. Reference numeral 23c is a thick portion provided on the needle 23 in the vicinity of the flange 23b and is inscribed in the support member 21 to prevent the runout of the needle 23. 23d is a support member 21
Is provided between the flange 21a and the valve case 22 corresponding to this surface, and the position is another small diameter flange close to the valve case 22, and 24 is between the small diameter flange 23d and the flange 21a of the support member 21. Needle 23 with the provided compression spring
The seat 23a is pressed against the valve case 22. 25 is a flange 23d
The sealing material provided between the inner surface of the valve case 22 and the corresponding inner surface of the valve case 22 prevents the flow of the pressure fluid toward the laminated piezoelectric member 20. 26 is a swirl chamber formed upstream of the seat 23a of the needle 23, 27 is a valve cap fixed to cover the tip of the valve case 22, 28 is a pressure fluid flow path formed in the valve cap 27,
A pressure fluid inlet 29 is connected to a fuel supply pipe (not shown). Reference numeral 32 is a conducting wire for supplying power to the laminated piezoelectric member 20.
With such a configuration, the seat 23a of the needle 23 is pressed by the restoring force of the compression spring, and fuel leakage of the pressurized fluid to the outside is prevented. The pressing force (sheet force) can be adjusted by selecting the spring constant of the compression spring. FIG. 2 is a sectional view taken along the line AA in FIG. 1, showing an inflow hole 22b that gives a swirling motion to the pressure fluid. Further, this embodiment is provided with a cooling means for the laminated piezoelectric member. The main part will be described below. Reference numeral 33 is a needle having a fuel passage 33a therein, and 34 is a valve lid for opening a fuel return hole 34a. The fuel passage 33a is a needle
From the upstream side of the small diameter flange 23d of 33, it communicates with the fuel return hole 34a provided in the valve lid 34.
35は弁フタ34とニードル33のフランジ23b間に設けたス
トッパー、36は弁フタ34とニードル33のフランジ23b間
に設けたシール材で積層圧電部材20側への燃料の流れを
阻止する。Reference numeral 35 is a stopper provided between the valve lid 34 and the flange 23b of the needle 33, and 36 is a sealing material provided between the valve lid 34 and the flange 23b of the needle 33, which blocks the flow of fuel to the laminated piezoelectric member 20 side.
第3図は本発明の第2の実施例を示す断面図であり、第
2の実施例は第1の実施例と同様に積層圧電部材の冷却
手段を施したものである。この実施例は積層圧電部材内
へ燃料を供給したもので、以下第1の実施例との相違点
について記述する。まず積層圧電部材側への燃料の流れ
を阻止するために設けたシール材25,36は第2の実施例
では不要となる。また、ニードル33の内部に設けた燃料
通路33aも同様に不要である。37は支持部材21に設けた
燃料通路で、周方向の一部を軸方向に細長く切断したも
のであり、積層圧電部材側への燃料の流れを誘引するも
のである。FIG. 3 is a sectional view showing a second embodiment of the present invention. The second embodiment is similar to the first embodiment in that it is provided with cooling means for a laminated piezoelectric member. In this embodiment, fuel is supplied into the laminated piezoelectric member. Differences from the first embodiment will be described below. First, the sealing materials 25 and 36 provided to prevent the flow of fuel to the laminated piezoelectric member side are unnecessary in the second embodiment. Further, the fuel passage 33a provided inside the needle 33 is also unnecessary. Reference numeral 37 denotes a fuel passage provided in the support member 21, which is formed by cutting a part in the circumferential direction into an elongated shape in the axial direction, and induces the flow of fuel to the laminated piezoelectric member side.
なお、第1図から第3図において同一符号は同一部品を
示す。The same reference numerals in FIGS. 1 to 3 indicate the same parts.
以上の構成において、以下にその動作を説明する。第1
図において、積層圧電部材20にパルス電圧を印加する
と、パルスのON時間に対応して積層圧電部材20が変位
(伸び)する。この変位は図中に示した点線の矢印方向
になる。変位の応答は通常0.1msecである。(電磁石方
式の開弁時間は1msec程度。)これは圧電素子の固有振
動数が高いことに起因する。積層圧電部材20の伸びによ
ってニードル23が押し上げられ、ニードル23のシート23
aが弁ケース22より離脱する。以って弁ケース22に設け
た噴射孔22aが開口される。この際、圧力流体は加圧ポ
ンプ(図示せず)等の搬送機器を経て、圧力流体入口2
9,圧力流体通路28から旋回孔23aに至る。旋回孔23aで旋
回運動を与えられた圧力流体は、渦巻室26にて集められ
た圧力流体の保持する運動エネルギーを損なうことなく
シート23aの隙間より噴射孔22aに向って流れ、噴射孔22
aより外部へ噴射される。噴射孔22aの開閉弁動作は高速
で行われるため、噴射量は正確に制御できる。また、噴
射される燃料は、十分な旋回エネルギーを与えられるの
で、広がりをもった薄膜状のスプレー形状となり微細な
液滴に細分される。一方、積層圧電部材20へ印加するパ
ルス電圧がOFF状態になると、ニードル23は圧縮バネの
復元力により瞬時に元の位置に戻されシート23aを押圧
する。以って弁ケース22に設けた噴射孔22aは閉止され
る。この際、圧力流体の外部への噴射が止まる。The operation of the above configuration will be described below. First
In the figure, when a pulse voltage is applied to the laminated piezoelectric member 20, the laminated piezoelectric member 20 is displaced (stretched) according to the ON time of the pulse. This displacement is in the direction of the dotted arrow shown in the figure. The displacement response is usually 0.1 msec. (The valve opening time of the electromagnet method is about 1 msec.) This is due to the high natural frequency of the piezoelectric element. The needle 23 is pushed up by the expansion of the laminated piezoelectric member 20, and the seat 23 of the needle 23
a separates from the valve case 22. As a result, the injection hole 22a provided in the valve case 22 is opened. At this time, the pressure fluid passes through a conveying device such as a pressure pump (not shown) and the pressure fluid inlet 2
9. From the pressure fluid passage 28 to the swirl hole 23a. The pressure fluid given the swirling motion in the swirling hole 23a flows toward the spray hole 22a from the gap of the sheet 23a without impairing the kinetic energy held by the pressure fluid collected in the swirl chamber 26, and the spray hole 22a
It is injected from the outside. Since the opening / closing valve operation of the injection hole 22a is performed at high speed, the injection amount can be accurately controlled. Further, since the injected fuel is given sufficient swirling energy, it becomes a thin film spray shape having a spread and is subdivided into fine droplets. On the other hand, when the pulse voltage applied to the laminated piezoelectric member 20 is turned off, the needle 23 is instantly returned to its original position by the restoring force of the compression spring and presses the sheet 23a. As a result, the injection hole 22a provided in the valve case 22 is closed. At this time, the injection of the pressure fluid to the outside is stopped.
第3図において圧力流体入口29,圧力流体通路28から弁
ケース22に設けた流体孔22bを経て渦巻室26内に流入し
た圧力流体は、ニードル33のシート23aと弁ケース22の
隙間から噴射孔22aに至る流れと、ニードル33と弁ケー
ス22の隙間から燃料通路33aを通り燃料戻り孔34aに至る
流れに分離される。各々の流量は、噴射孔22aから外部
へ放出されるべき噴射量によって決定される。燃料戻り
孔34aに流れる量は、ニードル33のシート23aが閉止され
る状態、すなわちパルス電圧のOFF状態では供給燃料の
全部が燃料戻り孔34aへと流れる。従って、弁ケース22,
弁キャップ27,ニードル33が燃料によって強制的に冷却
されて、積層圧電部材20の温度上昇を抑制する。なお、
噴射孔22aより外部へ噴射される燃料は、第1の実施例
と同様に十分な旋回エネルギーを与えられるので、広が
りをもった薄膜状のスプレー形状となり微細な液滴に細
分される。In FIG. 3, the pressure fluid that has flowed into the swirl chamber 26 from the pressure fluid inlet 29 and the pressure fluid passage 28 through the fluid hole 22b provided in the valve case 22 is injected through the gap between the seat 23a of the needle 33 and the valve case 22 into the injection hole. It is separated into a flow reaching 22a and a flow passing through the fuel passage 33a from the gap between the needle 33 and the valve case 22 to the fuel return hole 34a. Each flow rate is determined by the injection amount to be discharged from the injection hole 22a to the outside. The amount of fuel flowing into the fuel return hole 34a is such that all of the supplied fuel flows to the fuel return hole 34a when the seat 23a of the needle 33 is closed, that is, when the pulse voltage is OFF. Therefore, the valve case 22,
The valve cap 27 and the needle 33 are forcibly cooled by the fuel to suppress the temperature rise of the laminated piezoelectric member 20. In addition,
The fuel injected from the injection holes 22a to the outside is given sufficient swirling energy as in the first embodiment, and is thus divided into fine droplets in the form of a thin film spray having a spread.
第2の実施例の動作は、第1の実施例とほぼ同様である
が、積層圧電部材20の冷却手段を施したものであり、類
似する第1の実施例との相違点について、以下に記述す
る。第3図において、圧力流体入口29,圧力流体通路28
から弁ケース22に設けた流入孔22bを経て渦巻室26内に
流入した圧力流体は、燃料戻り孔34aに至る際、積層圧
電部材20を支持する支持部材21に設けた燃料通路37から
積層圧電部材20の周辺に流れ込む。従って、噴射弁内部
全域で燃料の流れが生じ冷却が促進されて、積層圧電部
材20の温度上昇を抑制するものである。The operation of the second embodiment is almost the same as that of the first embodiment, except that the laminated piezoelectric member 20 is provided with a cooling means. Differences from the similar first embodiment will be described below. Describe. In FIG. 3, pressure fluid inlet 29, pressure fluid passage 28
When the pressure fluid that has flowed into the swirl chamber 26 through the inflow hole 22b provided in the valve case 22 reaches the fuel return hole 34a, from the fuel passage 37 provided in the support member 21 that supports the laminated piezoelectric member 20, the laminated piezoelectric material is provided. It flows around the member 20. Therefore, the flow of the fuel is generated in the entire area of the inside of the injection valve, the cooling is promoted, and the temperature rise of the laminated piezoelectric member 20 is suppressed.
以上の如く、第1の実施例および第2の実施例では、燃
料の還流により噴射弁を構成する部材の冷却を促進せし
めたので、温度上昇に伴う性能降下もなく噴射されるべ
き燃料の制御を極めて高精度に行うことができる。As described above, in the first embodiment and the second embodiment, the cooling of the members constituting the injection valve is promoted by the recirculation of the fuel, so that the control of the fuel to be injected without the performance drop due to the temperature rise is performed. Can be performed with extremely high precision.
第4図は第1図もしくは第3図に示した燃料噴射弁をエ
ンジンの吸気通路に装備し、還流する燃料流量を制御す
る手段を付加した一実施例を示したものである。FIG. 4 shows an embodiment in which the fuel injection valve shown in FIG. 1 or 3 is installed in the intake passage of the engine, and means for controlling the flow rate of the recirculated fuel is added.
吸気系統として吸気通路100には、その上流にエアフィ
ルタ,吸入空気量の制御を開閉にて行うスロットルバル
ブ(共に図示せず)を、また下流に、点火プラグ110の
点火部120を臨まして配設する燃料室130と開口連通する
吸気孔140およびこの吸気孔140を開閉制御する吸気弁15
0を装備してなる。この吸気弁150の上流で吸気通路100
の壁部170(インテークマニホールド)に設けた取付孔1
80には、本発明の燃料噴射弁190が取り付けられ吸気弁1
50の弁座200方向に噴射可能としてある。一方、燃料供
給系統として燃料供給管210には、その上流に燃料噴射
弁190に供給する燃料の圧力を一定に保つ機能を有する
圧力レギュレータ230を、またさらに上流に向って加圧
ポンプ240,フィルター250,燃料タンク260が設けてあ
る。圧力レギュレータ230によって調整される際、余剰
燃料は燃料経路270により燃料タンク260へ戻る。図中の
矢印220は、燃料噴射弁190へ供給される燃料経路であ
る。また、燃料噴射弁190の燃料戻り管280の下流には還
流量を制御する流量制御弁290が設けられており、流量
制御弁290を出た燃料は燃料タンク260に戻る。図中の矢
印300は還流する燃料経路を示す。310は流量制御弁290
の動作を制御する制御回路である。As an intake system, an intake passage 100 is provided with an air filter upstream thereof, a throttle valve (both not shown) for controlling the intake air amount by opening and closing, and an ignition portion 120 of a spark plug 110 downstream thereof. An intake hole 140 that communicates with the fuel chamber 130 to be installed and an intake valve 15 that controls the opening and closing of the intake hole 140.
Equipped with 0. The intake passage 100 is provided upstream of the intake valve 150.
Mounting hole 1 on wall 170 (intake manifold) of
The fuel injection valve 190 of the present invention is attached to the intake valve 80.
Injection is possible in the direction of 50 valve seats 200. On the other hand, in the fuel supply pipe 210 as a fuel supply system, a pressure regulator 230 having a function of maintaining a constant pressure of fuel supplied to the fuel injection valve 190 is provided upstream thereof, and a pressure pump 240 and a filter are provided further upstream. 250 and a fuel tank 260 are provided. When regulated by pressure regulator 230, excess fuel returns to fuel tank 260 via fuel path 270. An arrow 220 in the figure is a fuel path supplied to the fuel injection valve 190. Further, a flow rate control valve 290 that controls the recirculation amount is provided downstream of the fuel return pipe 280 of the fuel injection valve 190, and the fuel that has flowed out of the flow rate control valve 290 returns to the fuel tank 260. The arrow 300 in the figure indicates the fuel path for recirculation. 310 is a flow control valve 290
Is a control circuit for controlling the operation of the.
かかる構成において、ガソリン機関は吸入行程において
燃料室130内に所定量の吸入空気を、吸入通路100,吸気
弁150を経て吸入される。燃料は燃料タンク260からフィ
ルター250,加圧ポンプ240,圧力レギュレータ230を経
て、燃料噴射弁190より所望量が弁座200方向へ噴霧され
る。これが吸入空気と拡散混合され所定の混合比なる燃
料と空気の混合気が形成される。燃料室130では、前記
混合気を吸入し圧縮工程にて圧縮したのち点火プラグ11
0により着火燃焼させ、燃焼を適確に完結させるのであ
る。エンジンが運転状態を維持すると、燃焼室130の周
辺は伝熱により次第に温度が上昇する。燃料噴射弁190
の取付孔180の壁部170の温度は最高140℃程度になると
言われている。壁部170からの伝導熱により燃料噴射弁1
90の温度がある設定温度になると制御回路310が流量制
御弁290を動作せしめ燃料の還流が開始される。制御回
路310への入力信号は、この場合燃料噴射弁190の内部か
あるいは外部の温度である。すなわち、燃料噴射弁190
の内部または外部の温度が高くなるにつれて制御回路31
0からの出力信号が、流量制御弁290の通路面積をさらに
大きくする方向に動作するるものである。制御回路310
の入力信号はエンジンの運転状態を把握できるのであれ
ば差し支えない。In such a configuration, the gasoline engine draws a predetermined amount of intake air into the fuel chamber 130 through the intake passage 100 and the intake valve 150 in the intake stroke. A desired amount of fuel is sprayed from the fuel tank 260 through the filter 250, the pressure pump 240, the pressure regulator 230, and the fuel injection valve 190 toward the valve seat 200. This is diffusively mixed with the intake air to form a mixture of fuel and air having a predetermined mixing ratio. In the fuel chamber 130, the air-fuel mixture is sucked and compressed in the compression process, and then the spark plug 11
Ignition combustion is performed by 0, and the combustion is completed properly. When the engine maintains the operating state, the temperature around the combustion chamber 130 gradually rises due to heat transfer. Fuel injection valve 190
It is said that the temperature of the wall portion 170 of the mounting hole 180 is about 140 ° C. at maximum. Fuel injection valve 1 by conduction heat from wall 170
When the temperature of 90 reaches a certain set temperature, the control circuit 310 operates the flow control valve 290 to start the recirculation of fuel. The input signal to the control circuit 310 is in this case the temperature inside or outside the fuel injection valve 190. That is, the fuel injection valve 190
Control circuit 31 as the temperature inside or outside
The output signal from 0 operates to further increase the passage area of the flow control valve 290. Control circuit 310
The input signal of is acceptable as long as the operating condition of the engine can be grasped.
一方、エンジンが停止された場合、燃料噴射弁190から
弁座200方向への燃料噴射は直ちに停止されるが、燃料
噴射弁190内から燃料戻り管280を通って流れる燃料経路
300には、エンジンの停止後も燃料が流れ、燃料噴射弁1
90の温度が設定温度以下になるまで止むことはない。On the other hand, when the engine is stopped, the fuel injection from the fuel injection valve 190 toward the valve seat 200 is immediately stopped, but the fuel path flowing from the inside of the fuel injection valve 190 through the fuel return pipe 280.
Fuel flows to the 300 even after the engine is stopped, and the fuel injection valve 1
It will not stop until the temperature of 90 drops below the set temperature.
このため、燃料噴射弁を構成する種々の部材の温度上昇
を抑制でき設定温度以下にできるので、特に圧電素子部
材の温度上昇を抑制でき、設定温度以下にできる。この
結果、部材の熱膨張による噴射流量の変化や燃料中に気
泡が混入することを防止できるとともに多数の圧電素子
よりなる積層圧電部材の温度に対する信頼性を高めるこ
とができる。For this reason, the temperature rise of various members constituting the fuel injection valve can be suppressed and can be made equal to or lower than the set temperature, so that the temperature rise of the piezoelectric element member can be particularly suppressed and made equal to or lower than the set temperature. As a result, it is possible to prevent changes in the injection flow rate due to thermal expansion of the members and to prevent bubbles from entering the fuel, and it is possible to increase the reliability of the laminated piezoelectric member including a large number of piezoelectric elements with respect to temperature.
かかる構成により、燃料噴射弁190の冷却をエンジンの
運転状態により適確に行うことができ、その結果として
エンジンの運転に最適な燃料噴射が得られるというもの
である。With such a configuration, the fuel injection valve 190 can be cooled more appropriately according to the operating state of the engine, and as a result, optimum fuel injection for operating the engine can be obtained.
なお、第5図に圧電素子に電界を印加するとともに、そ
の極性を反転する電界印加手段をなすブリッジ回路10を
示す。10aは燃料噴射量に対応した時間幅の噴射パルス
が加わる入力端子、10bはパルストランスで前記噴射パ
ルスの立上り時点に出力端子10b1に正のトリガパルス、
出力端子10b2に負のトリガパルスを発生し、また立上り
時点にはそれぞれ逆極性のトリガパルスを発生するもの
である。10c,10d,10e,10fはサイリスタ、+Bは正電圧
の電極端子である。上記構成においてその作動を説明す
る。入力端子10aに噴射パルスが到来すると、その立上
り時点に発生する出力端子10b1,10b2のトリガパルスに
より一対のサイリスタ10c,10dが導通し、他の一対のサ
イリスタ10e,10fがしゃ断するようになっている。Incidentally, FIG. 5 shows a bridge circuit 10 which serves as an electric field applying means for applying an electric field to the piezoelectric element and inverting its polarity. 10a is an input terminal to an injection pulse corresponding to the time width fuel injection amount is added, 10b is a pulse transformer with the injection pulse positive trigger pulse to the output terminal 10b 1 to the rising time of,
Generating a negative trigger pulse to the output terminal 10b 2, also the rise time is to generate the opposite polarity of the trigger pulse, respectively. 10c, 10d, 10e and 10f are thyristors, and + B is a positive voltage electrode terminal. The operation of the above configuration will be described. When the injection pulse arrives at the input terminal 10a, the pair of thyristors 10c and 10d become conductive and the other pair of thyristors 10e and 10f are cut off by the trigger pulse of the output terminals 10b 1 and 10b 2 generated at the rising time. Has become.
以上説明した様に、本発明によって第1に、多数の圧電
素子からなる中空円筒状の積層圧電部材と、最先端部に
噴射孔を有する中空状の弁ケースの両者に内接してニー
ドルを配設し、前記積層圧電部材の機械的変位に連動し
てニードルを振動させて噴射孔を開閉制御する内開きシ
ート弁を構成できるものであり、その結果として噴射孔
を高速で開閉し流量制御を精度良く行わせしめるととも
に、開弁時間の少ない噴射領域(パルスON時間が0.5〜
1.0ms)での流量制御を可能にならしめた。As described above, according to the present invention, firstly, the needles are arranged inside both the hollow cylindrical laminated piezoelectric member including a large number of piezoelectric elements and the hollow valve case having the injection hole at the most distal end. It is possible to configure an inward opening seat valve that controls the opening and closing of the injection hole by vibrating the needle in conjunction with the mechanical displacement of the laminated piezoelectric member, and as a result, opening and closing the injection hole at high speed to control the flow rate. In addition to performing with high accuracy, the injection region with a short valve opening time (pulse ON time 0.5 ~
It enabled flow rate control in 1.0 ms).
第2に、運転状態においては燃料の噴射制御に影響を及
ぼさない程度の燃料量を、ニードル内部あるいは積層圧
電部材の周辺を経て還流させるようにし、制御回路によ
りエンジン停止後も燃料噴射弁の温度を設定温度以下に
なるように前記流量制御弁を制御しているので、その結
果として燃料噴射弁を構成する種々の部材の温度上昇を
抑制でき設定温度以下にできるので、特に圧電素子部材
の温度上昇を抑制でき、設定温度以下にできる。この結
果、部材の熱膨張による噴射流量の変化や燃料中に気泡
が混入することを防止できるとともに多数の圧電素子よ
りなる積層圧電部材の温度に対する信頼性を高めること
ができる。第3に、前記燃料の還流量の制御手段を設け
たものであり、その結果としてエンジンの運転状態を適
確に把握でき、最適な燃料制御を行い得るものである。
また、エンジンの運転停止後、残存熱による燃料噴射弁
の温度上昇を、燃料噴射弁の内部あるいは外部の温度に
よって還流する燃料の制御によって抑制するものであ
り、部材の温度に対する信頼性は極めて高くなるという
ものである。従って燃料噴射弁の寿命,信頼性の向上の
点につき極めて高い効果が得られるものである。なお、
本発明の燃料噴射弁および燃料の還流量の制御手段を、
各種産業分野に応用しても、その実益は高く得られるも
のである。又、渦巻室を設けているので、弁閉止時にも
旋回孔で旋回運動を与えられた圧力流体は、渦巻室に集
められるため、圧力流体の保持する運動エネルギーを損
なうことがなく、流入孔から流入した燃料に十分な旋回
エネルギーを与えるので、広がりをもった薄膜状のスプ
レー形状となり微細な液滴に細分されるので、燃費の向
上となる。Secondly, the amount of fuel that does not affect the fuel injection control in the operating state is circulated through the inside of the needle or around the laminated piezoelectric member, and the temperature of the fuel injection valve is controlled by the control circuit even after the engine is stopped. Since the flow control valve is controlled so as to be equal to or lower than the set temperature, as a result, it is possible to suppress the temperature rise of various members constituting the fuel injection valve and to set the temperature to be equal to or lower than the set temperature. The rise can be suppressed and the temperature can be kept below the set temperature. As a result, it is possible to prevent changes in the injection flow rate due to thermal expansion of the members and to prevent bubbles from entering the fuel, and it is possible to increase the reliability of the laminated piezoelectric member including a large number of piezoelectric elements with respect to temperature. Thirdly, the means for controlling the amount of recirculation of the fuel is provided, and as a result, the operating state of the engine can be accurately grasped and the optimum fuel control can be performed.
Further, after the engine is stopped, the temperature rise of the fuel injection valve due to the residual heat is suppressed by controlling the fuel that recirculates depending on the temperature inside or outside the fuel injection valve, and the reliability with respect to the temperature of the members is extremely high. Is to be. Therefore, a very high effect can be obtained in terms of improving the life and reliability of the fuel injection valve. In addition,
The fuel injection valve and the fuel recirculation amount control means of the present invention,
Even if it is applied to various industrial fields, the actual profit can be highly obtained. Further, since the swirl chamber is provided, the pressure fluid that has been given swirling motion in the swirl hole even when the valve is closed is collected in the swirl chamber, so that the kinetic energy held by the pressure fluid is not impaired, and Sufficient swirling energy is given to the inflowing fuel, and a spray-like thin film having a spread is formed into fine droplets, which improves fuel efficiency.
第1図は本発明の第1実施例を示す断面図、第2図は第
1図のA−A断面図、第3図は本発明の第2実施例を示
す断面図、第4図は本発明の第1実施例もしくは第2実
施例の燃料噴射弁をエンジンの吸気通路に装備し、燃料
の還流量の制御手段を付加した一実施例を示す断面図、
第5図は従来例の燃料噴射弁の制御回路である。 20……積層圧電部材、22……弁ケース、22a……噴射
孔、22b……流入孔、23,33……ニードル、33a……燃料
通路、34a……燃料戻り孔、310……制御回路、29……流
量制御弁。1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a sectional view showing a second embodiment of the present invention, and FIG. Sectional drawing which shows one Example which equips the intake passage of an engine with the fuel injection valve of the 1st Example or 2nd Example of this invention, and added the control means of the amount of recirculation | reflux of fuel,
FIG. 5 shows a control circuit of a fuel injection valve of a conventional example. 20 ... Multilayer piezoelectric member, 22 ... Valve case, 22a ... Injection hole, 22b ... Inflow hole, 23, 33 ... Needle, 33a ... Fuel passage, 34a ... Fuel return hole, 310 ... Control circuit , 29 …… Flow control valve.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 重之 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 菅 恒夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (56)参考文献 特開 昭55−164771(JP,A) 特開 昭56−7911(JP,A) 特開 昭59−70871(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeyuki Yamazaki Inventor Shigeyuki 502 Jinritsucho, Tsuchiura City, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd.Mechanical Research Laboratory (72) Tsuneo Suga 502 Jinritsucho, Tsuchiura City, Ibaraki Prefecture Hiritsu Co., Ltd. (56) References JP-A-55-164771 (JP, A) JP-A-56-7911 (JP, A) JP-A-59-70871 (JP, A)
Claims (1)
圧電部材と、該積層圧電部材に面接触して接合されると
ともに弁ケースに固定されるフランジを有する支持部材
と、該弁ケースの先端部に設けられた噴射孔と、該噴射
孔の上流側に形成された燃料流入孔と先端に該燃料流入
孔と前記噴射孔との間で形成されるシート部と接触する
弁本体を備え前記支持部材内を往復運動するニードルを
備えた燃料噴射弁において、前記積層圧電部材の噴射孔
側端面と弁本体間の任意の位置に設けられた第2のフラ
ンジと、前記シート部を閉止する如く前記フランジと前
記第2のフランジ間に設けたばね部材を有するものであ
って、前記燃料流入孔が燃料に旋回運動を与えるように
複数個形成され、燃料流入孔の下流側と前記シート部間
に渦巻室が形成されるとともに、前記シート部が閉止さ
れている時に前記燃料流入孔から流入した燃料を燃料戻
し孔へ流れるように流路を構成し、燃料タンクと燃料噴
射弁とが燃料供給管および流量制御弁を介した燃料戻り
管で連結され、制御回路により燃料噴射弁の温度を設定
温度以下になるようにエンジンの停止後も前記流量制御
弁を制御することを特徴とする燃料噴射弁。1. A hollow-cylindrical laminated piezoelectric member formed by laminating piezoelectric elements, a support member having a flange joined to the laminated piezoelectric member in surface contact and fixed to a valve case, and the valve case. An injection hole provided at the tip of the valve, a fuel inflow hole formed on the upstream side of the injection hole, and a valve main body at the tip that contacts a seat formed between the fuel inflow hole and the injection hole. In a fuel injection valve including a needle that reciprocates in the support member, a second flange provided at an arbitrary position between the injection hole side end surface of the laminated piezoelectric member and the valve body and the seat portion are closed. As described above, a plurality of the fuel inflow holes are formed so as to give a swirling motion to the fuel, and the spring member is provided between the flange and the second flange. A swirl chamber is formed between In addition, a flow path is configured so that the fuel flowing from the fuel inflow hole flows to the fuel return hole when the seat portion is closed, and the fuel tank and the fuel injection valve form a fuel supply pipe and a flow control valve. A fuel injection valve, characterized in that the flow control valve is controlled by a control circuit even after the engine is stopped so that the temperature of the fuel injection valve becomes equal to or lower than a set temperature by being connected by a fuel return pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184169A JPH0684748B2 (en) | 1985-08-23 | 1985-08-23 | Fuel injection valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184169A JPH0684748B2 (en) | 1985-08-23 | 1985-08-23 | Fuel injection valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6245971A JPS6245971A (en) | 1987-02-27 |
JPH0684748B2 true JPH0684748B2 (en) | 1994-10-26 |
Family
ID=16148569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60184169A Expired - Lifetime JPH0684748B2 (en) | 1985-08-23 | 1985-08-23 | Fuel injection valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0684748B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0876380A (en) | 1994-09-06 | 1996-03-22 | Fuji Photo Film Co Ltd | Positive printing plate composition |
JP2006165193A (en) | 2004-12-06 | 2006-06-22 | Denso Corp | Hollow laminated piezo-electric element and its manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3749537A (en) * | 1971-06-04 | 1973-07-31 | Schriever Design Co Inc | Mold base for injection molding apparatus |
JPS5671951U (en) * | 1979-11-07 | 1981-06-13 |
-
1985
- 1985-08-23 JP JP60184169A patent/JPH0684748B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6245971A (en) | 1987-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6042351B2 (en) | Reflux type volute injection valve | |
US4982716A (en) | Fuel injection valve with an air assist adapter for an internal combustion engine | |
US5199641A (en) | Fuel injection nozzle with controllable fuel jet characteristic | |
JP3478920B2 (en) | In-cylinder fuel injection device and internal combustion engine equipped with the same | |
JPH0486367A (en) | Fuel injection valve | |
JPH02501841A (en) | vaporizing injector | |
JP2002500308A (en) | Flat needle of pressurized vortex fuel injector | |
JP2001263142A (en) | Fuel injection device for internal combustion engine | |
JP4069911B2 (en) | Heated fuel injection valve | |
JPS63138159A (en) | Fuel injection valve | |
US6739520B2 (en) | Liquid injection apparatus | |
JPS6270656A (en) | Fuel injection valve for internal combustion engine | |
US6668793B2 (en) | Internal combustion engine | |
JPH0684748B2 (en) | Fuel injection valve | |
JP2002332935A (en) | Fuel injection valve and internal combustion engine | |
JP3044876B2 (en) | Electronically controlled fuel injection device for internal combustion engines | |
JPS61283760A (en) | Fuel injection valve | |
JPH0217174Y2 (en) | ||
JPH02241972A (en) | Electromagnetic fuel injection valve | |
JPH11336643A (en) | Electromagnetic fuel injection valve for cylinder injection | |
JPH0472066B2 (en) | ||
JPS62131969A (en) | Fuel injection valve | |
JPH028139B2 (en) | ||
JP3991053B2 (en) | Fuel injection valve | |
JP2024093965A (en) | Fuel injection device |