JPH0682303A - Radiometer with calibrating apparatus - Google Patents

Radiometer with calibrating apparatus

Info

Publication number
JPH0682303A
JPH0682303A JP4055856A JP5585692A JPH0682303A JP H0682303 A JPH0682303 A JP H0682303A JP 4055856 A JP4055856 A JP 4055856A JP 5585692 A JP5585692 A JP 5585692A JP H0682303 A JPH0682303 A JP H0682303A
Authority
JP
Japan
Prior art keywords
light
light receiving
optical
radiometer
receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4055856A
Other languages
Japanese (ja)
Other versions
JP2855945B2 (en
Inventor
Kazuhiro Ogikubo
一宏 荻窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4055856A priority Critical patent/JP2855945B2/en
Publication of JPH0682303A publication Critical patent/JPH0682303A/en
Application granted granted Critical
Publication of JP2855945B2 publication Critical patent/JP2855945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide sensitivity characteristics, namely sensitivity deviation, of a plurality of photodetectors, by moving in the direction of the optical axis in an optical system, a light-receptor in which the photodetectors are juxtaposed. CONSTITUTION:An optical system 11 converges reflected rays of an observation object by a plane mirror 12 into a light-receptor 13, and a plurality of photodetectors within the receptor 13 output voltages proportioned to the intensity of light. On this, the receptor 13 is driven by a photodetector driver 55 and moved between the position 13b of the focal point of the system 11 and the position 13a shifted in the direction of the optical axis. In an observation mode, the receptor 13 is located in the position 13b of the system 11, and a focused image of the observation object is formed. In a calibration mode, on the other hand, the receptor 13 is shifted from the position 13b to the position 13a. An optical image inputted to the receptor 13 is fuzzy and extends over the whole surface in the case where the observation object for example is the sea, etc., small in irregularity of reflection characteristics, and the incident rays of photodetectors become almost uniform. Consequently, the parameters other than photodetector sensitivity in a specific equation of output computation of a radiometer can be used in common to each photodetector, and output data, namely sensitivity deviation data, corresponding to the sensitivity of each picture element of the light- receptor 13 are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放射計に関し、特に校正
装置を伴うと共に、観測対象からの赤外線または可視光
線の輻射波もしくは反射波を観測する校正装置付放射計
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiometer, and more particularly to a radiometer with a calibration device for observing a radiation wave or a reflected wave of infrared rays or visible rays from an object to be observed, along with a calibration device.

【0002】[0002]

【従来の技術】航空機または人工衛星に搭載される放射
計は、ジェイ・エム・メゾヌーブとエム・デンギラール
(J.M.Maisonnuve とM.Dinguirard) により第14回国際
写真測量協会々議(14th CONGRESS OF THE INTERNATIONA
L SOCIETY FOR PHOTOGRAMMETERY)に発表されたエスピー
オーテー インフライト キャリブレーション(SPOT IN
-FLIGHT CALIBATION) 、ジェイ・ピー・ミダン(J.P.Mid
an) により第34回国際宇宙飛行連合会議(34th CONGRE
SS OF THE INTERNATIONAL ASTRONAUTICAL FEDERATION19
83) に発表されたザ・エスピーオーテー・ハイ・リゾリ
ューション・ビデオ・インストルメント・アン・オーバ
ービュー・オブ・デザイン・アンド・パフォーマンス(T
HE SPOT-HRV [High Resolution Video ]INSTRUMENT:A
N OVERVIEWOF DESIGN AND PERFORMANCE) 等にその内容
が開示されている。これらの内容を要約するとおおむね
以下に述べる通りである。
2. Description of the Related Art Radiometers installed on aircraft or satellites are JM Mesonouve and M Denguillar.
(14th CONGRESS OF THE INTERNATIONA by JM Maisonnuve and M. Dinguirard)
L SOCIETY FOR PHOTOGRAM METERY) SPOT IN Flight Calibration (SPOT IN
-FLIGHT CALIBATION), JP Midan (JPMid
an) to the 34th International Conference on Spaceflight (34th CONGRE
SS OF THE INTERNATIONAL ASTRONAUTICAL FEDERATION19
83) The SPOTE High Resolution Video Instrument Ann Overview of Design and Performance (T
HE SPOT-HRV [High Resolution Video] INSTRUMENT: A
N OVERVIEWOF DESIGN AND PERFORMANCE) etc. The contents are summarized below.

【0003】図5において、矢印Aにて示された方向に
存在する観測対象物から発せられた赤外線または可視光
線は、回転可能な平面鏡12(実線で示される状態)に
より集束される光学系11に導かれるように反射し、こ
の赤外線または可視光線は、光学系11で集束された
後、光学系11の焦点位置に配置した受光器13に入射
する。そして、受光器13は入射した光の強度を電気信
号に変換し、これを電気系17に与えて信号処理する。
In FIG. 5, infrared rays or visible rays emitted from an observation object existing in a direction indicated by an arrow A are focused by a rotatable flat mirror 12 (state shown by a solid line) to form an optical system 11. The infrared ray or visible ray is focused by the optical system 11 and then enters the light receiver 13 arranged at the focal position of the optical system 11. Then, the light receiver 13 converts the intensity of the incident light into an electric signal and supplies the electric signal to the electric system 17 for signal processing.

【0004】一方、主として入射光線の集束を行う光学
系11の透過特性、平面鏡12の反射特性、受光素子1
3の感度変動特性(複数素子の場合は感度偏差を含む)
並びに電気系特性等を校正するために、平面鏡12が回
転できるようになっている。即ち、平面鏡12が図面の
中で破線で示されるように校正用ランプ14及びレンズ
15に向かう方向に回転させられて、平面鏡12Aの位
置に固定されると、観測対象からの光と同一経路に基準
光源としてのランプ14からの可視光線または赤外線が
入射する。さらに基準となるランプの光量を、ランプ近
くに置いた光センサ16によりモニタすることにより、
放射計の校正を行う。
On the other hand, the transmission characteristics of the optical system 11 which mainly focuses the incident light rays, the reflection characteristics of the plane mirror 12, and the light receiving element 1
Sensitivity fluctuation characteristics of 3 (including sensitivity deviation in case of multiple elements)
In addition, the plane mirror 12 can be rotated in order to calibrate the electrical system characteristics and the like. That is, when the plane mirror 12 is rotated in the direction toward the calibration lamp 14 and the lens 15 and fixed at the position of the plane mirror 12A as shown by the broken line in the drawing, the light from the observation target is in the same path. Visible rays or infrared rays from the lamp 14 as a reference light source are incident. Further, by monitoring the light amount of the reference lamp by the optical sensor 16 placed near the lamp,
Calibrate the radiometer.

【0005】図6は、この基準光源として太陽光を使用
した従来の技術の一例を示す説明図である。この場合に
おいては、太陽光プリズム21を回転させ、観測対象か
らの光と同一経路に太陽からの可視光線または赤外線を
標準光源として入射させる。
FIG. 6 is an explanatory view showing an example of a conventional technique using sunlight as the reference light source. In this case, the sunlight prism 21 is rotated so that visible light or infrared rays from the sun are incident on the same path as the light from the observation target as a standard light source.

【0006】さらに図7は基準光源に地上の物体の反射
光を用いた場合の従来の放射計の一例を示す説明図であ
る。放射計は矢印Cで示す方向に移動しつつ観測対象の
画像を取得している。観測対象物のうち、受光アレイ3
3の投影である走査ライン38に位置する領域から発せ
られた赤外線または可視光線の反射光は平面鏡12によ
り光学系11に向けて反射し、光学系11により光学系
11の焦点位置に配置された複数個の受光素子を並べた
受光アレイを収容した受光器13に集光されている。従
って、受光素子への分割数に応じて走査線32が分割さ
れ、その分割されたエリアに対応したデータが受光器1
3の受光アレイの分割された受光素子から得られる。
Further, FIG. 7 is an explanatory diagram showing an example of a conventional radiometer when the reflected light of an object on the ground is used as the reference light source. The radiometer acquires the image of the observation target while moving in the direction indicated by arrow C. Light receiving array 3 among observation objects
The reflected light of infrared rays or visible rays emitted from the area located on the scanning line 38, which is the projection of 3, is reflected by the plane mirror 12 toward the optical system 11, and is arranged at the focal position of the optical system 11 by the optical system 11. The light is collected by a light receiver 13 that houses a light receiving array in which a plurality of light receiving elements are arranged. Therefore, the scanning line 32 is divided according to the number of divisions into the light receiving elements, and the data corresponding to the divided areas is received by the light receiver 1.
It is obtained from the divided light receiving elements of the three light receiving arrays.

【0007】この場合、地上の基準光源として例えば幅
60〜100kmにわたる観測視野範囲34内に輝度分
布が一様なターゲットを設定し、放射計でターゲット3
9の観測を行う。また、同時に校正された測定器によ
り、地上または低高度の上空からターゲット39の輝度
を測定し、さらに大気による散乱、吸収の補正を行うこ
とにより、放射計の校正を行っていた。そして、受光ア
レイ33は光強度を電気信号に変換し、これを電気系に
与えて信号処理をする。
In this case, as the ground-based reference light source, for example, a target having a uniform luminance distribution is set within the observation visual field range 34 having a width of 60 to 100 km, and the target 3 is measured by the radiometer.
Make 9 observations. Further, the radiometer is calibrated by measuring the brightness of the target 39 from the ground or a low altitude sky with a calibrated measuring instrument and correcting the scattering and absorption by the atmosphere. Then, the light receiving array 33 converts the light intensity into an electric signal and supplies it to the electric system for signal processing.

【0008】[0008]

【発明が解決しようとする課題】上述した従来の技術に
よる放射計(例えばランプを基準光源とする従来の方
式)は、校正用レンズを含む基準光学系に寸法・重量等
の制約があり、平面鏡及び光学系レンズの一部の範囲し
か校正のための校正光を入射させることができない。従
って平面鏡または光学系レンズの一部の反射または透過
特性が変化しても放射計感度の変化として検出できない
という欠点がある。
In the radiometer according to the above-mentioned conventional technique (for example, a conventional system using a lamp as a reference light source), the reference optical system including the calibration lens has restrictions such as size and weight. Also, the calibration light for calibration can be incident only on a part of the range of the optical system lens. Therefore, even if the reflection or transmission characteristics of a part of the plane mirror or the optical system lens is changed, it cannot be detected as a change in radiometer sensitivity.

【0009】また、太陽を基準光源とする従来の方法で
は、ランプを基準光源とする方式と同じ理由により、平
面鏡および光学系レンズの一部の範囲しか校正のための
光を入射させることができず、従って、平面鏡または光
学系レンズの一部の特性変化を検出できない可能性があ
る。また、太陽の見かけの角度が小さい(視直径が0.
5度程度)ことから、受光素子にリニアアレイセンサ等
を使用した視野の広い放射計の場合、全受光素子の素子
ごとの感度変動すなわち感度偏差の取得ができないとい
う欠点がある。
Further, in the conventional method using the sun as the reference light source, for the same reason as the method using the lamp as the reference light source, the light for calibration can be incident only on a partial range of the plane mirror and the optical system lens. Therefore, it may not be possible to detect a change in the characteristics of a part of the plane mirror or the optical system lens. Also, the apparent angle of the sun is small (visual diameter is 0.
Therefore, in the case of a radiometer having a wide field of view using a linear array sensor or the like as a light receiving element, there is a drawback in that it is not possible to obtain sensitivity variation, that is, sensitivity deviation, for each element of all the light receiving elements.

【0010】次に、地上の物体を基準光源とした方式で
は、基準光源からの入射光が、平面鏡および光学系レン
ズの全範囲に入射されることから、この平面鏡または光
学系レンズの一部の反射または透過特性が変化しても、
放射計感度の変化として検出できる。しかしながら、自
然の観測対象では輝度の均一な地域の数・広さに限りが
あり、校正頻度が限定される。また、地上にターゲット
を置く場合もその大きさに限界があるため、視野の広い
放射計の全受光素子の感度変動すなわち感度偏差の取得
ができないという欠点がある。
Next, in a system in which an object on the ground is used as a reference light source, the incident light from the reference light source is incident on the entire range of the plane mirror and the optical system lens. Even if the reflection or transmission characteristics change,
It can be detected as a change in radiometer sensitivity. However, natural observation targets have a limited number and size of areas with uniform brightness, and the frequency of calibration is limited. In addition, since there is a limit to the size of the target placed on the ground, there is a drawback in that it is not possible to obtain sensitivity variations of all light receiving elements of a radiometer with a wide field of view, that is, sensitivity deviations.

【0011】従って本発明の目的は、平面鏡または光学
系レンズの一部の反射または透過特性が変化しても放射
計の感度変化として検出でき、また視野の広い放射計に
おいても、全受光素子の感度変動すなわち感度偏差の取
得ができる校正装置付きで放射計を提供することにあ
る。
Therefore, it is an object of the present invention to detect a change in the reflection or transmission characteristics of a part of a plane mirror or an optical system lens as a change in the sensitivity of the radiometer, and even in a radiometer with a wide field of view, all of the light receiving elements can be detected. An object of the present invention is to provide a radiometer with a calibration device capable of acquiring sensitivity fluctuations, that is, sensitivity deviations.

【0012】[0012]

【課題を解決するための手段】本発明の第1の発明は、
少なくとも航空機又は人工衛星の飛行体に搭載され陸域
または海域からの可視光線又は赤外線の反射光又は輻射
光を観測する放射計において、前記可視光線又は赤外線
の入射を受けて収束する光学的手段と、前記光学的手段
により収束された光が入射する受光手段と、前記光学的
手段の光軸方向に受光手段を移動させる第1の手段と、
前記光学的手段の焦点が前記受光手段の受光面からずれ
ている状態で校正用の基準値対応の校正記号を発生する
校正信号発生手段とを備えて構成される。
The first invention of the present invention is as follows:
At least a radiometer mounted on an aircraft or a satellite flight vehicle for observing reflected light or radiant light of visible light or infrared light from a land area or sea area, and optical means for converging upon receiving the incident visible light or infrared light A light receiving means on which the light converged by the optical means is incident, and a first means for moving the light receiving means in the optical axis direction of the optical means,
Calibration signal generating means for generating a calibration symbol corresponding to a reference value for calibration while the focus of the optical means is deviated from the light receiving surface of the light receiving means.

【0013】本発明の第2の発明は、少なくとも航空機
又は人工衛星の飛行体に搭載され、陸域または海域から
の可視光線又は赤外線の反射光又は輻射光を観測する放
射計において、前記可視光線又は赤外線を入射を受けて
収束する光学的手段と、前記光学的手段により収束され
た光が入射する受光手段と、前記光学的手段から前記受
光手段までの光学的距離を変化させる第2の手段と、前
記光学的手段の焦点が前記受光手段の受光面からずれて
いる状態で校正用の基準値対応の校正信号を発生する校
正信号発生手段とを備えて構成される。
A second invention of the present invention is a radiometer which is mounted on at least a flying body of an aircraft or an artificial satellite and observes visible light or infrared reflected light or radiant light from a land area or a sea area. Alternatively, optical means for receiving and converging infrared light, light receiving means for receiving the light converged by the optical means, and second means for changing the optical distance from the optical means to the light receiving means And a calibration signal generating means for generating a calibration signal corresponding to a reference value for calibration while the focus of the optical means is deviated from the light receiving surface of the light receiving means.

【0014】[0014]

【実施例】まず、本発明の概要について説明する。First, the outline of the present invention will be described.

【0015】本発明は、航空機または人工衛星などの飛
行体に搭載され、陸域または海域からの可視光線もしく
は赤外線の輻射光・反射光を観測する放射計であって、
可視光線または赤外線を入射して収束する光学的手段
と、これにより収束された光が入射する受光素子と、こ
の受光素子と前述の光学的手段との光学的距離を可変す
る手段と、上述の光学的手段の焦点が受光素子の受光面
からずれている状態で校正用データ基準入力レベルを発
生する手段を有している。
The present invention is a radiometer mounted on a flying body such as an aircraft or an artificial satellite, for observing radiated / reflected light of visible light or infrared light from land or sea.
Optical means for entering and converging visible light or infrared rays, a light receiving element for receiving the light converged thereby, means for varying the optical distance between the light receiving element and the above-mentioned optical means, It has means for generating the calibration data reference input level in a state where the focus of the optical means is deviated from the light receiving surface of the light receiving element.

【0016】さらに好ましくは、この受光素子と光学的
手段との光学的距離を可変する方法として、光路に挿入
したクサビ状とガラスまたは電歪素子をアクチュエータ
として受光素子と連結して受光素子の位置を光軸方向に
移動せしめる方法を採用した校正装置付放射計を提供す
るものである。
More preferably, as a method of varying the optical distance between the light receiving element and the optical means, the wedge-shaped and glass or electrostrictive element inserted in the optical path is connected as an actuator to the light receiving element to position the light receiving element. The present invention provides a radiometer with a calibration device that employs a method of moving a laser beam in the optical axis direction.

【0017】かようにして、本発明は、校正用基準入力
レベルデータを発生する場合には、受光素子を光学的手
段の光軸方向へ移動させるか、又は光学的手段から受光
素子までの光学的距離を変化させ、光学的手段の焦点が
受光素子の受光面からずれている状態で、地上の任意の
領域の観測を行う。また、それと同時に前述の領域の輝
度を測定し、大気による散乱、吸収を補正することによ
り、放射計の校正を行う。
Thus, according to the present invention, when the reference input level data for calibration is generated, the light receiving element is moved in the optical axis direction of the optical means, or the optical element to the light receiving element is moved. The target distance is changed, and an arbitrary area on the ground is observed while the focus of the optical means is deviated from the light receiving surface of the light receiving element. At the same time, the radiometer is calibrated by measuring the brightness of the above-mentioned region and correcting the scattering and absorption by the atmosphere.

【0018】このように焦点をずらすことにより、観測
対象に輝度分布がある場合でも、放射計に入射する光
は、均一な光とすることが可能であり、広い視野にわた
って得られた均一な基準光を得ることが可能である。従
って本発明は、平面鏡の反射特性、光学系レンズの透過
特性の変化、全受光素子の感度偏差、電気系特性の変動
等を校正頻度に限定されずに検出することが可能であ
る。
By shifting the focus in this way, the light incident on the radiometer can be made uniform, even if the observation target has a luminance distribution, and a uniform reference obtained over a wide field of view can be obtained. It is possible to get light. Therefore, according to the present invention, it is possible to detect a change in the reflection characteristic of the plane mirror, a change in the transmission characteristic of the optical system lens, a sensitivity deviation of all the light receiving elements, a change in the electric system characteristic, etc. without being limited to the calibration frequency.

【0019】次に図1〜4を参照して本発明の実施例に
ついて具体的に説明する。
Next, an embodiment of the present invention will be specifically described with reference to FIGS.

【0020】図2は本発明の原理を示す説明図である。
これにおいて平面鏡12は光学系11の光軸上に介在
し、図中矢印Aにて示す方向に存在する観測対象44か
らの光を反射して、これを光学系の位置13aにある受
光器13の光軸上に進行させる。光学系11は平面鏡1
2により反射された光を受光器13に集光し、受光器1
3内の受光素子は、集光された光の強さに比例した電圧
を出力する。なお、受光器13は例えば受光素子を整列
させて埋め込まれた2次元センサである。
FIG. 2 is an explanatory view showing the principle of the present invention.
In this, the plane mirror 12 is interposed on the optical axis of the optical system 11, reflects the light from the observation object 44 existing in the direction indicated by the arrow A in the figure, and reflects it to the light receiver 13 at the position 13a of the optical system. On the optical axis of. The optical system 11 is a plane mirror 1.
The light reflected by 2 is focused on the light receiver 13, and the light receiver 1
The light receiving element in 3 outputs a voltage proportional to the intensity of the condensed light. The light receiver 13 is, for example, a two-dimensional sensor in which light receiving elements are aligned and embedded.

【0021】電気系17は受光器13の出力電圧を増幅
して出力する。受光器13は図中破線にて示す光学系1
1の焦点位置13aと、この焦点位置から若干ずれた位
置13bとの間も光学系11の光軸に沿って往復移動す
ることができるように適当な支持手段により支持されて
いる。従って、この受光器13は移動手段により位置1
3aと13bとの間を移動する。
The electric system 17 amplifies and outputs the output voltage of the light receiver 13. The light receiver 13 is an optical system 1 indicated by a broken line in the figure.
It is supported by a suitable supporting means so that it can reciprocate along the optical axis of the optical system 11 between the focal position 13a of 1 and the position 13b slightly deviated from the focal position. Therefore, the light receiver 13 is moved to the position 1 by the moving means.
Move between 3a and 13b.

【0022】図1は本発明の一実施例の構成を示すブロ
ック図の一例であり、受光器13は電気系17の一部で
ある受光素子ドライバ55によって駆動されている。一
方受光器13の出力は増幅器56で増幅され、サンプリ
ング回路58及びAD変換回路59によりデジタル信号
に変換された後、フォーマット回路60により送信変調
信号にフォーマットされ、衛星61の送信部へ出力され
る。 次に、上述の如く構成された放射計の動作につい
て説明する。
FIG. 1 is an example of a block diagram showing a configuration of an embodiment of the present invention. The light receiver 13 is driven by a light receiving element driver 55 which is a part of the electric system 17. On the other hand, the output of the light receiver 13 is amplified by the amplifier 56, converted into a digital signal by the sampling circuit 58 and the AD conversion circuit 59, then formatted by the format circuit 60 into a transmission modulation signal, and output to the transmission section of the satellite 61. . Next, the operation of the radiometer configured as described above will be described.

【0023】通常の観測モードにおいては、受光器13
を光学系11の焦点の位置13aに位置させ、観測対象
物から焦点のあった像を受光器13に入射させる(ただ
し受光器13は受光器の位置13a又は13bのいずれ
か一方と重置するが図1では位置13a・13bは記入
してない)。一方校正モードにおいては、受光器13を
光学系11の光軸方向に移動させて位置13bに位置さ
せる。いま、観測対象が、例えば反射特性のばらつきが
比較的小さい砂漠や海などであれば、光学系11の焦点
の位置が受光器13の受光面と一致していない場合は受
光器13に入力する光の画像がボケて受光器13の全面
にわたるので受光器13に存在する複数個の受光素子に
入力する光は均一に近いものとなる。
In the normal observation mode, the light receiver 13
Is located at the focal position 13a of the optical system 11, and the focused image from the observation object is made incident on the photodetector 13 (however, the photodetector 13 is superposed on one of the photodetector positions 13a or 13b). However, positions 13a and 13b are not shown in FIG. 1). On the other hand, in the calibration mode, the light receiver 13 is moved in the optical axis direction of the optical system 11 to be positioned at the position 13b. Now, if the observation target is, for example, a desert or the sea where the variation of the reflection characteristics is relatively small, if the focus position of the optical system 11 does not match the light receiving surface of the light receiver 13, the light is input to the light receiver 13. Since the image of the light is blurred and covers the entire surface of the light receiver 13, the light input to the plurality of light receiving elements existing in the light receiver 13 becomes almost uniform.

【0024】以下に、数式と図面を用いて説明する。A description will be given below with reference to mathematical formulas and drawings.

【0025】図2で、受光器の位置13aと13bとの
間を移動可能な受光器13の画素ピッチをa、合成レン
ズから成る光学系11の焦点距離をf、同じく有効径を
d、光学系11の主点から受光器13までの距離をh、
光学系11の主点から観測対象41a側の焦点位置まで
の距離をLとする。
In FIG. 2, the pixel pitch of the light receiver 13 which can move between the positions 13a and 13b of the light receiver is a, the focal length of the optical system 11 composed of a compound lens is f, and the effective diameter is d. The distance from the principal point of the system 11 to the light receiver 13 is h,
The distance from the principal point of the optical system 11 to the focus position on the observation target 41a side is L.

【0026】一般に、地表分解能Dは、 D=H・a/f と表現でき、光学系の特性として L=〔(1/f)−(1/h)〕-1 と書ける。ここで、通常の観測では、光学系11の主点
から観測対象41aまでの距離Hは前式の距離Lと等し
くなり、かつ焦点距離fや距離hに比べると距離L,H
は極めて大きいので h=f となる。
Generally, the ground surface resolution D can be expressed as D = H · a / f, and can be written as L = [(1 / f)-(1 / h)] −1 as a characteristic of the optical system. Here, in normal observation, the distance H from the principal point of the optical system 11 to the observation target 41a is equal to the distance L in the above equation, and the distances L and H are greater than the focal length f and the distance h.
Is extremely large, so h = f.

【0027】ここで、光学系11の主点から受光素子の
位置13aまでの距離fをΔhだけずらした受光器の位
置13bに結像する光束は、前式から L=〔(1/f)−{1/(f+Δh)}〕-1 と表わせる。この場合、光学系11が受光素子13bに
結像する光束Ddは、 Dd=d・(H−L)/L で表わすことができる地表41bの直径Ddの範囲から
の光を積分した光量に対応するものとなる。
Here, the light flux which forms an image at the position 13b of the photodetector obtained by shifting the distance f from the principal point of the optical system 11 to the position 13a of the photodetector by Δh is L = [(1 / f) from the above equation. -{1 / (f + Δh)}] -1 . In this case, the luminous flux Dd formed by the optical system 11 on the light receiving element 13b corresponds to the integrated light quantity of the light from the range of the diameter Dd of the ground surface 41b which can be expressed by Dd = d · (HL) / L. It will be done.

【0028】従って、放射計に入射する観測対象域の輝
度のバラツキの影響は、焦点をずらすことにより、 D2 /(π・Dd2 /4)≒4a2 (f+Δh)2 /d
2 /π/(Δh)2 倍にすることができる。
[0028] Thus, the influence of variation in luminance of the observation target region that is incident on the radiometer, by shifting the focus, D 2 / (π · Dd 2/4) ≒ 4a 2 (f + Δh) 2 / d
It can be increased by 2 / π / (Δh) 2 .

【0029】例えば、a=10μm,d=100mm,
f=500mmとすると、Δh=200μmの場合、観
測対象域の輝度バラツキの影響は約1/12、移動距離
が600μmの場合は1/100以下となる。
For example, a = 10 μm, d = 100 mm,
When f = 500 mm, when Δh = 200 μm, the influence of luminance variation in the observation area is about 1/12, and when the moving distance is 600 μm, it is 1/100 or less.

【0030】また、この場合に、受光器13に入射する
光量の絶対値は受光器13の光学系11を見込む角度で
定まるが、移動距離が光学系11の焦点距離に比して十
分小さくすることができることから、受光器13の移動
による光量絶対値の変化は無視可能な値にすることがで
きる。
In this case, the absolute value of the amount of light incident on the light receiver 13 is determined by the angle of the optical system 11 of the light receiver 13, and the moving distance is sufficiently smaller than the focal length of the optical system 11. Therefore, the change in the absolute value of the light amount due to the movement of the light receiver 13 can be set to a negligible value.

【0031】一般、放射計の出力Vは、 V=K〔(Lx・cosθ+Ha)・τ+Na〕・Tm
・To・Rp・G と表わせる。ここに、Lx:観測対象物放射輝度、θ:
太陽天頂角、Ha:天空放射、τ:大気透過率、Na:
光路輝度、Tm:平面鏡反射率、To:光学系透過率、
Rp:受光素子感度、G:電気回路利得、K:定数であ
る。
Generally, the output V of a radiometer is: V = K [(Lx · cos θ + Ha) · τ + Na] · Tm
・ It can be expressed as To ・ Rp ・ G. Here, Lx: radiance of the observed object, θ:
Solar zenith angle, Ha: Sky radiation, τ: Atmospheric transmittance, Na:
Optical path brightness, Tm: plane mirror reflectance, To: optical system transmittance,
Rp: light receiving element sensitivity, G: electric circuit gain, K: constant.

【0032】従って、前述の均一の光により、上式の受
光素子感度Rpを除く各パラメータについては全受光素
子に共通であるため、受光器13の各画素の感度に対応
した出力データを取得できる。すなわち、感度偏差のデ
ータが取得できる。
Therefore, because of the uniform light described above, all parameters except the above-mentioned sensitivity Rp of the light receiving element are common to all the light receiving elements, so that output data corresponding to the sensitivity of each pixel of the light receiving device 13 can be obtained. . That is, the data of the sensitivity deviation can be acquired.

【0033】また、高塔、飛行機などから測定した地上
における観測対象物の輝度測定データ:(L・cosθ
+Ha)に対し、大気モデル等を使用して、天空放射H
a、大気透過率τの補正を行うことにより、Tm:平面
鏡反射率、To:光学系透過率、Rp:受光素子感度、
G:電気回路系ゲインの変動による感度特性データを測
定することが可能である。
In addition, the luminance measurement data of the object to be observed on the ground measured from a turret, an airplane, etc .: (L · cos θ
+ Ha), using the atmospheric model, sky radiation H
a, by correcting the atmospheric transmittance τ, Tm: plane mirror reflectance, To: optical system transmittance, Rp: light receiving element sensitivity,
G: Sensitivity characteristic data due to variations in electric circuit system gain can be measured.

【0034】なお、本発明は上記実施例に限定されない
ことは勿論である。また、光学的手段の焦点が受光器の
受光面から外れた状態は、受光素子13の移動に限ら
ず、例えば光学ガラス製のクサビ等により光学系11か
ら受光器13までの光学的距離を変化させることによっ
ても作り出すことができる。
Needless to say, the present invention is not limited to the above embodiment. Further, the state where the focus of the optical means is out of the light receiving surface of the light receiver is not limited to the movement of the light receiving element 13, and the optical distance from the optical system 11 to the light receiver 13 is changed by, for example, a wedge made of optical glass. It can also be created by

【0035】その概要について具体的な説明を図3およ
び図4を参照して行う。
A specific description of the outline will be given with reference to FIGS. 3 and 4.

【0036】まず、光学的距離の変化は、物理的な距離
の変化によるものと、透明な物体を光路に挿入してその
光の通過する部分の長さを変化させるものとがある。必
要な変化距離は0.2〜1mm前後と考えられるので機
械的に安定な移動方法であればよいが、精度を上げてお
く必要がある。ここで比較的簡単な方法として考えられ
るのは、図6に示すように、受光器13は電歪材料の両
側に電極を設け、その電極に直流電圧を印加しその電歪
材料の伸縮によるアクチュエータ54を固定板に取付
け、直接又は連結棒53を介して入射光64を受光する
受光器13を取付けた構成とする。この時、電歪材料を
薄くして電極の両面に取付け、これを複数枚重ねてアク
チュエータ54とし並列接続すれば動作電圧が低くな
り、使用するには好ましいものとなる。
First, the change of the optical distance includes the change of the physical distance and the change of the length of the portion through which the transparent object is inserted into the optical path. Since the necessary change distance is considered to be around 0.2 to 1 mm, a mechanically stable moving method may be used, but it is necessary to improve the accuracy. Here, as a relatively simple method, as shown in FIG. 6, the photodetector 13 has electrodes on both sides of an electrostrictive material, and a DC voltage is applied to the electrodes to expand and contract the electrostrictive material. 54 is attached to the fixed plate, and the light receiver 13 for receiving the incident light 64 is attached directly or via the connecting rod 53. At this time, if the electrostrictive material is thinned and attached to both surfaces of the electrode, and a plurality of these are stacked and connected in parallel as the actuator 54, the operating voltage becomes low, which is preferable for use.

【0037】次に、透明な材料に入射光64を通過せし
めて真空中の長さよりも、その材料の屈折率に対応する
分だけ物理的な距離を長くする方法がある。図4によれ
ば固定板に固定された例えばガラス等から成る透明クサ
ビ71Aと71Bとが摺接または近接して成り、そのう
ちの1個の透明クサビ71Bに固着したネジ72が固定
板74と螺合しており、さらにネジ72の他端はマイク
ロモータ73に連結され、マイクロモータ73の回転に
より、ねじ頭部と廻転自在に接合された透明クサビ71
Bが上昇・下降を行い、入射光75が透明クサビ71A
・71Bを通過する長さが変動し、入射光75の実質的
な光路長が可変できるものである。
Next, there is a method in which the incident light 64 is passed through a transparent material to make the physical distance longer than the length in vacuum by an amount corresponding to the refractive index of the material. According to FIG. 4, transparent wedges 71A and 71B made of, for example, glass fixed to the fixed plate are slidably in contact with or close to each other, and one of the transparent wedges 71B has a screw 72 fixed to the fixed plate 74 and a screw. The other end of the screw 72 is connected to the micromotor 73, and the transparent wedge 71 that is rotatably joined to the screw head by the rotation of the micromotor 73.
B moves up and down, and the incident light 75 transmits the transparent wedge 71A.
The length of light passing through 71B varies, and the substantial optical path length of the incident light 75 can be varied.

【0038】[0038]

【発明の効果】以上説明したように本発明は、複数の受
光素子を並置した受光器を光学系の光軸方向へ移動させ
るか、透明クサビ等により光学系から受光器までの光学
的距離を変化させた状態で、地上の任意の領域の観測を
行い、それと同時に地上の任意の領域の輝度を高塔、飛
行機などから測定し、大気による散乱および吸収を補正
することにより、任意の輝度の均一な基準光による校
正、すなわち平面鏡の反射特性、光学系レンズの透過特
性の変化、全受光素子の感度変動すなわち感度偏差およ
び電気系特性の変動等を検出することができるとう効果
がある。
As described above, according to the present invention, a light receiver having a plurality of light receiving elements arranged side by side is moved in the optical axis direction of the optical system, or the optical distance from the optical system to the light receiver is changed by a transparent wedge or the like. Observing an arbitrary area on the ground in a changed state, at the same time, measuring the brightness of an arbitrary area on the ground from a high tower, an airplane, etc., and by correcting the scattering and absorption by the atmosphere, There is an effect that it is possible to calibrate with uniform reference light, that is, to detect the reflection characteristic of the plane mirror, the change of the transmission characteristic of the optical system lens, the sensitivity variation of all the light receiving elements, that is, the sensitivity deviation and the variation of the electrical system characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示すブロック図FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】本発明の原理を示す説明図FIG. 2 is an explanatory diagram showing the principle of the present invention.

【図3】受光素子と光学系との間隔の調整手段を示す説
明図
FIG. 3 is an explanatory view showing a means for adjusting a distance between a light receiving element and an optical system.

【図4】受光素子と光学系との間隔の調整手段を示す説
明図
FIG. 4 is an explanatory view showing a means for adjusting the distance between the light receiving element and the optical system.

【図5】基準光源にランプを使用した従来の技術の一例
を示す説明図
FIG. 5 is an explanatory diagram showing an example of a conventional technique using a lamp as a reference light source.

【図6】基準光源に太陽光を使用した従来の技術の一例
を示す説明図
FIG. 6 is an explanatory diagram showing an example of a conventional technique using sunlight as a reference light source.

【図7】基準光源に太陽光を使用した従来の技術に係る
原理を示す説明図
FIG. 7 is an explanatory diagram showing the principle of a conventional technique using sunlight as a reference light source.

【符号の説明】[Explanation of symbols]

11 光学系 12 平面鏡 13 受光器 17 電気系 61 衛星 11 optical system 12 plane mirror 13 light receiver 17 electric system 61 satellite

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年6月26日[Submission date] June 26, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】図2は本発明の原理を示す説明図である。
これにおいて平面鏡12は光学系11の光軸上に介在
し、図中矢印Aにて示す方向に存在する観測対象44か
らの光を反射して、これを光学系の位置13aにある受
光器13の光軸上に進行させる。光学系11は平面鏡1
2により反射された光を受光器13に集光し、受光器1
3内の受光素子は、集光された光の強さに比例した電圧
を出力する。なお、受光器13は例えば受光素子を整列
させて埋め込まれた2次元センサである(図7参照)。
FIG. 2 is an explanatory view showing the principle of the present invention.
In this, the plane mirror 12 is interposed on the optical axis of the optical system 11, reflects the light from the observation object 44 existing in the direction indicated by the arrow A in the figure, and reflects it to the light receiver 13 at the position 13a of the optical system. On the optical axis of. The optical system 11 is a plane mirror 1.
The light reflected by 2 is focused on the light receiver 13, and the light receiver 1
The light receiving element in 3 outputs a voltage proportional to the intensity of the condensed light. The light receiver 13 is, for example, a two-dimensional sensor in which light receiving elements are aligned and embedded (see FIG. 7).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】電気系17は受光器13の出力電圧を増幅
して出力する。受光器13は図中破線にて示す光学系1
1の焦点位置13bと、この焦点位置から若干ずれた位
置13aとの間も光学系11の光軸に沿って往復移動す
ることができるように適当な支持手段により支持されて
いる。従って、この受光器13は移動手段により位置1
3aと13bとの間を移動する。
The electric system 17 amplifies and outputs the output voltage of the light receiver 13. The light receiver 13 is an optical system 1 indicated by a broken line in the figure.
It is supported by a suitable supporting means so that it can reciprocate along the optical axis of the optical system 11 between the focal position 13b of 1 and the position 13a slightly deviated from this focal position. Therefore, the light receiver 13 is moved to the position 1 by the moving means.
Move between 3a and 13b.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】通常の観測モードにおいては、受光器13
を光学系11の焦点の位置13bに位置させ、観測対象
物から焦点のあった像を受光器13に入射させる(ただ
し受光器13は受光器の位置13a又は13bのいずれ
か一方と重置するが図1では位置13a・13bは記入
してない)。一方校正モードにおいては、受光器13を
光学系11の光軸方向に移動させて位置13aに位置さ
せる。いま、観測対象が、例えば反射特性のばらつきが
比較的小さい砂漠や海などであれば、光学系11の焦点
の位置が受光器13の受光面と一致していない場合は受
光器13に入力する光の画像がボケて受光器13の全面
にわたるので受光器13に存在する複数個の受光素子に
入力する光は均一に近いものとなる。
In the normal observation mode, the light receiver 13
Is located at the focal position 13b of the optical system 11, and a focused image from the observation object is made incident on the photodetector 13 (however, the photodetector 13 is superposed on one of the positions 13a or 13b of the photodetector). However, positions 13a and 13b are not shown in FIG. 1). On the other hand, in the calibration mode, the light receiver 13 is moved in the optical axis direction of the optical system 11 to be positioned at the position 13a. Now, if the observation target is, for example, a desert or the sea where the variation of the reflection characteristics is relatively small, if the focus position of the optical system 11 does not match the light receiving surface of the light receiver 13, the light is input to the light receiver 13. Since the image of the light is blurred and covers the entire surface of the light receiver 13, the light input to the plurality of light receiving elements existing in the light receiver 13 becomes almost uniform.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】ここで、光学系11の主点から受光素子の
位置13bまでの距離fをΔhだけずらした受光器の位
置13bに結像する光束は、前式から L=〔(1/f)−{1/(f+Δh)}〕-1 と表わせる。この場合、光学系11が受光素子13aに
結像する光束Dd は、 Dd =d・(H−L)/L で表わすことができる地表41bの直径Dd の範囲から
の光を積分した光量に対応するものとなる。
Here, the light flux which forms an image at the position 13b of the light receiver, which is obtained by shifting the distance f from the principal point of the optical system 11 to the position 13b of the light receiving element by Δh, is L = [(1 / f) -{1 / (f + Δh)}] -1 . In this case, the light flux D d formed by the optical system 11 on the light receiving element 13a is obtained by integrating the light from the range of the diameter D d of the ground surface 41b which can be represented by D d = d · (HL) / L. It corresponds to the amount of light.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】従って、放射計に入射する観測対象域の輝
度のバラツキの影響は、焦点をずらすことにより、 D2 /(π・Dd 2 /4)≒[4a2 (f+Δh)2
2 ]・[π/(Δh)2 ] 倍にすることができる。
[0028] Thus, the influence of variation in luminance of the observation target region that is incident on the radiometer, by shifting the focus, D 2 / (π · D d 2/4) ≒ [4a 2 (f + Δh) 2 /
d 2 ] · [π / (Δh) 2 ].

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 航空機又は人工衛星を含む飛行体に搭載
され陸域または海域からの可視光線又は赤外線の反射光
又は輻射光を観測する放射計において、前記可視光線又
は赤外線の入射を受けて収束する光学的手段と、前記光
学的手段により収束された光が入射する受光手段と、前
記光学的手段の光軸方向に受光手段を移動させる第1の
手段と、前記光学的手段の焦点が前記受光手段の受光面
からずれている状態で校正用の基準値対応の校正記号を
発生する校正信号発生手段とを備えて成ることを特徴と
する校正装置付放射計。
1. A radiometer mounted on an aircraft or an air vehicle including an artificial satellite for observing reflected light or radiant light of visible light or infrared light from a land area or a sea area and converging upon receiving the visible light ray or infrared light. The optical means, the light receiving means on which the light converged by the optical means is incident, the first means for moving the light receiving means in the optical axis direction of the optical means, and the focus of the optical means. A radiometer with a calibration device, comprising: a calibration signal generating means for generating a calibration symbol corresponding to a reference value for calibration while being displaced from the light receiving surface of the light receiving means.
【請求項2】 航空機又は人工衛星を含む飛行体に搭載
され、陸域または海域からの可視光線又は赤外線の反射
光又は輻射光を観測する放射計において、前記可視光線
又は赤外線を入射を受けて収束する光学的手段と、前記
光学的手段により収束された光が入射する受光手段と、
前記光学的手段から前記受光手段までの光学的距離を変
化させる第2の手段と、前記光学的手段の焦点が前記受
光手段の受光面からずれている状態で校正用の基準値対
応の校正信号を発生する校正信号発生手段とを備えて成
ることを特徴とする校正装置付放射計。
2. A radiometer, which is mounted on an aircraft or an air vehicle including an artificial satellite and observes reflected light or radiant light of visible light or infrared light from a land area or a sea area, upon receiving the visible light or infrared light. Optical means for converging, and light receiving means for receiving the light converged by the optical means,
Second means for changing the optical distance from the optical means to the light receiving means, and a calibration signal corresponding to a reference value for calibration in a state where the focus of the optical means is deviated from the light receiving surface of the light receiving means. A radiometer with a calibration device, comprising:
【請求項3】 一方の作動面を固定し他の作動面に受光
手段を固着し、前記受光手段の受光面に対して直角方向
に移動する電歪型アクチュエータから成る前記第1の手
段を備えて成ることを特徴とする請求項1記載の校正装
置付放射計。
3. A first means comprising an electrostrictive actuator having one working surface fixed and a light receiving means fixed to the other working surface and moving in a direction perpendicular to the light receiving surface of the light receiving means. The radiometer with a calibration device according to claim 1, wherein
【請求項4】 2組のクサビ状透明部材の斜面を相対し
て重ね、片側のクサビ状透明部材が重ねられた前記斜面
に平行して移動することを可能とした前記第2の手段を
備えて成ることを特徴とする請求項2記載の校正装置付
放射計。
4. The second means, wherein the inclined surfaces of two sets of wedge-shaped transparent members are overlapped with each other so that the wedge-shaped transparent members on one side can move in parallel with the overlapped inclined surface. The radiometer with a calibration device according to claim 2, wherein
JP4055856A 1991-03-31 1992-03-16 Radiometer with calibration device Expired - Lifetime JP2855945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4055856A JP2855945B2 (en) 1991-03-31 1992-03-16 Radiometer with calibration device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-93076 1991-03-31
JP9307691 1991-03-31
JP4055856A JP2855945B2 (en) 1991-03-31 1992-03-16 Radiometer with calibration device

Publications (2)

Publication Number Publication Date
JPH0682303A true JPH0682303A (en) 1994-03-22
JP2855945B2 JP2855945B2 (en) 1999-02-10

Family

ID=26396751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055856A Expired - Lifetime JP2855945B2 (en) 1991-03-31 1992-03-16 Radiometer with calibration device

Country Status (1)

Country Link
JP (1) JP2855945B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132859A (en) * 1997-10-31 1999-05-21 Mitsubishi Electric Corp Infrared video apparatus
JP2019007788A (en) * 2017-06-22 2019-01-17 旭化成株式会社 Radiation temperature measurement apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132859A (en) * 1997-10-31 1999-05-21 Mitsubishi Electric Corp Infrared video apparatus
JP2019007788A (en) * 2017-06-22 2019-01-17 旭化成株式会社 Radiation temperature measurement apparatus
US10890488B2 (en) 2017-06-22 2021-01-12 Asahi Kasei Kabushiki Kaisha Radiation temperature measuring device
US11629998B2 (en) 2017-06-22 2023-04-18 Asahi Kasei Kabushiki Kaisha Radiation temperature measuring device

Also Published As

Publication number Publication date
JP2855945B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US4965448A (en) Internal calibration source for infrared radiation detector
US5471056A (en) Airborne scanner image spectrometer
US4466748A (en) Thermal imaging apparatus
Zhang et al. Wide-field auroral imager onboard the Fengyun satellite
JPH0551840B2 (en)
CN101726358B (en) Co-graduation surface full-spectrum target
US5525793A (en) Optical head having an imaging sensor for imaging an object in a field of view and a tracking sensor for tracking a star off axis to the field of view of the imaging sensor
NO163653B (en) LASER RADIOMETER.
WO1994007117A2 (en) Airborne multiband imaging spectrometer
CN106123915B (en) A kind of pneumatic degraded image recovery system based on direct point spread function
EP0074225B1 (en) Radiometer
US5270528A (en) Radiometer with correction device
US4306150A (en) Thermal image forming device comprising pneumatic infrared detectors
JP2855945B2 (en) Radiometer with calibration device
Fang et al. Dual-band infrared remote sensing system with combined long-wave infrared imaging and mid-wave infrared spectral analysis
EP0544314B1 (en) Image mapping radiometer with a band-to-band registration device
US4597017A (en) Scanner system for X-ray plate readout
Taylor et al. Infrared radiometer for the Pioneer Venus orbiter. 1: Instrument description
Stier et al. Far-infrared observations of Uranus, Neptune, and Ceres
US5646723A (en) Combined earth sensor
US7091488B2 (en) Uncooled optical imaging device
Kaiser et al. ACCESS: design and preliminary performance
Engel The Thematic Mapper-instrument overview and preliminary on-orbit results
US9234796B1 (en) Low-radiance infrared airborne calibration reference
Runciman Thermal imaging

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981027