JPH0684540B2 - Multi-layer film production equipment - Google Patents

Multi-layer film production equipment

Info

Publication number
JPH0684540B2
JPH0684540B2 JP25821986A JP25821986A JPH0684540B2 JP H0684540 B2 JPH0684540 B2 JP H0684540B2 JP 25821986 A JP25821986 A JP 25821986A JP 25821986 A JP25821986 A JP 25821986A JP H0684540 B2 JPH0684540 B2 JP H0684540B2
Authority
JP
Japan
Prior art keywords
vapor deposition
shutter
piezo element
deposition source
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25821986A
Other languages
Japanese (ja)
Other versions
JPS63114968A (en
Inventor
康晴 平井
泉 和気
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25821986A priority Critical patent/JPH0684540B2/en
Publication of JPS63114968A publication Critical patent/JPS63114968A/en
Publication of JPH0684540B2 publication Critical patent/JPH0684540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表面に斜めに膜を積層する多層膜作成装置に係
り、特に軟X線(数Å〜数100Å)領域において非対称
反射を利用した像の拡大・縮小を行うのに好適な多層膜
作成法に関する。
The present invention relates to a multilayer film forming apparatus for obliquely laminating a film on a surface thereof, and particularly utilizes asymmetric reflection in a soft X-ray (several Å to several 100 Å) region. The present invention relates to a multilayer film forming method suitable for enlarging / reducing an image.

〔従来の技術〕[Conventional technology]

従来、非対称反射を用いた像の拡大・縮小は、シリコン
等の単結晶を用い、ブラツグ反斜面に対して斜めに表面
を出して用いていた。これについてはたとえば、ニユー
クリヤ・インストルメンツ・アンド・メソツド(Nuclea
r Instruments and Methods)第177巻(1980)第117頁
から第126頁において論じられており、適用できる光の
波長域は格子面間隔より短い範囲(すなわち数Å以下)
にかぎられている。
Conventionally, for enlarging / reducing an image using asymmetric reflection, a single crystal such as silicon was used, and the surface was obliquely exposed to the Bragg anti-slope. This can be done, for example, by the Nuclea Instruments and Methods (Nuclea
r Instruments and Methods) Volume 177 (1980), pages 117 to 126, and applicable wavelength range of light is shorter than the lattice spacing (ie, less than several Å).
I am limited.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、非対称反射による像の拡大・縮小を行
える光の波長が単結晶の格子面間隔程度以下の領域であ
り、軟X線領域(数Å〜数百Å)では原理的にブラツグ
反射が利用できず、従つて像の拡大・縮小を非対称反射
で行う事は不可能であつた。
The above-mentioned prior art is a region where the wavelength of light capable of enlarging / reducing an image by asymmetric reflection is equal to or less than the lattice spacing of a single crystal, and in principle, Bragg reflection in the soft X-ray region (several Å to several hundred Å). However, it was impossible to enlarge / reduce the image by asymmetric reflection.

本発明の目的は、表面に斜めに膜を積層した多層膜を作
成して、軟X線の領域で非対称反射が可能な様に膜厚を
制御し、像の拡大・縮小が出来る様な素子を実現するこ
とにある。
An object of the present invention is to form a multilayer film in which films are obliquely laminated on the surface, control the film thickness so that asymmetrical reflection is possible in the soft X-ray region, and enlarge or reduce an image. Is to realize.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、2元素を交互に蒸着可能な蒸着源から元素
を蒸発させ、膜厚計にて膜厚と蒸着速度をモニターしな
がら、ピエゾ素子で駆動する移動シヤツタを蒸着速度に
よるフイードバツクをきかせながら移動させつつ蒸着す
る事により達成される。移動シヤツタは試料表面の近傍
に平行に置き、蒸着量にリニアに移動させて1層を形成
するものである。
The above purpose is to evaporate the elements from a vapor deposition source capable of alternately depositing two elements, monitor the film thickness and the vapor deposition rate with a film thickness meter, and use a movable shutter driven by a piezo element to control the feed back according to the vapor deposition rate. It is achieved by vapor deposition while moving. The moving shutter is placed in parallel with the surface of the sample and moved linearly with the amount of vapor deposition to form one layer.

〔作用〕[Action]

問題を解決するためのピエゾ素子駆動による移動シヤツ
タはÅのオーダで移動すると同時に、ピエゾ素子の最高
変位量(数百μm)までシヤツタが移動すると、再度
ピエゾ素子の変位量をゼロにもどし、それを繰り返す。
これによりいかなる広い面積への斜め蒸着も可能とな
る。
Movement by piezo element drive to solve the problem The shutter moves in the order of Å, and at the same time, when the shutter moves to the maximum displacement of the piezo element (several hundred μm), the displacement of the piezo element is returned to zero again. repeat.
This enables oblique vapor deposition on any large area.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図,第2図により説明す
る。全体構成は第1図に示した通り、全体が超高真空空
器1中にある。試料基板2を図の様にセツトする。図で
はすでに膜が斜めに数層蒸着されている。ここでは蒸着
源6,6′を2つ用意し、2種類の元素を蒸着可能とす
る。交互に蒸着するためそれぞれに通常シヤツタ5,5′
がついている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. As shown in FIG. 1, the whole structure is in the ultra-high vacuum chamber 1. The sample substrate 2 is set as shown. In the figure, several films have already been deposited diagonally. Here, two vapor deposition sources 6 and 6'are prepared so that two types of elements can be vapor deposited. Ordinary shutters 5,5 'for alternate deposition
Is attached.

斜めに多層膜を形成する方法は次の通りである。移動シ
ヤツタ3を試料基板の左端の位置に合わせる。移動シヤ
ツタの構成を第2図に示す。移動シヤツタはスライド用
台12上を矢印の向きに移動する。まずピエゾ素子11のう
ち左側のものに電圧をかけて伸長させスライド用台12に
固定し右側のものは電圧をゼロにしてスライド用台12に
対しフリーにする。次に蒸着源6からビームを出し膜厚
計4で蒸着速度・膜厚をモニタしながら一定の蒸着速度
になる様蒸着制御器8で蒸着用電源9を制御する。シヤ
ツタ5を開にし片方の蒸着源6からビームを試料基板に
照射する。このとき後述する斜め蒸着の条件をみたす様
に移動シヤツタ3を右側に移動させて行く。移動は第2
図に示すピエゾ素子10の両方の電圧を徐々に増加する事
により制御する。移動速度はピエゾ素子コントローラ7
に蒸着速度のフイードバツク信号を加える事により制御
する。次の元素を蒸着するときは前の蒸着源6のシヤツ
タ5を閉じ、他方の蒸着源6′のシヤツタ5′を開き、
移動シヤツタを移動させて行う。
The method of forming the multilayer film diagonally is as follows. The moving shutter 3 is aligned with the left end position of the sample substrate. The configuration of the mobile shutter is shown in FIG. The moving shutter moves on the slide base 12 in the direction of the arrow. First, a voltage is applied to the left side of the piezo element 11 to extend it and fix it to the slide stand 12, and the right side of the piezo element 11 is set to zero voltage to be free with respect to the slide stand 12. Next, a beam is emitted from the vapor deposition source 6, and the vapor deposition controller 8 controls the vapor deposition power source 9 so that the vapor deposition rate and the film thickness are monitored by the film thickness meter 4 so that the vapor deposition rate is constant. The shutter 5 is opened, and the beam is emitted from the vapor deposition source 6 on one side onto the sample substrate. At this time, the moving shutter 3 is moved to the right so as to satisfy the conditions for oblique vapor deposition described later. The second move
Control is performed by gradually increasing both voltages of the piezo element 10 shown in the figure. The moving speed is piezo element controller 7
It is controlled by adding a feed back signal of vapor deposition speed to. When depositing the next element, the shutter 5 of the previous vapor deposition source 6 is closed, and the shutter 5'of the other vapor deposition source 6'is opened.
Move Perform by moving the shutter.

通常ピエゾ素子の最大伸長量は数百μm以下であるか
ら、ピエゾ素子10が伸びきつた状態になつた時点で以下
の操作を行う。即ち、ピエゾ素子11の右側のものを伸長
してスライド用台12に固定し、ピエゾ素子11の左側のも
のの電圧をゼロにし、スライド用台12に対してフリーに
する。つぎにピエゾ素子10の電圧をゼロにして縮め、ピ
エゾ素子11の左側に電圧をかけてスライド用台に固定す
る。ピエゾ素子11の右側の電圧をゼロにしスライド用台
に対してフリーにする。以上の操作をくり返せば、移動
シヤツタは原理的にÅのオーダで移動しながら、全移動
量を容易にセンチメートルのオーダとする事ができる。
Normally, the maximum amount of extension of the piezo element is several hundreds of μm or less, so the following operation is performed when the piezo element 10 is in the fully extended state. That is, the right side of the piezo element 11 is extended and fixed to the slide base 12, the voltage of the left side of the piezo element 11 is set to zero, and the slide base 12 is free. Next, the voltage of the piezo element 10 is reduced to zero, and the voltage is applied to the left side of the piezo element 11 to fix it on the slide base. The voltage on the right side of the piezo element 11 is set to zero, and the slide table is free. By repeating the above operations, it is possible for the mobile shutter to move in the order of Å in principle, and the total movement amount can be easily in the order of centimeters.

上記操作により多層膜を形成すれば断面第3図に示す様
な形状の多層膜が得られる。そこで第3図をもとにして
具体的な数値を示す。元素Aの膜8と元素Bの膜9が交
互に積層されているとする。1ペアの膜厚をd,ブラツグ
反射角をθ,入射角をα,反斜面S,入射ビーム径をa1,
反射ビーム径をa2,1ペアの膜の水平距離をbとする。層
Aの元素は例えばMo層、Bの元素はSiとする。使用する
光の波長を40Åと仮定する。ブラツグの式から2dsinθ
=λである。
If a multilayer film is formed by the above operation, a multilayer film having a shape as shown in FIG. 3 in cross section can be obtained. Therefore, specific numerical values are shown based on FIG. It is assumed that the film 8 of the element A and the film 9 of the element B are alternately laminated. One pair of film thickness is d, Bragg reflection angle is θ, incident angle is α, anti-slope S, incident beam diameter is a 1 ,
The reflected beam diameter is a 2 , and the horizontal distance between the pair of films is b. The element of layer A is, for example, a Mo layer, and the element of B is Si. The wavelength of light used is assumed to be 40Å. 2d sin θ from Bragg's equation
= Λ.

d=40Åと仮定するとθ=30degとなる。つぎにa1とa2
の比はa2/a1=sin(2θ−α)/sinαできまり入射角α
が小さいほどa2/a1の比は大きい。すなわち拡大倍率は
増す。5倍に拡大するとすればα=8.9degとなる。従つ
てこの斜め多層膜の傾斜角度はθ−α=21.1degとする
必要がある。このとき1ペアの水平距離b=103.7Åで
ある。
If d = 40Å, then θ = 30 deg. Then a 1 and a 2
The ratio of a 2 / a 1 = sin (2θ−α) / sinα
The smaller is, the larger the ratio of a 2 / a 1 . That is, the magnification ratio increases. If it is expanded 5 times, α = 8.9 deg. Therefore, the inclination angle of this oblique multilayer film must be θ−α = 21.1 deg. At this time, the horizontal distance of one pair is b = 103.7Å.

実際に蒸着する場合、層AとBの膜厚が等しいときに
は、1層蒸着する毎に第1図の移動シヤツタをb/2=51.
8Å移動させれば良い。ピエゾ素子10において1000Vで10
0μm移動するものを使用した場合、51.8mVの電圧で所
要の移動量を得る。この様なピエゾ素子は容易に入手で
きる。つぎに、第3図での反射表面の長さを5cmとすれ
ば、水平距離は5×cos21.1deg=4.66cmとなり、1000V
で100μm移動するピエゾ素子10は、4.66×104/102=46
6回最大伸長量に達する操作をくり返す事により4.66cm
を移動させる事ができる。これらの操作はすべて蒸着制
御器にマイクロコンピユータを付加する事により自動的
に行える。
In the case of actual vapor deposition, when the layers A and B have the same film thickness, the moving shutter of FIG.
Move 8Å. Piezo element 10 at 1000V 10
When the one that moves 0 μm is used, the required amount of movement is obtained at a voltage of 51.8 mV. Such a piezo element is easily available. Next, if the length of the reflective surface in Fig. 3 is 5 cm, the horizontal distance is 5 x cos21.1deg = 4.66 cm, and 1000 V
In the piezoelectric element 10 to 100μm moving, 4.66 × 10 4/10 2 = 46
By repeating the operation to reach the maximum extension amount 6 times, 4.66 cm
Can be moved. All of these operations can be performed automatically by adding a micro computer to the deposition controller.

〔発明の効果〕〔The invention's effect〕

本発明によれば、表面に対して斜めに積層した多層膜を
形成できるので、軟X線領域(数Å〜数百Å)におい
て、像の拡大・縮小を行う光学素子を実現する事ができ
る。
According to the present invention, it is possible to form a multilayer film that is laminated obliquely with respect to the surface, and thus it is possible to realize an optical element that enlarges or reduces an image in a soft X-ray region (several Å to several hundred Å). .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の全体構成を示す模式図、第2図は第1
図に示した移動シヤツタの原理的構成を示す平面図およ
び側面図、第3図は斜めに積層した多層膜の断面および
像の拡大・縮小の原理説明図である。 1……超高真空容器、2……試料基板、3……移動シヤ
ツタ、4……膜厚計、5……通常シヤツタ、6……蒸着
源、7……ピエゾ素子コントローラ、8……蒸着制御
器、9……蒸着源制御器、10……ピエゾ素子A、11……
ピエゾ素子B、12……スライド用台、13……シヤツタ
板。
FIG. 1 is a schematic diagram showing the overall structure of the present invention, and FIG.
FIG. 3 is a plan view and a side view showing the principle configuration of the movable shutter shown in the figure, and FIG. 3 is a cross-sectional view of a multilayer film obliquely laminated and an explanatory view of the principle of image enlargement / reduction. 1 ... Ultra high vacuum container, 2 ... Sample substrate, 3 ... movable shutter, 4 ... thickness meter, 5 ... normal shutter, 6 ... deposition source, 7 ... piezo element controller, 8 ... deposition Controller, 9 ... Evaporation source controller, 10 ... Piezo element A, 11 ...
Piezo element B, 12 …… Slide base, 13 …… Shutter plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蒸着源、該蒸着源からの元素を表面に蒸着
されるべき試料、前記元素の蒸着量をモニタするための
手段、前記蒸着源と前記試料との間に設けられ蒸着源か
らの元素が前記試料表面に蒸着するのを阻止するシャッ
タとを超高真空容器内に設けるとともに、前記シャッタ
を蒸着量に応じてピエゾ素子を利用して移動させること
を特徴とする多層膜作成装置。
1. A vapor deposition source, a sample to be vapor-deposited with an element from the vapor deposition source, means for monitoring the vapor deposition amount of the element, and a vapor deposition source provided between the vapor deposition source and the sample. A multilayer film forming apparatus characterized in that a shutter for preventing the element of (1) from being deposited on the surface of the sample is provided in an ultra-high vacuum container, and the shutter is moved by utilizing a piezo element according to the deposition amount. .
【請求項2】前記ピエゾ素子はその伸長量が所定の値に
達したとき、その位置を起点として再度の伸長量の制御
がされることを特徴とする特許請求の範囲第1項記載の
多層膜作成装置。
2. The multi-layer according to claim 1, wherein when the expansion amount of the piezo element reaches a predetermined value, the expansion amount is controlled again starting from the position thereof. Membrane making device.
JP25821986A 1986-10-31 1986-10-31 Multi-layer film production equipment Expired - Lifetime JPH0684540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25821986A JPH0684540B2 (en) 1986-10-31 1986-10-31 Multi-layer film production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25821986A JPH0684540B2 (en) 1986-10-31 1986-10-31 Multi-layer film production equipment

Publications (2)

Publication Number Publication Date
JPS63114968A JPS63114968A (en) 1988-05-19
JPH0684540B2 true JPH0684540B2 (en) 1994-10-26

Family

ID=17317169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25821986A Expired - Lifetime JPH0684540B2 (en) 1986-10-31 1986-10-31 Multi-layer film production equipment

Country Status (1)

Country Link
JP (1) JPH0684540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734230A (en) * 1993-06-28 1995-02-03 Nec Corp Shutter mechanism

Also Published As

Publication number Publication date
JPS63114968A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
Deubel et al. Direct laser writing and characterization of “Slanted Pore” Photonic Crystals
US5866204A (en) Method of depositing shadow sculpted thin films
JPH04502213A (en) Mirror device for X-ray to ultraviolet range
US6521136B1 (en) Method for making three-dimensional photonic band-gap crystals
Liu et al. Depth-graded multilayers for application in transmission geometry as linear zone plates
Chkhalo et al. Deposition of Mo/Si multilayers onto MEMS micromirrors and its utilization for extreme ultraviolet maskless lithography
Liu et al. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing
JPH0684540B2 (en) Multi-layer film production equipment
JPH0545498A (en) Multilayer film reflector
JP2010280931A (en) Multilayer film deposition process
JPH04169898A (en) Multi-layer mirror structure for x-ray
CA2591651C (en) Shadow sculpted thin films
JP3018648B2 (en) Method for manufacturing X-ray multilayer mirror
JPH08271697A (en) Optical device for x-ray microscope
RU2528561C2 (en) Highly stable waveguide-resonance quasi-monochromatic x-ray radiation stream former
JP2006058506A (en) Laminated structure and its manufacturing method, optical element, and optical product
SU1661633A1 (en) Method for manufacturing slit diaphragm for use in x-ray study
JPH02177532A (en) Mild x-ray reflection type exposure mask and manufacture thereof
Pradhan et al. Fabrication and characterization of W/B4C lamellar multilayer grating and NbC/Si multilayer phase-shift reflector
Murakami et al. Stress control of Mo/Si-based multilayer coatings deposited by ion-beam sputtering
Jiang et al. Multilayer Kirkpatrick-Baez focusing mirrors with phase compensation for sub-20 nm focusing at the hard X-ray nanoprobe beamline of SSRF
JP2002221596A (en) Aspherical mirror
JPH02145999A (en) Multi-layered reflecting mirror for x-ray
Sayer et al. Piezoelectric and ferroelectric devices: Potential and Issues
Yang Studies of ferroelectric materials using novel optical techniques