JPH068376A - Heat-resistant water hose - Google Patents

Heat-resistant water hose

Info

Publication number
JPH068376A
JPH068376A JP5054832A JP5483293A JPH068376A JP H068376 A JPH068376 A JP H068376A JP 5054832 A JP5054832 A JP 5054832A JP 5483293 A JP5483293 A JP 5483293A JP H068376 A JPH068376 A JP H068376A
Authority
JP
Japan
Prior art keywords
hose
layer
heat
copolymer
brominated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5054832A
Other languages
Japanese (ja)
Inventor
Shinji Sakakura
信治 坂倉
Shusuke Saito
秀輔 斎藤
Shingo Kato
信吾 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP5054832A priority Critical patent/JPH068376A/en
Publication of JPH068376A publication Critical patent/JPH068376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enhance the heat resistance and pressure resistance of a water hose by forming inner and outer layers of the hose from a brominated copolymer and providing a reinforcing layer composed of p-aramide fibers between the inner and outer layers of the hose. CONSTITUTION:The inner layer 1 and outer layer 2 of a water hose are respectively formed from a copolymer (brominated IB-PMS) being an isobutylene/p- methylstyrene copolymer wherein a part of p-methylstyrene is brominated. A reinforcing layer 3 composed of p-aramide fibers of a material expressed by formula I is provided between the upper layer 1 and the outer layer 2. The p-aramide fibers expressed by formula I is spirally knitted to be arranged on the inner layer. The water hose thus produced is excellent in heat resistance and reduced in water permeability and can hold sufficient pressure resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性ウォーターホー
スに関し、特に、ラジエーターホース,ヒーターホー
ス,バイパスホース等の自動車用ホース、温度調節ホー
ス,暖房用スチームホース等の産業機械用温度調節ホー
スなどの用途に好適な耐熱性ウォーターホースに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant water hose, and in particular, automotive hoses such as radiator hoses, heater hoses and bypass hoses, temperature control hoses, temperature control hoses for industrial machines such as steam hoses for heating, etc. The present invention relates to a heat resistant water hose suitable for use in.

【0002】[0002]

【従来の技術】従来、水を輸送するためのウォーターホ
ースとしては、イオウ加硫したEPDM(エチレン・プ
ロピレン・ジエン3元共重合体)で内層及び外層を形成
し、補強のために内層と外層との間にPET(ポリエチ
レンテレフタレート)からなる補強層を設けた構造を有
するものが一般的であり、例えば、特開平3−1942
81号公報では、内層及び外層にEPDM、補強層にP
ET、ナイロン、レーヨン等の有機繊維を用いたウォー
ターホースが提案されている。
2. Description of the Related Art Conventionally, as a water hose for transporting water, an inner layer and an outer layer are formed of sulfur vulcanized EPDM (ethylene / propylene / diene terpolymer), and an inner layer and an outer layer are provided for reinforcement. Generally, it has a structure in which a reinforcing layer made of PET (polyethylene terephthalate) is provided between and, for example, JP-A-3-1942.
In JP 81, EPDM is used for the inner and outer layers, and P is used for the reinforcing layer.
Water hoses using organic fibers such as ET, nylon, and rayon have been proposed.

【0003】また、内層及び外層にEPDM又はIIR
(イソブチレン・イソプレンゴム)を用い、補強層とし
て上記と同様の有機繊維又はスチールワイヤー、スチー
ルコード等の金属を用いたウォーターホースやスチーム
ホースが産業機械用として一般的に使用されている。
EPDM or IIR is used for the inner and outer layers.
A water hose or a steam hose using (isobutylene / isoprene rubber) and a metal such as the above-mentioned organic fiber or steel wire or steel cord as a reinforcing layer is generally used for industrial machines.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年、
自動車エンジンの高性能化に伴い、エンジンを冷却した
後の冷却水の温度が上り、またエンジンルーム内が高温
となるため、ウォーターホースの耐熱性の向上が要求さ
れているが、上記のウォーターホースは耐熱性が十分で
はないという問題がある。また、冷却水の温度が上るた
め、ホースからの透過量が増加し、これに対応するには
冷却水タンクの容量を大きくすることが考えられるが、
広いスペースを必要とし、また重量が増えるのでこのよ
うな方法は好ましくない。
However, in recent years,
With the increasing performance of automobile engines, the temperature of the cooling water after cooling the engine rises and the temperature inside the engine room becomes high, so it is required to improve the heat resistance of the water hose. Has a problem that the heat resistance is not sufficient. Also, since the temperature of the cooling water rises, the amount of permeation from the hose increases, and in order to cope with this, it is possible to increase the capacity of the cooling water tank.
Such a method is not preferable because it requires a large space and increases the weight.

【0005】また、産業用機械においても、内層及び外
層としてEPDM又はIIRを用いた従来のウォーター
ホースやスチームホースは耐熱老化性に劣り、このため
ホースの交換頻度が高いものとなっている。そこで、耐
熱性が重視される用途に用いる場合は、ゴムホースの代
わりにテフロンチューブからなるホースが用いられる
が、テフロンチューブは高価である上、柔軟性に欠ける
ので、本来、柔軟性が求められるゴムホースの代用は困
難である。
Also in industrial machines, conventional water hoses and steam hoses using EPDM or IIR as the inner and outer layers are inferior in heat aging resistance, and therefore, the frequency of hose replacement is high. Therefore, when used in applications where heat resistance is important, a hose consisting of a Teflon tube is used instead of a rubber hose, but since a Teflon tube is expensive and lacks flexibility, a rubber hose originally required to have flexibility. Substitution of is difficult.

【0006】本発明は上記事情に鑑みなされたもので、
耐熱性に優れ、冷却水の透過が小さく、かつ冷却水を封
入したときの熱老化においても十分な耐圧性を保持する
ことができる耐熱性ウォーターホースを提供することを
目的とする。
The present invention has been made in view of the above circumstances.
An object of the present invention is to provide a heat-resistant water hose which has excellent heat resistance, small permeation of cooling water, and can maintain sufficient pressure resistance even when heat aging when cooling water is sealed.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を行った結果、内層と外層
とで構成される耐熱ウォーターホースにおいて、上記内
層又は内層と外層それぞれにイソブチレンとパラメチル
スチレンとの共重合物でパラメチルスチレンの一部を臭
素化した共重合体(以下、臭素化IB−PMS共重合体
という)を用い、かつ上記内層と外層との間に下記式
(1)で表されるパラ系アラミド繊維からなる補強層を
設けることにより、冷却水の透過が小さく、かつ冷却水
封入熱老化においても十分な耐圧性を保持することがで
きるため、良好な性能のホースが得られることを見い出
した。
Means and Actions for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has found that in a heat-resistant water hose composed of an inner layer and an outer layer, isobutylene is formed in each of the inner layer or the inner layer and the outer layer. The following formula is used between the inner layer and the outer layer, using a copolymer obtained by brominated part of paramethylstyrene (hereinafter referred to as a brominated IB-PMS copolymer) with a copolymer of By providing the reinforcing layer composed of the para-aramid fiber represented by (1), the permeation of cooling water is small, and sufficient pressure resistance can be maintained even in heat aging filled with cooling water, so that good performance is obtained. I found that I could get a hose.

【0008】即ち、本発明者は、耐熱性に優れ、かつ水
透過量が少なく、特に耐熱老化性の良好なホースについ
て検討した結果、イソブチレンとパラメチルスチレンと
の共重合物でパラメチルスチレンの一部を臭素化した共
重合体をホースの内層とすること、しかもホースの補強
のために内層と外層との間に設ける補強層として、下記
式(1)で表されるパラ系アラミド繊維を用いることに
より、上記目的が効果的に達成されることを知見し、本
発明をなすに至ったものである。
That is, the present inventor examined a hose having excellent heat resistance, a small amount of water permeation, and particularly good heat aging resistance. As a result, a copolymer of isobutylene and paramethylstyrene was prepared. Using a partially brominated copolymer as the inner layer of the hose, and as a reinforcing layer provided between the inner layer and the outer layer for reinforcing the hose, a para-aramid fiber represented by the following formula (1) is used. The present inventors have found that the above objects can be effectively achieved by using them, and have completed the present invention.

【0009】[0009]

【化2】 [Chemical 2]

【0010】以下、本発明を更に詳しく説明すると、本
発明の耐熱性ウォーターホースは、内層又は内層と外層
とをイソブチレンとパラメチルスチレンとの共重合物で
パラメチルスチレンの一部を臭素化した共重合体で形成
し、内層と外層との間に下記式(1)で表されるパラ系
アラミド繊維からなる補強層を設けたものである。
The present invention will be described in more detail below. In the heat resistant water hose of the present invention, a part of paramethylstyrene is brominated with a copolymer of isobutylene and paramethylstyrene for the inner layer or the inner and outer layers. It is formed of a copolymer, and a reinforcing layer made of para-aramid fiber represented by the following formula (1) is provided between the inner layer and the outer layer.

【0011】[0011]

【化3】 [Chemical 3]

【0012】このようなホースとして、例えば図1に示
す構造のものが挙げられ、これは内層1と外層2の間に
補強層3を設けた構成となっている。ここで、補強層3
は式(1)のパラ系アラミド繊維を例えばスパイラル状
(図2参照)、ブレード状(図3参照)に編んだものを
内層1の上に配置したものである。この場合、ニット構
造、シーサー方式を用いることもできる。
As such a hose, for example, a hose having a structure shown in FIG. 1 can be cited, which has a structure in which a reinforcing layer 3 is provided between an inner layer 1 and an outer layer 2. Here, the reinforcing layer 3
Is the one in which the para-aramid fiber of the formula (1) is knitted into, for example, a spiral shape (see FIG. 2) or a blade shape (see FIG. 3) and is disposed on the inner layer 1. In this case, a knit structure or a shisa system can also be used.

【0013】本発明のホースは、このような構成のホー
スにおいて、内層1を臭素化IB−PMS共重合体で形
成する。この臭素化IB−PMS共重合体は、特開平2
−150408号公報に記載されているように、臭素化
IB−PMS共重合体のPMSの一部が架橋のため臭素
化されているものである。この場合、臭素化の割合は共
重合されたパラメチルスチレンの10〜80%、特に2
0〜70%とすることが好ましい。この割合が10%未
満では架橋効率が悪くなり、また80%を超えると耐熱
性が悪くなる場合がある。
In the hose of the present invention, the inner layer 1 is formed of a brominated IB-PMS copolymer in the hose having such a structure. This brominated IB-PMS copolymer is disclosed in
As described in JP-A-150408, a part of PMS of the brominated IB-PMS copolymer is brominated due to crosslinking. In this case, the proportion of bromination is from 10 to 80% of the copolymerized paramethylstyrene, especially 2%.
It is preferably set to 0 to 70%. If this ratio is less than 10%, the crosslinking efficiency may be poor, and if it exceeds 80%, the heat resistance may be poor.

【0014】また、イソブチレンとパラメチルスチレン
の重量比はパラメチルスチレンが2〜20重量%、特に
5〜10重量%とすることが好ましい。パラメチルスチ
レンの割合が20重量%部を超えるとTg(ガラス転移
点)が高くなり、ゴムの特性が失われる場合があり、ま
た、2重量%未満では架橋効率が悪くなる場合がある。
The weight ratio of isobutylene to paramethylstyrene is preferably 2 to 20% by weight, particularly 5 to 10% by weight of paramethylstyrene. If the proportion of paramethylstyrene exceeds 20% by weight, the Tg (glass transition point) becomes high and the properties of the rubber may be lost. If it is less than 2% by weight, the crosslinking efficiency may deteriorate.

【0015】このような割合で共重合及び臭素化された
IB−PMS共重合体は、ZnO等を用いて容易に架橋
することができる。その加硫物は、主鎖に二重結合を持
たないので耐熱性がよく、またブチルゴムと類似の構造
を持つため、気体や水分等の透過性が低いものである。
The IB-PMS copolymer copolymerized and brominated at such a ratio can be easily crosslinked with ZnO or the like. The vulcanized product has good heat resistance because it does not have a double bond in the main chain, and has a structure similar to that of butyl rubber, and thus has low permeability to gas, water and the like.

【0016】本発明のホースは、内層を上記イソブチレ
ンとパラメチルスチレンとの共重合物でパラメチルスチ
レンの一部を臭素化した共重合体で形成するものである
が、外層は同様のイソブチレンとパラメチルスチレンと
の共重合物でパラメチルスチレンの一部を臭素化した共
重合体又は他のゴムで形成する。内層1のみを臭素化I
B−PMS共重合体で形成する場合、外層2を形成する
ゴムとしては、NBR(アクリロニトリルブタジエンゴ
ム)、EPDM(エチレン・プロピレン・ジエン3元共
重合体)、IIR(ブチルゴム)、CR(クロロプレン
ゴム)、Cl−IIR(塩素化ブチルゴム)、CSM
(クロロスルホン化ポリエチレン)、ACM(アクリル
ゴム)、AEM(エチレンアクリルゴム)等のゴム及び
これらを2種以上ブレンドしたゴムを用いることができ
る。
In the hose of the present invention, the inner layer is formed of a copolymer obtained by brominated part of paramethylstyrene with the above-mentioned copolymer of isobutylene and paramethylstyrene, but the outer layer is formed with the same isobutylene. It is a copolymer with para-methyl styrene and is formed of a copolymer or other rubber in which a part of para-methyl styrene is brominated. Bromination of only inner layer 1
When it is formed of a B-PMS copolymer, the rubber forming the outer layer 2 includes NBR (acrylonitrile butadiene rubber), EPDM (ethylene / propylene / diene terpolymer), IIR (butyl rubber), CR (chloroprene rubber). ), Cl-IIR (chlorinated butyl rubber), CSM
(Chlorosulfonated polyethylene), ACM (acrylic rubber), AEM (ethylene acrylic rubber) and other rubbers, and rubbers obtained by blending two or more of these may be used.

【0017】なお、内層1の厚さは1〜4mm、特に
1.5〜3.5mmとすることが好ましい。また、外層
の厚さは1〜4mm、特に1.5〜3.5mmとするこ
とが好ましい。
The inner layer 1 preferably has a thickness of 1 to 4 mm, particularly 1.5 to 3.5 mm. The outer layer preferably has a thickness of 1 to 4 mm, particularly 1.5 to 3.5 mm.

【0018】本発明のホースは、更に上記内層と外層と
の間にパラ系アラミド繊維からなる補強層を設けたもの
である。この補強層としては高温下での耐水劣化性が求
められるが、一般的に用いられるPET、ナイロンはこ
の高温下での耐水劣化性が悪い。このような耐水劣化性
の点から、高温下での耐水劣化性に優れた下記式(1)
で表されるパラ系アラミド繊維を用いるようにしたもの
であり、上述したようにスパイラル構造又はブレード構
造に編むことにより、補強層を形成することが好ましい
が、ニット構造、シーサー方式を用いることもできる。
The hose of the present invention further comprises a reinforcing layer made of para-aramid fiber between the inner layer and the outer layer. The reinforcing layer is required to have resistance to water deterioration at high temperatures, but generally used PET and nylon have poor resistance to water deterioration at high temperatures. From such a point of water deterioration resistance, the following formula (1) excellent in water resistance deterioration at high temperature is given.
It is intended to use a para-aramid fiber represented by, by knitting into a spiral structure or a blade structure as described above, it is preferable to form a reinforcing layer, but it is also possible to use a knit structure, a shisa method. it can.

【0019】[0019]

【化4】 [Chemical 4]

【0020】[0020]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0021】[実施例1、比較例1〜3]表1に示す配
合のゴムについて以下の方法で耐熱老化性試験及び冷却
水透過性試験を行った。
[Example 1, Comparative Examples 1 to 3] The rubbers having the compositions shown in Table 1 were subjected to a heat aging test and a cooling water permeability test by the following methods.

【0022】[0022]

【表1】 *1:XP−50(IB:95重量%,PMS:5重量
%(臭素化PMS:36重量%)、エクソン社製) *2:EP33(日本合成ゴム社製) *3:EP11( 同 上 ) *4:Butyl 268( 同 上 )
[Table 1] * 1: XP-50 (IB: 95% by weight, PMS: 5% by weight (brominated PMS: 36% by weight), manufactured by Exxon) * 2: EP33 (manufactured by Nippon Synthetic Rubber Co., Ltd.) * 3: EP11 (same as above) ) * 4: Butyl 268 (same as above)

【0023】耐熱老化性試験 JIS−K6301(加硫ゴム物理試験)に準拠し、1
50℃の空気中にゴムを放置して空気熱老化後の破断伸
びを測定した。冷却水透過性試験 図4に示したように、アルミニウム製カップ4に冷却水
(LLC/水=50/50)5を入れ、厚さ0.5mm
のゴムシート6をカップ4の開口部7に被せ、更にシー
ト6の上に補強用の金網8を配して、カップ4、シート
6、金網8をボルト9で固定し、これを100℃のオー
ブンに入れ、所定時間経過後、加熱による冷却水の減量
を測定し、この減量を開口部7の面積で除した値を透過
量とした。
Heat aging resistance test According to JIS-K6301 (vulcanized rubber physical test), 1
The rubber was allowed to stand in air at 50 ° C. and the elongation at break after air heat aging was measured. Cooling Water Permeability Test As shown in FIG. 4, cooling water (LLC / water = 50/50) 5 was put into an aluminum cup 4 to have a thickness of 0.5 mm.
The rubber sheet 6 is covered on the opening 7 of the cup 4, and the reinforcing wire mesh 8 is arranged on the sheet 6, and the cup 4, the sheet 6 and the wire mesh 8 are fixed with bolts 9, After passing through the oven for a predetermined time, the reduction amount of the cooling water due to heating was measured, and the value obtained by dividing this reduction amount by the area of the opening 7 was taken as the permeation amount.

【0024】以上の結果を図5,6に示すが、図5に示
した結果から、実施例1及び比較例2のゴムは耐熱性に
優れ、比較例1,3のゴムは耐熱性に劣ることがわか
る。
The above results are shown in FIGS. 5 and 6. From the results shown in FIG. 5, the rubbers of Example 1 and Comparative Example 2 are excellent in heat resistance, and the rubbers of Comparative Examples 1 and 3 are inferior in heat resistance. I understand.

【0025】また、図6に示した結果から、実施例1及
び比較例3のゴムは耐冷却水透過性が良好であり、比較
例1,2のゴムは耐冷却透過性が劣ることがわかる。
From the results shown in FIG. 6, it is understood that the rubbers of Example 1 and Comparative Example 3 have good resistance to cooling water, and the rubbers of Comparative Examples 1 and 2 have poor resistance to cooling permeation. .

【0026】従って、以上の結果より、臭素化IB−P
MS共重合体を使用することにより、耐熱老化性と耐冷
却水透過性をいずれも具備するホースが得られることが
認められる。
Therefore, from the above results, brominated IB-P
It is recognized that by using the MS copolymer, a hose having both heat aging resistance and cooling water permeation resistance can be obtained.

【0027】[実施例2、比較例4,5]表2に示す補
強糸(1500デニール)について以下の方法で水中老
化性試験を行った。結果を図7に示す。なお、図7にお
いてEは実施例2、Fは比較例4、Gは比較例5の補強
糸の試験結果を示す。
[Example 2, Comparative Examples 4 and 5] The reinforcing yarn (1500 denier) shown in Table 2 was subjected to an underwater aging test by the following method. The results are shown in Fig. 7. In addition, in FIG. 7, E shows the test result of the reinforcing yarn of Example 2, F shows the comparative example 4, and G shows the test result of the reinforcing yarn.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【化5】 [Chemical 5]

【0030】水中老化性試験 表2に示す補強糸それぞれを表1に示す実施例1のゴム
中に埋め込み、加硫後、長さ方向に沿って補強糸を含む
リボン状(厚さ1.5mm、幅4mm)に切り出してサ
ンプルとした。このサンプルを冷却水(LLC/水=5
0/50)と共に円筒形の耐圧容器の中に封入し、所定
時間経過後、取り出し、リボン状のままで引張り強力を
測定し、この測定値を冷却水に浸漬する前のサンプルの
引張り強力で除した値を強力保持力とした。なお、補強
糸の伸びはゴムの伸びと比べるとはるかに小さいのでゴ
ムの寄与分は無視することができる。
Underwater Aging Test Each of the reinforcing yarns shown in Table 2 was embedded in the rubber of Example 1 shown in Table 1 and, after vulcanization, a ribbon shape (thickness: 1.5 mm) containing the reinforcing yarns along the length direction. , Width 4 mm) was cut out to obtain a sample. This sample was cooled with cooling water (LLC / water = 5
(0/50) and sealed in a cylindrical pressure-resistant container, taken out after a lapse of a predetermined time, and measured for tensile strength in a ribbon shape, and the measured value was measured for tensile strength of the sample before being immersed in cooling water. The value obtained by dividing was taken as the strong holding power. Since the elongation of the reinforcing yarn is much smaller than that of rubber, the contribution of rubber can be ignored.

【0031】図7に示した結果から、比較例5の補強糸
は引張り強力の低下が大きく、実施例2の補強糸は特に
良好な特性を有することがわかる。
From the results shown in FIG. 7, it can be seen that the reinforcing yarn of Comparative Example 5 has a large decrease in tensile strength, and the reinforcing yarn of Example 2 has particularly good characteristics.

【0032】[実施例3、比較例6〜8]表3に示すゴ
ム及び補強糸を用いてゴムホースを作製した。まず、内
層1を形成するためのゴムを押し出し、その上に補強糸
を図2に示すようなスパイラル状に編んで補強層3を形
成し、更にその上に内層1の形成に用いたのと同様のゴ
ムを押し出し、外層2を形成した。
[Example 3 and Comparative Examples 6 to 8] A rubber hose was produced using the rubber and the reinforcing yarn shown in Table 3. First, a rubber for forming the inner layer 1 was extruded, and a reinforcing yarn was knitted on the rubber in a spiral shape as shown in FIG. 2 to form a reinforcing layer 3, and the reinforcing layer 3 was further used for forming the inner layer 1. The same rubber was extruded to form the outer layer 2.

【0033】次いで、この一体化物をマンドレルに挿入
し、形状を整えて加硫した。このホースの内径は21m
m、外径は30mmであった。
Next, the integrated product was inserted into a mandrel, and the shape was adjusted and vulcanized. The inner diameter of this hose is 21m
m and the outer diameter was 30 mm.

【0034】上記各例で製造したホースについて、性能
確認試験を以下の方法で行った。結果を表3に併記す
る。耐熱老化性試験 150℃の空気中に500時間及び1000時間ホース
を放置して熱老化させた後、常温まで冷却し、ホースを
屈曲させることにより寿命を判定した。ホースからの冷却水の透過量 100℃に500時間及び1000時間ホースを放置し
た後の冷却水の透過量を測定した。測定値は実施例のホ
ースを100℃に500時間放置した後の透過量を10
0としたときの指数で表した。
A performance confirmation test was conducted on the hoses manufactured in the above examples by the following method. The results are also shown in Table 3. Heat aging resistance test After the hose was left in the air at 150 ° C. for 500 hours and 1000 hours for heat aging, the hose was cooled to room temperature, and the hose was bent to determine the life. Permeation amount of cooling water from hose The permeation amount of cooling water was measured after the hose was left at 100 ° C. for 500 hours and 1000 hours. The measured value is 10% after the hose of the example is left at 100 ° C. for 500 hours.
It is represented by an index when 0 is set.

【0035】[0035]

【表3】 [Table 3]

【0036】耐熱老化試験の結果、実施例3及び比較例
7は異常なかったが、比較例6及び比較例8は500時
間放置後の屈曲でホース外表面及び内面に割れが生じ
た。また、冷却水の透過については、比較例6及び7は
約5倍の透過量を示し、比較例8は実施例とほぼ同じ水
準にあった。
As a result of the heat aging test, there was no abnormality in Example 3 and Comparative Example 7, but in Comparative Example 6 and Comparative Example 8, the outer surface and the inner surface of the hose were cracked by bending after left for 500 hours. Regarding the permeation of cooling water, Comparative Examples 6 and 7 showed about 5 times the permeation amount, and Comparative Example 8 was at almost the same level as the Example.

【0037】以上の結果から、耐熱性に優れる比較例7
のホースは冷却水の透過量が多く、また冷却水の透過量
が少ない比較例8のホースは耐熱性に劣り、耐熱老化性
及び冷却水の低透過性の両者を同時に具備させるという
点では実施例3のみが両方の要件を満足しており、この
ことは表1の実施例1に示したゴムと上記式(1)で示
すパラ系アラミド繊維からなる補強糸とを組み合わせて
用いたことによって得られた結果であることがわかる。
From the above results, Comparative Example 7 having excellent heat resistance
The hose of Comparative Example 8 has a large amount of cooling water permeation and a small amount of cooling water permeation. The hose of Comparative Example 8 is inferior in heat resistance, and is implemented in terms of simultaneously having both heat aging resistance and low cooling water permeability. Only Example 3 satisfies both requirements, which is due to the combination of the rubber shown in Example 1 of Table 1 and the reinforcing yarn made of para-aramid fiber represented by the above formula (1). It can be seen that the results are obtained.

【0038】なお、上記実施例3のホース、このホース
において補強層のみを従来のホースと同様のPETに代
えたホースそれぞれについて、ホース中に冷却水(LL
C/水=50/50)を封入し、150℃で200時間
熱処理した後、耐圧性を測定するホースの耐熱水老化性
試験を行った結果、前者は50kg/cm2で破裂し、
後者は昇圧途中で破裂(20kg/cm2以下)した。
Regarding the hose of Example 3 and each hose in which only the reinforcing layer in this hose was replaced with PET similar to the conventional hose, cooling water (LL) was introduced into the hose.
(C / water = 50/50) was enclosed, and after heat treatment at 150 ° C. for 200 hours, a heat resistant water aging test of a hose for measuring pressure resistance was performed. As a result, the former burst at 50 kg / cm 2 ,
The latter burst during pressure increase (20 kg / cm 2 or less).

【0039】[0039]

【発明の効果】本発明によれば、イソブチレンとパラメ
チルスチレンとの共重合物でパラメチルスチレンの一部
を臭素化した共重合体を内層又は内層と外層とに用い、
かつパラ系アラミド繊維補強層を内外層間に介在させた
ことにより、冷却水の透過が小さく、かつ冷却水封入熱
老化においても十分な耐圧性を保持するホースを得るこ
とができる。
According to the present invention, a copolymer of isobutylene and paramethylstyrene in which a part of paramethylstyrene is brominated is used for the inner layer or the inner and outer layers,
In addition, by interposing the para-aramid fiber reinforcing layer between the inner and outer layers, it is possible to obtain a hose that has a low permeation of cooling water and has sufficient pressure resistance even in heat aging filled with cooling water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐熱ウォーターホースの一例を示す断
面図である。
FIG. 1 is a cross-sectional view showing an example of a heat resistant water hose of the present invention.

【図2】本発明のホースにおける補強層の形状の一例を
示す図である。
FIG. 2 is a diagram showing an example of the shape of a reinforcing layer in the hose of the present invention.

【図3】本発明のホースのおける補強層の形状の他の例
を示す図である。
FIG. 3 is a diagram showing another example of the shape of the reinforcing layer in the hose of the present invention.

【図4】本発明の実施例及び比較例で用いたゴムの冷却
水透過性試験方法を説明する概略図である。
FIG. 4 is a schematic diagram illustrating a cooling water permeability test method for rubber used in Examples and Comparative Examples of the present invention.

【図5】本発明の実施例及び比較例のゴムの耐熱老化性
試験の結果を示すグラフである。
FIG. 5 is a graph showing the results of a heat aging resistance test of rubbers of Examples of the present invention and Comparative Examples.

【図6】本発明の実施例及び比較例のゴムの冷却水透過
性試験の結果を示すグラフである。
FIG. 6 is a graph showing the results of a cooling water permeability test of rubbers of Examples of the present invention and Comparative Examples.

【図7】本発明の実施例及び比較例の補強糸の水中老化
性試験の結果を示すグラフである。
FIG. 7 is a graph showing the results of an underwater aging test of the reinforcing yarns of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 内層 2 外層 3 補強層 1 Inner layer 2 Outer layer 3 Reinforcing layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内層と外層とで構成される耐熱性ウォー
ターホースにおいて、前記内層又は内層と外層とをそれ
ぞれイソブチレンとパラメチルスチレンとの共重合物で
パラメチルスチレンの一部を臭素化した共重合体を形成
し、前記内層と外層との間に下記式(1)で表されるパ
ラ系アラミド繊維からなる補強層を設けたことを特徴と
する耐熱性ウォーターホース。 【化1】
1. A heat-resistant water hose comprising an inner layer and an outer layer, wherein the inner layer or the inner layer and the outer layer are copolymerized with isobutylene and paramethylstyrene, respectively, and a part of paramethylstyrene is brominated. A heat resistant water hose comprising a polymer and a reinforcing layer made of a para-aramid fiber represented by the following formula (1) provided between the inner layer and the outer layer. [Chemical 1]
JP5054832A 1992-04-27 1993-02-19 Heat-resistant water hose Pending JPH068376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054832A JPH068376A (en) 1992-04-27 1993-02-19 Heat-resistant water hose

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13420192 1992-04-27
JP4-134201 1992-04-27
JP5054832A JPH068376A (en) 1992-04-27 1993-02-19 Heat-resistant water hose

Publications (1)

Publication Number Publication Date
JPH068376A true JPH068376A (en) 1994-01-18

Family

ID=26395646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054832A Pending JPH068376A (en) 1992-04-27 1993-02-19 Heat-resistant water hose

Country Status (1)

Country Link
JP (1) JPH068376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641965A1 (en) * 1993-09-07 1995-03-08 Phoenix Aktiengesellschaft Hollow, tubular element, especially a steam resistant hose, a compensator, and an air spring
JP2000104866A (en) * 1998-04-14 2000-04-11 Yokohama Rubber Co Ltd:The Rubber composition for hose, hose and manufacture of hose for transporting refrigerant
WO2008039373A1 (en) * 2006-09-26 2008-04-03 The Gates Corporation Fluid transfer hose reinforced with hybrid yarn
JP2014201044A (en) * 2013-04-09 2014-10-27 三菱瓦斯化学株式会社 Multilayer structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641965A1 (en) * 1993-09-07 1995-03-08 Phoenix Aktiengesellschaft Hollow, tubular element, especially a steam resistant hose, a compensator, and an air spring
JP2000104866A (en) * 1998-04-14 2000-04-11 Yokohama Rubber Co Ltd:The Rubber composition for hose, hose and manufacture of hose for transporting refrigerant
WO2008039373A1 (en) * 2006-09-26 2008-04-03 The Gates Corporation Fluid transfer hose reinforced with hybrid yarn
US7572745B2 (en) 2006-09-26 2009-08-11 The Gates Corporation Fluid transfer hose reinforced with hybrid yarn
JP2010505077A (en) * 2006-09-26 2010-02-18 ザ ゲイツ コーポレイション Fluid transfer hose reinforced with hybrid yarn
KR101029279B1 (en) * 2006-09-26 2011-04-18 더 게이츠 코포레이션 Fluid transfer hose reinforced with hybrid yarn
JP4912468B2 (en) * 2006-09-26 2012-04-11 ザ ゲイツ コーポレイション Fluid transfer hose reinforced with hybrid yarn
JP2014201044A (en) * 2013-04-09 2014-10-27 三菱瓦斯化学株式会社 Multilayer structure

Similar Documents

Publication Publication Date Title
US7004201B2 (en) Vibration absorbing hose
EP2066947B1 (en) Fluid transfer hose reinforced with hybrid yarn
US4984604A (en) Rubber hose
US5488974A (en) Process for manufacturing composite flexible hose
KR940003187B1 (en) Hose structure and manufacture thereof
AU705231B2 (en) Refrigerant conveying hose
CN106917921A (en) Hose for transportation of refrigerant
EP1477298B1 (en) Fiber reinforced hose
JP2019178776A (en) Helical tooth belt and belt transmission gear
JP4732720B2 (en) Refrigerant transport hose
US6983769B2 (en) Vibration absorbing hose
JPH068376A (en) Heat-resistant water hose
JP2007055219A (en) Oil cooler hose
US6854485B2 (en) Vibration absorbing hose
JPH04334446A (en) Refrigerant transporting hose
EP1559538A1 (en) Heat resistant air hose
JP2017227264A (en) Rubber composition for refrigerant transport hose and refrigerant transport hose
US20090130358A1 (en) Water hose and composition for hose
JP2001235068A (en) Low-permeability hose and method of manufacturing the same
KR101406163B1 (en) Aramid hybrid yarn and hoss reinfoced with it
US6386239B1 (en) Transmission hose for a vehicle
JPH08127081A (en) High pressure hose for cooling medium
JP3208921B2 (en) Hose for transporting refrigerant
US20160193803A1 (en) Selective catalytic reduction hose
JP3262826B2 (en) Manufacturing method of yarn spiral hose