JPH0684491A - Device for measuring amount of current of charged particle beam and device for automatically correcting amount of current of charged particle beam - Google Patents

Device for measuring amount of current of charged particle beam and device for automatically correcting amount of current of charged particle beam

Info

Publication number
JPH0684491A
JPH0684491A JP4236673A JP23667392A JPH0684491A JP H0684491 A JPH0684491 A JP H0684491A JP 4236673 A JP4236673 A JP 4236673A JP 23667392 A JP23667392 A JP 23667392A JP H0684491 A JPH0684491 A JP H0684491A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
beam current
superconducting coil
current amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4236673A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nakamura
好伸 中村
Masayoshi Koba
正義 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4236673A priority Critical patent/JPH0684491A/en
Publication of JPH0684491A publication Critical patent/JPH0684491A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the amount of current of a charged particle beam by winding a superconducting coil around the outer periphery of a charged particle beam passage, and detecting the value of a voltage generated in the superconducting coil by a magnetic field induced by the charged particle beam. CONSTITUTION:A primary ion beam, emitted from an ion source 3 serving as a charged particle beam source by an ion-beam takeout voltage applied to an iob-beam takeout electrode 4, is focused by a condensor lens 5 and caused to impinge via an objective diaphragm 6 and an ion-beam scanning electrode 7 on a sample in a sample holder 9, using an objective lens 8; in that case, a superconducting coil 1b is wound around the outer periphery of an ion beam passage going through the objective diaphragm 6 and the ion-beam scanning electrode 7, and is kept at very low temperatures using cooling means 1c and a certain direct current is supplied to the coil 1b from a DC regulated power source 1e. The value of a voltage generated in the superconducting coil 1b by a magnetic field induced by a charged particle beam is detected using a voltmeter 1d and the amount of current of the charged particle beam is calculated using an arithmetic control unit 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子銃や、イオン源
等の荷電粒子ビーム発生源から放出した荷電粒子ビーム
電流量の測定及びその荷電粒子ビーム電流量を自動的に
補正する荷電粒子ビーム電流量自動補正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of a charged particle beam current amount emitted from an electron gun, a charged particle beam generation source such as an ion source, and a charged particle beam for automatically correcting the charged particle beam current amount. The present invention relates to a current amount automatic correction device.

【0002】[0002]

【従来の技術】例えば電子顕微鏡やX線マイクロアナラ
イザでは荷電粒子ビーム発生源である電子銃エミッタか
ら目標とする試料に1次電子ビームを当て、試料を透
過、又は試料から放射されたビームを分析している。し
たがって、1次電子ビーム電流量の変動は分析結果に直
接反映するから、分析中の1次電子ビーム量を監視し、
一定にすることが重要である。
2. Description of the Related Art For example, in an electron microscope or an X-ray microanalyzer, a primary electron beam is applied to a target sample from an electron gun emitter, which is a charged particle beam source, and the beam transmitted through the sample or the beam emitted from the sample is analyzed. is doing. Therefore, since the fluctuation of the primary electron beam current amount is directly reflected in the analysis result, the primary electron beam amount during analysis is monitored,
It is important to keep it constant.

【0003】従来は、1次電子ビームなどの荷電粒子ビ
ームを目標とするターゲット(例えば試料)に当ててい
るときは、ターゲットに電圧をかけることができる場合
はターゲットに正のバイアス電圧をかけて荷電粒子ビー
ム照射による2次電子放出を押え、ターゲット−グラウ
ンド間に流れる吸収電流を検出することにより荷電粒子
ビーム電流量の変化を監視し、ターゲットにバイアス電
圧をかけることができない場合は、荷電粒子ビームをタ
ーゲットに照射する直前までの荷電粒子ビーム電流量
を、荷電粒子ビーム行路を遮断する形で挿入したファラ
デカップを用いて測定していた。
Conventionally, when a charged particle beam such as a primary electron beam is applied to a target (eg, a sample) as a target, a positive bias voltage is applied to the target when a voltage can be applied to the target. The secondary electron emission due to the charged particle beam irradiation is suppressed, and the change in the charged particle beam current amount is monitored by detecting the absorption current flowing between the target and the ground. The charged particle beam current was measured until just before the target was irradiated with the beam using a Faraday cup inserted so as to block the path of the charged particle beam.

【0004】[0004]

【発明が解決しようとする課題】したがって、ターゲッ
トにバイアス電圧をかけることができない場合、実際に
荷電粒子ビームを使用しているときは実効照射荷電粒子
ビーム電流量を測定することは不可能であった。また、
ターゲットにバイアス電圧をかける場合でも、検出して
いるターゲット−グラウンド間に流れる吸収電流は、荷
電粒子ビームの反射、散乱のために、実際の照射荷電粒
子ビーム電流量と異なるため、正確な実効照射荷電粒子
ビーム電流量を測定することはできなかった。
Therefore, when the bias voltage cannot be applied to the target, it is impossible to measure the effective irradiation charged particle beam current amount when the charged particle beam is actually used. It was Also,
Even when a bias voltage is applied to the target, the absorption current flowing between the target being detected and the ground differs from the actual amount of the charged particle beam current due to the reflection and scattering of the charged particle beam. It was not possible to measure the charged particle beam current.

【0005】そこで、この発明は、以上の事情に鑑み、
実効荷電粒子ビーム電流量を正確に測定できる装置及び
測定した実効荷電粒子ビーム電流量信号に基づき、荷電
粒子ビーム電流量を自動的に補正する荷電粒子ビーム電
流量自動補正装置を提供しようとするものである。
Therefore, the present invention has been made in view of the above circumstances.
An apparatus capable of accurately measuring the effective charged particle beam current amount, and an apparatus for automatically correcting the charged particle beam current amount based on the measured effective charged particle beam current amount signal. Is.

【0006】[0006]

【課題を解決するための手段】以上の目的を達成するた
めの、この発明にかかる請求項1の荷電粒子ビーム電流
量測定装置は、荷電粒子ビーム行路の外周に巻設した超
伝導コイルと、この超伝導コイルを極低温に維持する冷
却手段と、前記超伝導コイルに接続し当該超伝導コイル
に一定の直流電流を供給する直流定電流源と、前記超伝
導コイルに生ずる電圧値を検出する電圧検出手段と、を
備え、荷電粒子ビームによって誘起される磁界により超
伝導コイルに発生する電圧値を検出し荷電粒子ビーム電
流量を測定することを特徴とするものである。
To achieve the above object, a charged particle beam current measuring device according to a first aspect of the present invention is a superconducting coil wound around the outer circumference of a charged particle beam path. Cooling means for maintaining the superconducting coil at a cryogenic temperature, a DC constant current source connected to the superconducting coil for supplying a constant DC current to the superconducting coil, and a voltage value generated in the superconducting coil are detected. And a voltage detecting means for detecting the voltage value generated in the superconducting coil by the magnetic field induced by the charged particle beam and measuring the charged particle beam current amount.

【0007】また、この発明にかかる請求項2の荷電粒
子ビーム電流量自動補正装置は、上述の荷電粒子ビーム
電流量測定装置と、荷電粒子ビーム発生源に対するビー
ム引出電圧対荷電粒子ビーム電流量の関係を予め記憶さ
せたメモリ部と、前記荷電粒子ビーム電流量測定装置の
荷電粒子ビーム電流量を入力する信号入力部と、前記メ
モリ部に記憶したビーム引出電圧対荷電粒子ビーム電流
量の関係に基づいて、目標荷電粒子ビーム電流量と信号
入力部に入力した荷電粒子ビーム電流量の差を零にする
ビーム引出電圧を計算する演算部と、演算部の演算結果
に基づいて荷電粒子ビーム発生源にビーム引出電圧をフ
ィードバックする出力部を備えた演算制御部により構成
したものである。
According to a second aspect of the present invention, there is provided a charged particle beam current amount automatic correction apparatus, wherein the charged particle beam current amount measuring device and the beam extraction voltage versus the charged particle beam current amount with respect to the charged particle beam source are set. A memory unit in which the relationship is stored in advance, a signal input unit for inputting the charged particle beam current amount of the charged particle beam current amount measuring device, and a relationship between the beam extraction voltage and the charged particle beam current amount stored in the memory unit. A calculation unit for calculating a beam extraction voltage that makes the difference between the target charged particle beam current amount and the charged particle beam current amount input to the signal input unit zero, and a charged particle beam generation source based on the calculation result of the calculation unit. The calculation control unit is provided with an output unit for feeding back the beam extraction voltage.

【0008】[0008]

【作用】本発明の荷電粒子ビーム電流量測定装置は、荷
電粒子ビーム行路外周を超伝導コイルが取巻き、超伝導
コイルには直流定電流源を接続し一定の直流を供給して
いるから、荷電粒子ビーム電流量が変化すると、超伝導
コイルに誘起される磁界が変化し、超伝導コイルの抵抗
が変化するから、超伝導コイルにかかる電圧が変化す
る。したがって超伝導コイルの電圧値を検出することに
よって荷電粒子ビーム電流量を求めることができる。
In the charged particle beam current measuring device of the present invention, the outer circumference of the charged particle beam path is surrounded by the superconducting coil, and a constant direct current source is connected to the superconducting coil to supply a constant direct current. When the amount of particle beam current changes, the magnetic field induced in the superconducting coil changes and the resistance of the superconducting coil changes, so the voltage applied to the superconducting coil changes. Therefore, the charged particle beam current amount can be obtained by detecting the voltage value of the superconducting coil.

【0009】さらに、本発明の荷電粒子ビーム電流量自
動補正装置は、荷電粒子ビーム電流量測定装置で検出し
た荷電粒子ビーム電流量電気信号を入力し、演算制御部
のメモリ部に予め記憶させたビーム引出電圧対荷電粒子
ビーム電流量に基づいて、入力した荷電粒子ビーム電流
量との差を零にする荷電粒子ビーム電流補正量を計算
し、入力した荷電粒子ビーム電流量と目標荷電粒子ビー
ム電流量の差を零にするビーム引出電圧を荷電粒子ビー
ム発生源にフィードバックするから、荷電粒子ビーム電
流量は、目標とする荷電粒子ビーム電流量に自動的に補
正される。
Further, in the charged particle beam current amount automatic correcting device of the present invention, the charged particle beam current amount electric signal detected by the charged particle beam current amount measuring device is inputted and preliminarily stored in the memory part of the arithmetic control part. Based on the beam extraction voltage vs. charged particle beam current amount, the charged particle beam current correction amount that makes the difference from the input charged particle beam current amount zero is calculated, and the input charged particle beam current amount and the target charged particle beam current are calculated. Since the beam extraction voltage that makes the difference in amount zero is fed back to the charged particle beam generation source, the charged particle beam current amount is automatically corrected to the target charged particle beam current amount.

【0010】[0010]

【実施例】以下、実施例を挙げて本発明を具体的に説明
する。 実施例1 まず、二次イオン質量分析装置に適用した例について説
明する。図1は、二次イオン質量分析装置30の概略構
成を示す一部ブロック要部斜視図である。図1の二次イ
オン質量分析装置は、荷電粒子ビーム発生源であるイオ
ン発生源3から、イオンビーム引出電極4に加えられる
イオンビーム引出電圧により放射された1次イオンビー
ムはコンデンサレンズ5によって集束され、対物絞り
6、イオンビーム走査電極7を通り、対物レンズ8によ
り試料ホルダ9内の試料(非図示)に当てる。試料から
発生した2次イオンは、図示しない二次イオン分析系内
へ導くから、二次イオン分析系内において質量分析され
る。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 First, an example applied to a secondary ion mass spectrometer will be described. FIG. 1 is a partial block main part perspective view showing a schematic configuration of the secondary ion mass spectrometer 30. In the secondary ion mass spectrometer of FIG. 1, a primary ion beam emitted from an ion source 3 which is a charged particle beam source by an ion beam extraction voltage applied to an ion beam extraction electrode 4 is focused by a condenser lens 5. Then, the light passes through the objective diaphragm 6 and the ion beam scanning electrode 7 and is applied to the sample (not shown) in the sample holder 9 by the objective lens 8. The secondary ions generated from the sample are introduced into a secondary ion analysis system (not shown), and are mass analyzed in the secondary ion analysis system.

【0011】前記対物絞り6とイオンビーム走査電極7
のイオンビーム行路には、荷電粒子ビーム電流量測定装
置であるイオンビーム電流量測定装置1が設けられてい
る。このイオンビーム電流量測定装置1は、安定化ジル
コニア製円筒1aと、その円筒面に巻き掛けられ円筒面
上部から下部に延設されたYBa2 Cu3 7-x 超伝導
コイル1bと、この超伝導コイル1bを極低温77゜K
に冷却する冷却器1cと、超伝導コイル1bに接続した
電圧計1dと、直流定電源1eとから成っている。
The objective diaphragm 6 and the ion beam scanning electrode 7
An ion beam current measuring device 1, which is a charged particle beam current measuring device, is provided in the ion beam path. This ion beam current measuring device 1 comprises a stabilized zirconia cylinder 1a, a YBa 2 Cu 3 O 7-x superconducting coil 1b wound around the cylindrical surface and extended from the upper part to the lower part of the cylindrical surface, Superconducting coil 1b is set to a very low temperature of 77 ° K.
It consists of a cooler 1c for cooling, a voltmeter 1d connected to the superconducting coil 1b, and a constant DC power supply 1e.

【0012】また、前記イオン発生源3及びイオンビー
ム引出電極4と、イオンビーム電流量測定装置1の電圧
計1dとの間には、演算制御部として演算制御装置2が
設けられている。この演算制御装置2は、図11に示す
ようにイオンビーム電流量測定装置1で検出したイオン
ビーム電流量検出電気信号を入力する信号入力部(2−
1)と、イオンビーム発生源に加えるイオンビーム引出
電圧対イオンビーム電流量の関係を記憶させたメモリ部
(2−2)と、このメモリ部(2−2)に記憶させたイ
オンビーム引出電圧対イオンビーム電流量の関係に基づ
いて目標イオンビーム電流量と信号入力部(2−1)に
入力したイオンビーム電流量検出電気信号の差を零にす
るイオンビーム引出電圧を計算する演算部(2−3)
と、この演算結果に基づいてイオンビーム発生源3及び
イオンビーム引出電極4にイオンビーム引出電圧をフィ
ードバックする出力部(2−4)とから成っている。
An arithmetic control unit 2 is provided as an arithmetic control unit between the ion source 3 and the ion beam extraction electrode 4 and the voltmeter 1d of the ion beam current measuring device 1. As shown in FIG. 11, the arithmetic and control unit 2 has a signal input section (2- that inputs an ion beam current amount detection electrical signal detected by the ion beam current amount measuring device 1).
1), a memory section (2-2) storing the relationship between the ion beam extraction voltage applied to the ion beam generation source and the ion beam current amount, and the ion beam extraction voltage stored in the memory section (2-2). An operation unit that calculates an ion beam extraction voltage that makes the difference between the target ion beam current amount and the electric signal for detecting the ion beam current amount input to the signal input unit (2-1) zero based on the relationship between the ion beam current amount and ( 2-3)
And an output unit (2-4) for feeding back the ion beam extraction voltage to the ion beam generation source 3 and the ion beam extraction electrode 4 based on the calculation result.

【0013】なお、イオンビーム電流量測定装置の超伝
導コイル1bは線幅100μm、線長6mの高温超伝導
線であり、直流定電流源1eより10mAの電流が流さ
れ、冷却器1cによって77゜Kに冷却し、超伝導状態
に維持されている。そして、二次イオン質量分析用のイ
オンビームとしてセシウム正イオンビームを加速電圧1
3KeVで、電流量100nA照射したときのファラデ
カップ10による電流値と電圧計1dによる電圧値の時
間的変化を示せば、図2に示す時間対ファラデカップ電
流量(mA)、電圧計電流量(mV)の特性曲線が得ら
れる(ただし図2中の矢印は矢印方向の特性曲線を示
す)。図2の特性曲線からファラデカップの電流値と、
電圧計1dの電圧値が同様に変化していることが判る。
The superconducting coil 1b of the ion beam current measuring device is a high temperature superconducting wire having a line width of 100 μm and a line length of 6 m, and a current of 10 mA is made to flow from the DC constant current source 1e, and the cooler 1c makes it 77. It is cooled to ° K and maintained in a superconducting state. Then, a cesium positive ion beam is used as an ion beam for secondary ion mass spectrometry, and the acceleration voltage is 1
If the temporal changes of the current value by the Fara de cup 10 and the voltage value by the voltmeter 1d when the current amount of 100 nA is applied at 3 KeV, the time vs. Fara de cup current amount (mA) and the voltmeter current amount (mA) shown in FIG. mV) characteristic curve is obtained (however, the arrow in FIG. 2 indicates the characteristic curve in the arrow direction). From the characteristic curve of Fig. 2, the current value of the Fara de cup,
It can be seen that the voltage value of the voltmeter 1d is also changing.

【0014】次に、電圧計1dでの出力電圧電気信号を
もとに、図1中に示すように組み込まれた演算制御装置
2により、図3に示す予め記憶させたイオンビーム引出
電圧と照射電圧を照射イオンビーム電流量変化率の関係
から照射ビーム電流量を一定にするイオンビーム引出電
圧を計算し、図4に示すように演算制御装置で得られた
電圧をイオンビーム発生源、イオンビーム引出電極4に
フィードバックした。その結果、ファラデカップによる
測定から、図5に示すように電流量変動が起きないよう
に補正できていることが確認された。
Next, based on the output voltage electric signal from the voltmeter 1d, the arithmetic control unit 2 incorporated as shown in FIG. 1 causes the ion beam extraction voltage and irradiation shown in FIG. 3 to be stored in advance. The ion beam extraction voltage that makes the irradiation beam current amount constant is calculated from the relationship between the voltage and the irradiation ion beam current change rate, and the voltage obtained by the arithmetic and control unit is used as shown in FIG. Feedback was given to the extraction electrode 4. As a result, it was confirmed from the measurement by the Faraday cup that the current amount could be corrected so as not to occur as shown in FIG.

【0015】実施例2 次に、本発明をX線マイクロアナライザに適用した例に
ついて説明する。図6は本実施例のX線マイクロアナラ
イザ31の概略構成を示す一部ブロック要部断面図であ
る。図6のX線マイクロアナライザ31は電子ビーム発
生源である電子銃エミッタ11から放射される一次電子
ビーム電流量の変動が分析データに直接反映するため、
分析中の一次電子ビーム電流量を一定に保つように構成
したものである。
Embodiment 2 Next, an example in which the present invention is applied to an X-ray microanalyzer will be described. FIG. 6 is a partial block cross-sectional view showing a schematic configuration of the X-ray microanalyzer 31 of the present embodiment. In the X-ray micro-analyzer 31 of FIG. 6, since the fluctuation of the primary electron beam current amount radiated from the electron gun emitter 11 which is an electron beam generation source is directly reflected in the analysis data,
The primary electron beam current amount during analysis is kept constant.

【0016】本実施例のX線マイクロアナライザ31
は、電子銃エミッタ11、電子ビーム引出電極12及び
電子銃陽極13を介して引出された陰極線を集束レンズ
14及び対物絞り15、電子ビーム走査コイル17、対
物レンズ18を通して試料ホルダ19内に保持した試料
(非図示)に当て、試料から発するX線を分光用結晶2
0で分光し、X線検出器21により分析する構成になっ
ている。そして、対物絞り15と電子ビーム走査コイル
17の間の電子ビーム行路中には実施例1と同様構成の
荷電粒子ビーム電流量測定装置である電子ビーム電流量
測定装置1が配置されている。
The X-ray microanalyzer 31 of this embodiment
Holds a cathode ray extracted through the electron gun emitter 11, the electron beam extraction electrode 12, and the electron gun anode 13 in the sample holder 19 through the focusing lens 14, the objective diaphragm 15, the electron beam scanning coil 17, and the objective lens 18. X-ray emitted from the sample (not shown) is applied to the crystal for spectroscopy 2
The configuration is such that the light is dispersed at 0 and analyzed by the X-ray detector 21. Then, in the electron beam path between the objective diaphragm 15 and the electron beam scanning coil 17, an electron beam current measuring device 1 which is a charged particle beam current measuring device having the same configuration as that of the first embodiment is arranged.

【0017】すなわち、この電子ビーム電流量測定装置
1は安定化ジルコニア製円筒1aと、その円筒面に巻回
し上部から下部に延設されたYBa2 Cu3 7-x 超伝
導コイル1bと、この超伝導コイル1bを極低温77゜
Kに冷却し超伝導状態を維持させる冷却器1cと、超伝
導コイルに接続した電圧計1dと、直流定電流源1eで
構成されている。超伝導コイル1bには直流定電流電源
1eより10mAの電流が流される。なお、電界放出形
電子銃を用いて電子ビームを加速電圧3KVで、電流量
100nA照射したときの実施例1でのファラデカップ
10と同様のはたらきをするプローブ電流検出器16に
より検出した電流値と電圧計1dによる電圧値の時間的
変化を示せば、図7に示すごとき特性図が得られる。こ
の特性図から、電流値の変化と電圧値の変化が非常によ
く一致することが判る。また、上記電流量測定装置で得
られた検出電気信号をもとに、図6中のように組み込ま
れた演算制御装置2により、図8に示すごとく、電子ビ
ーム発生源に加える電子ビーム引出電圧変化率と照射電
子ビーム電流量変化率の関係から照射ビーム電流量を一
定に保つような引出電圧を計算し、図9に示すように電
子ビーム引出電圧を制御し、12電子ビーム引出電極に
フィードバックを行った結果を示せば、プローブ電流検
出器16による測定から、図10に示すように電流量が
変化しないように正確に補正できていることが確認され
た。
That is, the electron beam current measuring device 1 comprises a stabilized zirconia cylinder 1a, a YBa 2 Cu 3 O 7-x superconducting coil 1b wound around the cylindrical surface and extended from the upper part to the lower part, This superconducting coil 1b is composed of a cooler 1c for cooling the superconducting coil to a super low temperature of 77 ° K to maintain a superconducting state, a voltmeter 1d connected to the superconducting coil, and a DC constant current source 1e. A current of 10 mA is applied to the superconducting coil 1b from the DC constant current power supply 1e. It is to be noted that a current value detected by the probe current detector 16 that functions in the same manner as the Faraday cup 10 in the first embodiment when an electron beam is irradiated with an accelerating voltage of 3 KV and a current amount of 100 nA using a field emission electron gun. If the time variation of the voltage value by the voltmeter 1d is shown, the characteristic diagram as shown in FIG. 7 can be obtained. From this characteristic diagram, it can be seen that the change in current value and the change in voltage value match very well. Further, as shown in FIG. 8, the electron beam extraction voltage applied to the electron beam generation source by the arithmetic and control unit 2 incorporated as shown in FIG. 6 based on the detected electric signal obtained by the current amount measuring device. The extraction voltage that keeps the irradiation beam current amount constant is calculated from the relationship between the change rate and the irradiation electron beam current amount change rate, and the electron beam extraction voltage is controlled as shown in FIG. 9 and fed back to the 12 electron beam extraction electrodes. As a result of the above, it was confirmed from the measurement by the probe current detector 16 that the current amount could be accurately corrected so as not to change as shown in FIG.

【0018】上述した実施例1及び2の超伝導コイル1
bは、高温超伝導材料YBa2 Cu3 7-x で構成した
ものを例示したが、本発明の荷電粒子ビーム電流量測定
装置に使用する超伝導コイルは、このような高温超伝導
材料に限らず、Bi−Ti合金超伝導材料や、他の化合
物超伝導材料で構成したものでもよいことは云うまでも
ない。
Superconducting coil 1 of Examples 1 and 2 described above
Although b is exemplified by one composed of a high temperature superconducting material YBa 2 Cu 3 O 7-x , the superconducting coil used in the charged particle beam current measuring device of the present invention is made of such a high temperature superconducting material. Needless to say, it may be composed of a Bi-Ti alloy superconducting material or another compound superconducting material.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
の荷電粒子ビーム電流量測定装置によれば、荷電粒子ビ
ーム行路外周に超伝導コイルを巻設し、荷電粒子ビーム
電流量によって誘起される磁界によって超伝導コイルの
抵抗が変化することによって発生する電圧を検出して荷
電粒子ビーム電流量を測定するから、荷電粒子ビーム照
射中でも荷電粒子ビーム電流量が検出できる。また、本
発明の荷電粒子ビーム電流量自動補正装置によれば、荷
電粒子ビーム電流量をモニタしていなくとも使用中の荷
電粒子ビーム電流量が目標とする値から変化する場合
は、自動的に目標とする荷電粒子ビーム電流量との差が
自動的に補正されるので、荷電粒子ビーム電流量の変動
に関係なく正確なデータ分析を行うことができる。
As is apparent from the above description, according to the charged particle beam current amount measuring apparatus of the present invention, the superconducting coil is wound around the outer periphery of the charged particle beam path and induced by the charged particle beam current amount. The charged particle beam current amount is measured by detecting the voltage generated when the resistance of the superconducting coil changes due to the magnetic field generated by the superconducting coil. Therefore, the charged particle beam current amount can be detected even during irradiation of the charged particle beam. Further, according to the charged particle beam current amount automatic correction apparatus of the present invention, even if the charged particle beam current amount is not monitored, when the charged particle beam current amount in use changes from the target value, it is automatically Since the difference from the target charged particle beam current amount is automatically corrected, accurate data analysis can be performed regardless of changes in the charged particle beam current amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の荷電粒子ビーム電流量測定装置及び
荷電粒子ビーム電流量自動補正装置を適用した第1の実
施例の二次イオン質量分析装置の構成を示す一部ブロッ
ク要部斜視図である。
FIG. 1 is a partial block perspective view showing the configuration of a secondary ion mass spectrometer according to a first embodiment to which a charged particle beam current measuring device and a charged particle beam current correcting device of the present invention are applied. is there.

【図2】図1に示す二次イオン質量分析装置におけるイ
オンビームによるファラデカップに流れる電流及び電圧
計から検出される電圧と時間の関係を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing a relationship between a current flowing through a Faraday cup by an ion beam in the secondary ion mass spectrometer shown in FIG. 1 and a voltage detected from a voltmeter and time.

【図3】図1に示す二次イオン質量分析装置に組み込ま
れた荷電粒子ビーム電流量自動補正装置の演算制御装置
におけるイオン発生源に加えるイオンビーム引出電圧及
イオンビーム電流変化率の関係を示す特性図である。
FIG. 3 shows a relationship between an ion beam extraction voltage applied to an ion generation source and an ion beam current change rate in an arithmetic and control unit of a charged particle beam current amount automatic correction device incorporated in the secondary ion mass spectrometer shown in FIG. It is a characteristic diagram.

【図4】図1に示す二次イオン質量分析装置に組み込ま
れた荷電粒子ビーム電流量自動補正装置の演算制御部か
らイオン引出し電圧対時間の関係を示す特性図である。
4 is a characteristic diagram showing a relationship between an ion extraction voltage and time from an arithmetic control unit of a charged particle beam current amount automatic correction device incorporated in the secondary ion mass spectrometer shown in FIG.

【図5】図1に示す二次イオン質量分析装置中のイオン
ビーム行路中に挿入したファラデカップに検出される電
流値対時間の関係を示す特性図である。
5 is a characteristic diagram showing a relationship between a current value detected by a Faraday cup inserted in an ion beam path in the secondary ion mass spectrometer shown in FIG. 1 and time.

【図6】この発明の荷電粒子ビーム電流量測定装置及び
荷電粒子ビーム電流量自動補正装置を適用した第2の実
施例のX線マイクロアナライザの構成を示す一部ブロッ
ク要部斜視図である。
FIG. 6 is a partial block perspective view showing the configuration of an X-ray microanalyzer according to a second embodiment to which the charged particle beam current measuring device and the charged particle beam current correcting device of the present invention are applied.

【図7】図6のX線マイクロアナライザに組み込まれた
電子ビーム電流量測定装置の電圧計及び電子ビーム行路
中に配置したプローブ検出器に検出されるプローブ電流
検出値及び電圧計電流値の時間的変化を示す特性図であ
る。
7 is a time chart of a probe current detection value and a voltmeter current value detected by a voltmeter of an electron beam current measuring device incorporated in the X-ray microanalyzer of FIG. 6 and a probe detector arranged in the electron beam path. It is a characteristic view showing a dynamic change.

【図8】図6に示すX線マアクロアナライザの電子銃か
らの電子ビーム引出電圧変化率と照射電子ビーム電流量
変化率と時間との関係を示す特性図である。
8 is a characteristic diagram showing the relationship between the rate of change in the electron beam extraction voltage from the electron gun, the rate of change in the amount of irradiated electron beam current, and the time in the X-ray Macro analyzer shown in FIG.

【図9】図6に示すX線マイクロアナライザに組み込ま
れた荷電粒子ビーム電流量自動補正装置の演算制御部か
ら電子銃源にフィードバックする電子ビーム引出電圧と
時間との関係を示す特性図である。
9 is a characteristic diagram showing the relationship between the electron beam extraction voltage fed back to the electron gun source from the operation control unit of the charged particle beam current correction apparatus incorporated in the X-ray microanalyzer shown in FIG. 6 and time. .

【図10】図6のX線マイクロアナライザに組み込まれ
た荷電粒子ビーム電流量自動補正装置による補正結果の
電子ビーム行路におけるプローブ電流検出器に得られる
プローブ電流値と時間の関係を示す特性図である。
10 is a characteristic diagram showing the relationship between the probe current value obtained by the probe current detector and the time in the electron beam path as a result of the correction by the charged particle beam current correction device incorporated in the X-ray microanalyzer of FIG. is there.

【図11】図1に示す二次イオン質量分析装置に組み込
まれたイオンビーム電流量自動補正装置の演算制御部の
構成を示すブロック図である。
11 is a block diagram showing a configuration of a calculation control unit of an ion beam current amount automatic correction device incorporated in the secondary ion mass spectrometer shown in FIG.

【符号の説明】[Explanation of symbols]

1 荷電粒子ビーム電流量測定装置 2 荷電粒子ビーム電流量自動補正装置の演算制御部 1b 超伝導コイル 1c 冷却器 1e 直流定電流源 1d 電圧計 30 二次イオン質量分析装置(本発明) 31 X線マイクロアナライザ DESCRIPTION OF SYMBOLS 1 Charged particle beam current amount measuring apparatus 2 Arithmetic control unit of charged particle beam current amount automatic correction apparatus 1b Superconducting coil 1c Cooler 1e DC constant current source 1d Voltmeter 30 Secondary ion mass spectrometer (invention) 31 X-ray Micro analyzer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子ビーム行路外周に巻設した超伝
導コイルと、 この超伝導コイルを極低温に維持する冷却手段と、 前記超伝導コイルに接続し当該超伝導コイルに一定の直
流電流を供給する直流定電流源と、 前記超伝導コイルに生ずる電圧値を検出する電圧検出手
段を備え、荷電粒子ビームによって誘起される磁界によ
り超伝導コイルに発生する電圧値を検出して荷電粒子ビ
ーム電流量を測定することを特徴とする荷電粒子ビーム
電流量測定装置。
1. A superconducting coil wound around the outer circumference of a charged particle beam path, cooling means for maintaining the superconducting coil at a cryogenic temperature, and a constant direct current to the superconducting coil connected to the superconducting coil. A DC constant current source to be supplied and a voltage detecting means for detecting a voltage value generated in the superconducting coil, and a charged particle beam current is detected by detecting a voltage value generated in the superconducting coil by a magnetic field induced by the charged particle beam. A charged particle beam current measuring device characterized by measuring the amount.
【請求項2】 請求項1記載の荷電粒子ビーム電流量測
定装置と、 荷電粒子ビーム発生源に対するビーム引出電圧対荷電粒
子ビーム電流量の関係を予め記憶させたメモリ部と、前
記荷電粒子ビーム電流量測定装置での荷電粒子ビーム電
流量を入力する信号入力部と、前記メモリ部に記憶した
ビーム引出電圧対荷電粒子ビーム電流量の関係に基づい
て、目標荷電粒子ビーム電流量と信号入力部に入力した
荷電粒子ビーム電流量の差を零にするビーム引出電圧を
計算する演算部と、演算部の演算結果に基づいて荷電粒
子ビーム発生源にビーム引出電圧をフィードバックする
出力部を備えた演算制御部、からなることを特徴とする
荷電粒子ビーム電流量自動補正装置。
2. The charged particle beam current amount measuring device according to claim 1, a memory unit in which a relationship between a beam extraction voltage with respect to a charged particle beam generation source and a charged particle beam current amount is stored in advance, and the charged particle beam current. A signal input unit for inputting the charged particle beam current amount in the quantity measuring device, and a target charged particle beam current amount and a signal input unit based on the relationship between the beam extraction voltage and the charged particle beam current amount stored in the memory unit. Arithmetic control including an arithmetic unit that calculates the beam extraction voltage that makes the difference between the input charged particle beam current amounts to zero, and an output unit that feeds back the beam extraction voltage to the charged particle beam generation source based on the arithmetic result of the arithmetic unit An apparatus for automatically correcting the charged particle beam current amount, which comprises:
JP4236673A 1992-09-04 1992-09-04 Device for measuring amount of current of charged particle beam and device for automatically correcting amount of current of charged particle beam Pending JPH0684491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236673A JPH0684491A (en) 1992-09-04 1992-09-04 Device for measuring amount of current of charged particle beam and device for automatically correcting amount of current of charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236673A JPH0684491A (en) 1992-09-04 1992-09-04 Device for measuring amount of current of charged particle beam and device for automatically correcting amount of current of charged particle beam

Publications (1)

Publication Number Publication Date
JPH0684491A true JPH0684491A (en) 1994-03-25

Family

ID=17004091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236673A Pending JPH0684491A (en) 1992-09-04 1992-09-04 Device for measuring amount of current of charged particle beam and device for automatically correcting amount of current of charged particle beam

Country Status (1)

Country Link
JP (1) JPH0684491A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329938A2 (en) * 2001-12-28 2003-07-23 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
US6867757B1 (en) 1999-01-20 2005-03-15 Nec Corporation Display device, portable electronic device and method of controlling display device
JP2010537376A (en) * 2007-08-23 2010-12-02 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction heating method and apparatus for metal billet
JP4716872B2 (en) * 2003-09-24 2011-07-06 独立行政法人理化学研究所 Beam current sensor
JP2016134306A (en) * 2015-01-20 2016-07-25 株式会社荏原製作所 Electron optical device and inspecting device
US11527381B2 (en) 2020-03-04 2022-12-13 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implanter and model generation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867757B1 (en) 1999-01-20 2005-03-15 Nec Corporation Display device, portable electronic device and method of controlling display device
EP1329938A2 (en) * 2001-12-28 2003-07-23 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
EP1329938A3 (en) * 2001-12-28 2003-08-06 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
US6822247B2 (en) 2001-12-28 2004-11-23 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
CN100339967C (en) * 2001-12-28 2007-09-26 松下电器产业株式会社 Ion irradiating device
JP4716872B2 (en) * 2003-09-24 2011-07-06 独立行政法人理化学研究所 Beam current sensor
JP2010537376A (en) * 2007-08-23 2010-12-02 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction heating method and apparatus for metal billet
JP2016134306A (en) * 2015-01-20 2016-07-25 株式会社荏原製作所 Electron optical device and inspecting device
US11527381B2 (en) 2020-03-04 2022-12-13 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implanter and model generation method
US11823863B2 (en) 2020-03-04 2023-11-21 Sumitomo Heavy Industries Ion Technology Co, Ltd. Ion implanter and model generation method

Similar Documents

Publication Publication Date Title
Browne et al. Broad‐Range Magnetic Spectrograph
Ciccacci et al. Spin‐polarized electron gun for electron spectroscopies
Egerton A simple electron spectrometer for energy analysis in the transmission microscope
JP2001319608A (en) Micro-focusing x-ray generator
Mulvey Electron-optical design of an X-ray micro-analyser
JPH0684491A (en) Device for measuring amount of current of charged particle beam and device for automatically correcting amount of current of charged particle beam
Cutler et al. Pin-hole camera investigation of electron beams
US20230420224A1 (en) Operating a gas supply device for a particle beam device
JPH11329331A (en) Compound charged particle beam device
JP2002157973A (en) Energy spectrum measuring device, electronic energy loss spectroscope, electron microscope having this device and electronic energy loss spectrum measuring method
Bakker et al. Design and performance of an ultra-high-resolution 300 kV microscope
US3518424A (en) Ion beam intensity control for a field ionization mass spectrometer employing voltage feedback to the ion source
JP3520165B2 (en) Electron beam equipment
JPH07253472A (en) Helium-3 cryostat for radiation detector and analyzer
US4214166A (en) Magnetic lens system for corpuscular radiation equipment
Green et al. An Investigation of Deuteron Induced Reactions by Magnetic Analysis I: Experimental Technique
JP4822055B2 (en) Mass spectrometer for ion implantation equipment
Oatley The tungsten filament gun in the scanning electron microscope
Katakuse et al. Present Status of the Reconstructed Large Mass Spectroscope
KR19990039743U (en) Real Energy Measuring Device of Accelerated Particle
Felba Emittance of high-power-density electron beam
JPH0843331A (en) Method and device for x-ray analysis
Seah et al. A simple device for measuring the flux distribution in scanned ion and neutral beams for sputter depth profiling of solid surfaces
Leung et al. Small mass spectrometer probe for analyzing hydrogen ion species
JP2000329716A (en) Auger electron spectral apparatus and analytical method for depth direction