JPH0681651A - Cylinder injection type internal combustion engine - Google Patents

Cylinder injection type internal combustion engine

Info

Publication number
JPH0681651A
JPH0681651A JP4044008A JP4400892A JPH0681651A JP H0681651 A JPH0681651 A JP H0681651A JP 4044008 A JP4044008 A JP 4044008A JP 4400892 A JP4400892 A JP 4400892A JP H0681651 A JPH0681651 A JP H0681651A
Authority
JP
Japan
Prior art keywords
cylinder
piston
intake
recess
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4044008A
Other languages
Japanese (ja)
Other versions
JP2943486B2 (en
Inventor
Hiromitsu Ando
弘光 安東
Jun Takemura
純 竹村
Kazuyoshi Nakane
一芳 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP4044008A priority Critical patent/JP2943486B2/en
Priority to US08/022,630 priority patent/US5305720A/en
Priority to EP93103136A priority patent/EP0558072B1/en
Priority to AU33851/93A priority patent/AU657392B2/en
Priority to DE69301470T priority patent/DE69301470T2/en
Priority to KR1019930002927A priority patent/KR950003740B1/en
Publication of JPH0681651A publication Critical patent/JPH0681651A/en
Priority to US08/637,528 priority patent/USRE36500E/en
Application granted granted Critical
Publication of JP2943486B2 publication Critical patent/JP2943486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To secure the fitting space of an injector and improve combustion stability by disposing an intake port on one side of a cylinder head, and forming a recessed place on the upper face of a piston in order to promote intake air vortex flow. CONSTITUTION:An intake port 8a is provided, through an intake valve, on one side of a cylinder head with a plane FC, including a cylinder axis L along the center of a cylinder S, placed in between. A recessed place 24 presenting the downward protruding curved face from the orthogonal face view to an orthogonal line LH to the cylinder axis L within the plane FC is formed to promote intake air vortex flow TF around a parallel line LH1 to the orthogonal line LH. A raised part 23 is provided being raised gradually from the recessed place 24, with the crest 232 thereof coming close to the lower face of the cylinder head at the top dead center of a piston. The fitting space of an injector can be thereby secured easily, and combustion stability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼室に、吸気ポートよ
り流入する空気を供給すると共に、燃焼室内にこれら混
合気及び空気を層状の旋回流とした状態で、混合気を燃
焼させる成層燃焼型内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to stratified combustion in which air flowing from an intake port is supplied to a combustion chamber and the mixture and air are burned in a stratified swirling flow in the combustion chamber. Type internal combustion engine.

【0002】[0002]

【産業上の利用分野】本発明は、吸気ポートよりシリン
ダ内に流入した気体を旋回流とした上で、筒内に燃料噴
射を行って混合気を生成して燃焼させる筒内噴射型の内
燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder injection type internal combustion engine in which a gas flowing from an intake port into a cylinder is made into a swirling flow, and fuel is injected into the cylinder to generate an air-fuel mixture for combustion. Regarding the institution.

【0003】[0003]

【従来の技術】通常の内燃機関の本体はシリンダヘッド
とシリンダブロック及びクランクケースをこの順に重ね
て主要部が構成され、それらの内部にはピストンを嵌挿
したシリンダと、シリンダの上部から成る燃焼室に吸排
気弁を介し連通可能な吸排気路と、吸排気弁を駆動する
動弁系と、ピストンの往復動を回転運動に変換してクラ
ンクシャフトに伝達するコンロッド等が収容されてい
る。このような内燃機関が例えば4サイクルエンジンの
場合、吸入行程でシリンダ内に吸入した吸気に対しその
吸気量に見合った量の燃料を供給して燃焼エネルギを発
生させ、同エネルギを回転エネルギとして出力してい
る。このような内燃機関の内、燃焼室に直接燃料噴射を
行って運転応答性を改善出来る筒内噴射型の内燃機関が
知られている。
2. Description of the Related Art A main body of an ordinary internal combustion engine is composed of a cylinder head, a cylinder block, and a crankcase, which are stacked in this order to form a main part. A combustion chamber is formed of a cylinder into which a piston is inserted and an upper part of the cylinder. An intake / exhaust passage that can communicate with the chamber via an intake / exhaust valve, a valve system that drives the intake / exhaust valve, a connecting rod that converts the reciprocating motion of the piston into rotary motion and transmits the rotary motion, and the like are housed. When such an internal combustion engine is, for example, a 4-cycle engine, the amount of fuel commensurate with the amount of intake air is supplied to the intake air taken into the cylinder in the intake stroke to generate combustion energy, which is output as rotational energy. is doing. Among such internal combustion engines, there is known a cylinder injection type internal combustion engine capable of improving fuel injection performance by directly injecting fuel into a combustion chamber.

【0004】この種の筒内噴射型の内燃機関としては、
圧縮着火内燃機関であるディーゼルエンジン及び火花点
火内燃機関であるガソリンエンジン等が知られている。
このうち、ディーゼルエンジンは点火手段を必要としな
いが、高圧縮比を達成できる機関及び、高圧燃料噴射手
段を必要とし、大型化や重量増等に問題を残している。
これに対し、筒内噴射型のガソリンエンジンは、例えば
図13、図14に示すように構成される。ここでのガソ
リンエンジンは4弁式であり、そのシリンダS内にはピ
ストン51が嵌挿され、ピストン51の上死点より下死
点への摺動時に図示しない一対の吸気弁を開き、吸気導
通路52側より空気を各吸気ポート54を介して燃焼室
50内に導き、吸気及び圧縮行程の所定時に図示しない
インジェクタを駆動して筒内噴射を行い、圧縮行程終了
時に点火プラグ56を駆動して燃焼行程を行い、その後
の排気行程では排ガスをピストン51の上昇時に図示し
ない排気弁を開いて排気ポート55より排気導通路53
側に排出する様に構成されている。
As an in-cylinder injection type internal combustion engine of this type,
A diesel engine, which is a compression ignition internal combustion engine, and a gasoline engine, which is a spark ignition internal combustion engine, are known.
Among them, the diesel engine does not need an ignition means, but needs an engine capable of achieving a high compression ratio and a high-pressure fuel injection means, and has a problem in increasing the size and weight.
On the other hand, the in-cylinder injection type gasoline engine is configured as shown in FIGS. 13 and 14, for example. The gasoline engine here is of a four-valve type, and a piston 51 is inserted into the cylinder S of the gasoline engine. When the piston 51 slides from the top dead center to the bottom dead center, a pair of intake valves (not shown) are opened to intake air. Air is introduced into the combustion chamber 50 through the intake ports 54 from the side of the communication path 52, an injector (not shown) is driven at a predetermined time of the intake and compression strokes to perform in-cylinder injection, and the ignition plug 56 is driven at the end of the compression strokes. Then, the combustion process is performed, and in the subsequent exhaust process, the exhaust gas is exhausted from the exhaust port 55 by opening an exhaust valve (not shown) when the piston 51 rises.
It is configured to discharge to the side.

【0005】このようなガソリンエンジンはディーゼル
エンジンと比較して大型化や重量増等の問題は少なかっ
た。
Such a gasoline engine has few problems such as size increase and weight increase as compared with a diesel engine.

【0006】[0006]

【発明が解決しようとする課題】ところが、このような
筒内噴射型のガソリンエンジンは吸排気ポートより延び
る各導通路52,53が図示しないシリンダヘッドの両
側壁面にそれぞれ開口する構成を取る。ここで、燃焼室
の上側のシリンダヘッドのシリンダ対向部には各導通路
52,53や点火プラグ56が配備され、特に、各気筒
の体積効率を確保すべく各導通路52,53が大きく形
成され、あるいは図14のように2つの吸気導通路55
2,52及び2つの排気導通路53,53を配設した場
合にはほとんどインジェクタを装着するインジェクタ取
付部を確保するスペースが少なく、設計的な制約が多く
最適なレイアウトの実現は極めて困難となっている。
However, such an in-cylinder injection type gasoline engine has a structure in which the respective communication passages 52 and 53 extending from the intake and exhaust ports are opened on both side wall surfaces of a cylinder head (not shown). Here, the conducting passages 52, 53 and the spark plug 56 are provided in the cylinder facing portion of the upper cylinder head of the combustion chamber, and in particular, the conducting passages 52, 53 are formed large in order to secure the volume efficiency of each cylinder. Or two intake passages 55 as shown in FIG.
2, 52 and the two exhaust passages 53, 53, there is little space for securing the injector mounting portion for mounting the injector, and there are many design restrictions, and it is extremely difficult to realize an optimal layout. ing.

【0007】特に、筒内噴射エンジンで層状化リーンバ
ーンを実現させるためには、噴霧を出来るだけコンパク
トに集め、リッチ混合気を点火プラグ近傍に集合させ、
燃焼安定性を確保する必要がある。しかし、従来の筒内
噴射エンジンでは上述のようにレイアウト上の制約によ
ってインジェクタを点火プラグ方向に向けることはほと
んど困難であった。
Particularly, in order to realize the stratified lean burn in the cylinder injection engine, the spray is collected as compactly as possible, and the rich air-fuel mixture is collected in the vicinity of the ignition plug.
It is necessary to ensure combustion stability. However, in the conventional in-cylinder injection engine, it was almost difficult to direct the injector toward the spark plug due to the layout restrictions as described above.

【0008】本発明の目的は点火プラグに対する筒内噴
射用のインジェクタの取付スペースの確保が容易で、し
かも、燃焼安定性の向上を図れる筒内噴射型内燃機関を
提供することにある。
An object of the present invention is to provide an in-cylinder injection type internal combustion engine in which a mounting space for an injector for in-cylinder injection with respect to a spark plug can be easily secured and the combustion stability can be improved.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明はシリンダ内に嵌挿されるピストンの上面
とシリンダヘッドの下面との間に形成れた燃焼室と、上
記シリンダの中心に沿ったシリンダ軸線を含む平面を挾
んだ上記シリンダヘッドの一側に配備されると共に吸気
弁を介して上記燃焼室に連通される吸気ポートと、燃焼
室内での上記平面内シリンダ軸線直行線の平行線まわり
の吸気の渦流を助長すべくピストン上面に形成されると
共に少なくとも上記直行線との直行面視において下に凸
の曲面を呈する凹所と、上記ピストン上面において上記
凹所の側端に連設されて上記凹所からなだらかに隆起す
ると共にピストン上死点においてシリンダヘッド下面に
近接する隆起部と、上記ピストンが上死点近傍に位置し
た際に上記凹所に向けて燃料噴射する噴口を有したイン
ジェクタと、上記インジェクタの噴射燃料が上記凹所の
流動規制を受けて達する上記隆起部との対向位置に配設
される点火プラグとを備えたことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a combustion chamber formed between an upper surface of a piston and a lower surface of a cylinder head to be inserted into a cylinder, and a center of the cylinder. An intake port that is disposed on one side of the cylinder head across a plane that includes the cylinder axis and that communicates with the combustion chamber via an intake valve, and the in-plane cylinder axis orthogonal line in the combustion chamber. Of the recesses formed on the upper surface of the piston in order to promote the vortex flow of the intake air around the parallel line and exhibiting a downwardly convex curved surface when viewed at right angles to the orthogonal line, and the side end of the recess on the upper surface of the piston. And a ridge that gently bulges from the recess and is close to the lower surface of the cylinder head at the piston top dead center, and in the recess when the piston is located near the top dead center. An injector having an injection port for injecting fuel, and an ignition plug arranged at a position facing the raised portion where the injected fuel of the injector reaches by the flow restriction of the recess. To do.

【0010】[0010]

【作用】シリンダ軸線を含む平面を挾んだシリンダヘッ
ドの一側に燃焼室に連通される吸気ポートを配備し、平
面内でシリンダ軸線との直行線の平行線まわりの吸気の
渦流を助長すべくピストン上面に凹所を形成し、凹所は
少なくとも直行線との直行面視において下に凸の曲面を
呈し、ピストンが上死点近傍に位置した際にインジェク
タの噴口が凹所に向けて燃料を噴射できるので、隆起部
との対向位置に配設される点火プラグに凹所の流動規制
を受けたインジェクタからの燃料を確実に導くことが出
来る。
[Operation] An intake port communicating with the combustion chamber is provided on one side of the cylinder head that extends across the plane including the cylinder axis, and promotes the vortex flow of the intake around the line parallel to the cylinder axis in the plane. Therefore, a recess is formed on the upper surface of the piston, and the recess presents a curved surface that is convex downward at least in the orthogonal view with the orthogonal line, and when the piston is located near the top dead center, the injection port of the injector faces the recess. Since the fuel can be injected, it is possible to reliably guide the fuel from the injector whose flow is regulated in the recess to the spark plug arranged at the position facing the raised portion.

【0011】[0011]

【実施例】図1、図2の筒内噴射型内燃機関は2サイク
ル4弁式で直列4気筒の内燃機関(以下単にエンジンE
と記す)に装着される。このエンジンEの本体はヘッド
カバー付きのシリンダヘッド1とシリンダブロック3及
び図示しないクランクケース及びクランクカバーをこの
順に重ねて一体化して構成され、それらの内部にはピス
トン2を嵌挿したシリンダSと、シリンダSの上部から
成る燃焼室7に連通可能な吸排気導通路4a,4b,5
a,5bと、これら吸排気導通路を開閉する各一対の吸
排気弁10,11を駆動する図示しない動弁系と、ピス
トン2の往復動を回転運動に変換する図示しないクラン
クシャフト及びコンロッド等が収容されている。ここで
のエンジンEにおける各気筒の構成は同一であるので、
ここでは1の気筒に関して主に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The in-cylinder injection type internal combustion engine shown in FIGS. 1 and 2 is a two-cycle four-valve internal combustion engine of in-line four-cylinder (hereinafter referred to simply as engine E).
Will be attached). The main body of the engine E is configured by integrating a cylinder head 1 with a head cover, a cylinder block 3, a crank case and a crank cover (not shown) in this order and integrating them, and a cylinder S in which a piston 2 is inserted and inserted, Intake and exhaust passages 4a, 4b, 5 which can communicate with the combustion chamber 7 formed of the upper part of the cylinder S.
a, 5b, a valve operating system (not shown) for driving the pair of intake / exhaust valves 10, 11 for opening / closing the intake / exhaust passages, a crankshaft, connecting rod, etc. for converting reciprocating motion of the piston 2 into rotational motion. Is housed. Since the configuration of each cylinder in the engine E here is the same,
Here, the description will focus on the one cylinder.

【0012】ここでのシリンダヘッド1はシリンダSの
中心に沿ったシリンダ軸線Lを含む平面FC(ここでは
図3に示すようにヘッド長手方向に延出している)を挾
んで一側に一対の吸気ポート8aを他側に排気ポート9
aをそれぞれ備える。シリンダヘッド1にはシリンダS
内に形成される燃焼室7に対向するシリンダ対向下壁面
6が形成され、同下壁面はその中央に平面FCの延出す
る方向に長い楔状凹部601を形成される。この楔状凹
部601の一側、即ち、シリンダ軸線を含む平面FCを
挾んだ一側には一対の吸気導通路4a,4aに続く吸気
ポート8a,8b及び他側には一対の排気導通路5a,
5bに続く排気ポート9a,9bがそれぞれ形成され
(図1、図5参照)、各ポートは吸気弁10及び排気弁
11によってそれぞれ開閉される。更に、楔状凹部60
1のほぼ中央位置で、ピストン2がTDC位置に達した
際における後述の隆起部23の峰232との対向位置に
は、点火プラグ20が装着される。
Here, the cylinder head 1 sandwiches a plane FC (here, it extends in the head longitudinal direction as shown in FIG. 3) including the cylinder axis L along the center of the cylinder S, and has a pair of sides on one side. Intake port 8a to the other side and exhaust port 9
a is provided. The cylinder head 1 has a cylinder S
A cylinder facing lower wall surface 6 that faces the combustion chamber 7 formed therein is formed, and the lower wall surface is formed with a wedge-shaped recess 601 that is long in the direction in which the plane FC extends in the center thereof. Intake ports 8a, 8b following the pair of intake passages 4a, 4a on one side of the wedge-shaped recess 601, that is, one side across the plane FC including the cylinder axis, and a pair of exhaust passages 5a on the other side. ,
Exhaust ports 9a and 9b following 5b are formed (see FIGS. 1 and 5), and each port is opened and closed by an intake valve 10 and an exhaust valve 11, respectively. Further, the wedge-shaped recess 60
A spark plug 20 is mounted at a position substantially opposite to a peak 232 of a raised portion 23, which will be described later, when the piston 2 reaches the TDC position at a substantially central position of 1.

【0013】ここで一対の排気導通路5a,5bは図
2、図5に示すように排気ポート9aより湾曲して延出
し、更に平面FCより離れる方向に直状に延び、シリン
ダヘッド1の他側壁面に開口する様に構成されている。
一対の吸気導通路4a,4bはシリンダ軸線を含む平面
FCの一側(図3では平面FCの右側域)にあって、シ
リンダヘッド1内を上下方向に直状に延びるように形成
され、その下流側が各吸気ポート8aに連通し、上流端
がシリンダヘッド1の上面1fにおいて分岐管13に接
続される。
Here, as shown in FIGS. 2 and 5, the pair of exhaust passages 5a and 5b extend in a curved manner from the exhaust port 9a, and further extend straight in a direction away from the plane FC, and It is configured to open to the side wall surface.
The pair of intake passages 4a and 4b are formed on one side of the plane FC including the cylinder axis (on the right side of the plane FC in FIG. 3) and extend straight in the cylinder head 1 in the vertical direction. The downstream side communicates with each intake port 8a, and the upstream end is connected to the branch pipe 13 on the upper surface 1f of the cylinder head 1.

【0014】ここで各吸気導通路4a,4bに直状に連
結される各分岐管13はその上端がインタクーラ141
内臓のプレナムチャンバ14に連通し、チャンバ14の
流入口17は可変速プーリ付きの遠心式掃気ポンプ15
に連通されている。このように、このエンジンEの各吸
気導通路4a,4bや各分岐管13は上下に長い直状を
成すので吸気に対する流動抵抗が比較的低くなり、燃焼
室7に比較的多くの吸気を供給し易く、エンジンの体積
効率を向上することができる。
Here, the upper end of each branch pipe 13 directly connected to the intake passages 4a, 4b is an intercooler 141.
It communicates with the built-in plenum chamber 14, and the inlet 17 of the chamber 14 is a centrifugal scavenging pump 15 with a variable speed pulley.
Is in communication with. As described above, since the intake passages 4a and 4b of the engine E and the branch pipes 13 are vertically long and straight, the flow resistance to intake air is relatively low, and a relatively large amount of intake air is supplied to the combustion chamber 7. And the volumetric efficiency of the engine can be improved.

【0015】シリンダヘッド1の平面FCの一側で一対
の吸気導通路4aの外側の領域にはインジェクタ取付部
1aが形成され、同部1aにインジェクタ18が装着さ
れる。このインジェクタ18には畜圧機25を介して高
圧ポンプ19が連結される。この高圧ポンプ19やイン
ジェクタ18は図示しないエンジンコントローラに接続
され、インジェクタには所定の噴射タイミング(クラン
ク角)において所定噴射時間(図7中のPH,PL)だ
け駆動出力が供給されるように構成されている。
An injector mounting portion 1a is formed on one side of the plane FC of the cylinder head 1 outside the pair of intake passages 4a, and an injector 18 is mounted on the portion 1a. A high-pressure pump 19 is connected to the injector 18 via a pressure storage device 25. The high-pressure pump 19 and the injector 18 are connected to an engine controller (not shown), and a drive output is supplied to the injector at a predetermined injection timing (crank angle) for a predetermined injection time (PH, PL in FIG. 7). Has been done.

【0016】ここでのインジェクタ取付部1aは各吸気
導通路4aが各吸気ポート8aより直状に上側に延びて
いることより、その一対の吸気導通路4aの外側の領域
が解放されており、十分なスペースの確保が出来る。こ
のため、インジェクタ取付部1a及びインジェクタ18
自体の最適なレイアウトを確保く、点火プラグ20との
相対的な向きや位置等を設定する上でも自由度が大き
い。更に、インジェクタ取付部1aは一対の吸気導通路
4aの外側に位置し、インジェクタ本体及び燃料の冷却
性の向上を比較的図りやすく、インジェクタの耐久性の
確保、燃料供給路の熱害の回避をも図りやすい。
In the injector mounting portion 1a here, since the intake passages 4a extend straightly upward from the intake ports 8a, the regions outside the pair of intake passages 4a are released. Enough space can be secured. Therefore, the injector mounting portion 1a and the injector 18
There is a large degree of freedom in securing the optimum layout of itself and also in setting the relative orientation and position with respect to the spark plug 20. Further, the injector mounting portion 1a is located outside the pair of intake air passages 4a, and it is relatively easy to improve the cooling performance of the injector body and the fuel, ensuring the durability of the injector and avoiding heat damage to the fuel supply passage. Easy to plan.

【0017】1の気筒のシリンダS内にはピストン2が
嵌挿されており、図8に示すように、このピストン2は
実線で示す上死点TDCと、2点鎖線で示す下死点BD
Cの間で往復動する。図2に示す様にピストン2はスカ
ート部21と主部22を有し、ピストンの主部22の上
面には凹部24及び隆起部23を形成している。ここで
凹部24及び隆起部23は、平面FC内のシリンダ軸線
Lの直行線LHの平行線LH1のまわりの吸気の逆タン
ブル流TFを助長すべく形成される。
A piston 2 is fitted in the cylinder S of the first cylinder. As shown in FIG. 8, the piston 2 has a top dead center TDC indicated by a solid line and a bottom dead center BD indicated by a two-dot chain line.
Reciprocates between C. As shown in FIG. 2, the piston 2 has a skirt portion 21 and a main portion 22, and a recess 24 and a raised portion 23 are formed on the upper surface of the main portion 22 of the piston. Here, the concave portion 24 and the raised portion 23 are formed to promote the reverse tumble flow TF of the intake air around the parallel line LH1 of the orthogonal line LH of the cylinder axis L in the plane FC.

【0018】この場合、凹所24はシリンダ軸線Lを含
む状態で排気ポート9a側に偏心して形成されると共に
少なくとも直行線LHの直行面視(図2、図8中に直行
面視相当の凹所24が示される。)において下に凸の曲
面を呈する。隆起部23は凹所24の吸気ポート8a側
に連設され、平面FCと対向したままで平面方向に延び
る側壁vf、外側壁231及び両壁の結合端の峰232
を有する。特に、図8に実線で示すように、ピストン2
が上死点TDCに位置する際に、峰232がシリンダ対
向下壁面6に近接するように構成されている。なお、こ
の隆起部23の側壁vfは凹所24からなだらかに隆起
してくる曲面に連続的に接続している。
In this case, the recess 24 is formed eccentrically on the exhaust port 9a side in a state including the cylinder axis L, and at least the straight line LH is viewed in the orthogonal plane view (a concave portion corresponding to the orthogonal plane view in FIGS. 2 and 8). Location 24 is shown) presenting a downwardly convex curved surface. The raised portion 23 is continuously provided on the intake port 8a side of the recess 24 and extends in the plane direction while facing the plane FC, the side wall vf, the outer wall 231 and the peak 232 at the joint end of both walls.
Have. In particular, as shown by the solid line in FIG.
Is located at the top dead center TDC, the ridge 232 is configured to approach the cylinder facing lower wall surface 6. The side wall vf of the raised portion 23 is continuously connected to a curved surface that gently rises from the recess 24.

【0019】このため、図2に示すように、ピストン2
が吸気終了時に下死点BDC側に達する際、吸気ポート
8aより流入した吸気は軸線Lの方向に沿ってピストン
上面に向かい、更に、凹所24及び側壁vfによってU
ターンし、シリンダ軸線Lを含む平面FC内直行線LH
の平行線LH1回りに回転する逆タンブル流TFが生成
される。
Therefore, as shown in FIG.
When the intake air reaches the bottom dead center BDC side at the end of intake air, the intake air that has flowed in from the intake port 8a heads toward the piston upper surface along the direction of the axis L, and is further U-shaped by the recess 24 and the side wall vf.
A straight line LH in the plane FC that turns and includes the cylinder axis L
The inverse tumble flow TF that rotates around the parallel line LH1 of is generated.

【0020】さらに、図8に実線で示すように、ピスト
ン2が圧縮終了時に達した際、そのピストンの凹所24
及び側壁vfとシリンダ対向下壁面6間にはコンパクト
燃焼室Cが形成される。この燃焼室C内に噴射された燃
料は凹所24及び側壁vfに衝突し、衝突後の噴霧燃料
は峰232との対向位置に配設された点火プラグ20に
向かって飛散でき、しかも、コンパクト燃焼室C内に生
成されている気流は凹所24及び側壁vfによって流動
規制を受けて点火プラグ20に向けて同時に流動でき
る。しかも、この時、点火プラグ20に向かう混合気流
にはピストン2の上昇によって外側壁231側で生じた
スキッシュSFがぶつかり、混合気が更に撹拌され、よ
り燃焼性が改善されることとなる。更にまた、凹所24
及び隆起部23によって噴射燃料、特に圧縮後期に噴射
された燃料はコンパクト燃焼室Cに確実に受け止めら
れ、ピストン周辺部側に拡散することを防止され、ピス
トンとシリンダ内壁間のクレビスQに燃料が浸入するこ
とを低減出来、結果として排気中のHC濃度の低減を図
ることも出来る。
Further, as shown by the solid line in FIG. 8, when the piston 2 reaches the end of compression, the recess 24 of the piston 2 is reached.
A compact combustion chamber C is formed between the side wall vf and the cylinder facing lower wall surface 6. The fuel injected into the combustion chamber C collides with the recess 24 and the side wall vf, and the sprayed fuel after the collision can be scattered toward the spark plug 20 arranged at the position facing the ridge 232, and is compact. The air current generated in the combustion chamber C is flow-controlled by the recess 24 and the side wall vf and can flow toward the spark plug 20 at the same time. Moreover, at this time, the squish SF generated on the outer wall 231 side hits the mixed airflow toward the spark plug 20 due to the rise of the piston 2, and the mixed air is further stirred, so that the combustibility is further improved. Furthermore, the recess 24
Also, the injected fuel, particularly the fuel injected in the latter stage of compression, is reliably received by the compact combustion chamber C and prevented from diffusing to the peripheral portion of the piston, and the fuel is applied to the clevis Q between the piston and the inner wall of the cylinder. Penetration can be reduced, and as a result, the concentration of HC in exhaust gas can be reduced.

【0021】このようなエンジンEは2サイクルである
ため、図6に示すように、TDCの0°より前回の燃焼
行程を行い、クランク角で90°を経過後に排気弁11
を開き、排気行程に入り、更に、クランク角120°近
くに達すると吸気弁10をも開き、吸気行程にも入る。
この時、図8に2点鎖線で示す様に吸気ポート8a,8
bよりの吸気は凹所24及び側壁vfの働きでシリンダ
軸線L方向である下向きに流入する吸気をUターンさせ
て、逆タンブル流TFを生成出来る。
Since such an engine E has two cycles, as shown in FIG. 6, the exhaust stroke of the exhaust valve 11 after the previous combustion stroke is started from 0 ° of TDC and the crank angle of 90 ° has elapsed.
To open the exhaust stroke, and when the crank angle approaches 120 °, the intake valve 10 is also opened to enter the intake stroke.
At this time, as shown by the two-dot chain line in FIG.
The intake air from b can make a reverse tumble flow TF by making a U-turn of the intake air flowing downward in the cylinder axis L direction by the action of the recess 24 and the side wall vf.

【0022】下死点BDC経過後、クランク角230°
手前近傍で排気弁11を閉じ、圧縮行程に入り、同時に
高回転時であればインジェクタ18の駆動に入り、所定
噴射時間PHだけインジェクタを噴射駆動させる。これ
によって逆タンブル流TFに噴射された燃料は確実に混
合され、高出力発生を適確に行うことが出来る。この
後、吸気弁10をも閉じて吸排気を完了し、完全に圧縮
行程のみを行う。この時機関が低回転時であると、この
時点で、後期筒内噴射を所定時間PL行う。
After the bottom dead center BDC has passed, the crank angle is 230 °.
The exhaust valve 11 is closed in the vicinity of this side, the compression stroke is started, and at the same time, when the engine speed is high, the injector 18 is driven to inject the injector for a predetermined injection time PH. As a result, the fuel injected into the reverse tumble flow TF is reliably mixed, and high power generation can be appropriately performed. After that, the intake valve 10 is also closed to complete the intake and exhaust, and only the compression stroke is completely performed. At this time, if the engine is in the low rotation speed, at this time, the latter-stage in-cylinder injection is performed for the predetermined time PL.

【0023】この後期筒内噴射ではコンパクト燃焼室C
が形成されており、混合気はコンパクトに集まって層状
を成し、層状のリッチ混合気は点火プラグ20に流動
し、容易に点火燃焼され、リーンバーンを達成出来る。
この後期筒内噴射では、燃焼条件の設定によっては空燃
比50以上の超リーンバーンを確保することが可能と成
り、図示燃費率で30%の燃費苦情を図ることも可能で
ある。この後、上死点TDC前の所定点火時期に達する
と、点火プラグ20を駆動して点火処理(図6には符号
△で示した)に入る。この点火処理によって燃焼室の筒
内圧が上昇し、ピストンを押し下げ、出力を発すること
と成る。
In the latter in-cylinder injection, the compact combustion chamber C
Is formed, the mixture is compactly gathered to form a layer, and the layered rich mixture flows to the ignition plug 20 and is easily ignited and burned to achieve lean burn.
In this latter in-cylinder injection, it is possible to secure a super lean burn with an air-fuel ratio of 50 or more depending on the setting of combustion conditions, and it is also possible to achieve a fuel consumption complaint of 30% at the indicated fuel consumption rate. After that, when the predetermined ignition timing before the top dead center TDC is reached, the spark plug 20 is driven to start the ignition process (indicated by the symbol Δ in FIG. 6). Due to this ignition process, the in-cylinder pressure in the combustion chamber rises, the piston is pushed down, and an output is generated.

【0024】ここで、インジェクタ18は機関が高速回
転時にあると制御手段によって所定噴射時間PHだけ噴
射駆動し、低速回転時にあると所定噴射時間PLだけ噴
射駆動するように制御される。これによって、高速時に
は、燃料と逆タンブル流TFを成す空気との混合を早期
に開始しすることによって、乱れを促進し、急速燃焼の
実現を図ることができる。他方、低速時には噴射を遅ら
せて後期筒内噴射を実行し、コンパクト燃焼室Cの生成
を待ち、ここに燃料噴射を行って、スキッシュSFの撹
拌作用も受けて、着火性の確保を十分に図ることができ
る。
Here, the injector 18 is controlled by the control means so as to drive the injector 18 for a predetermined injection time PH when the engine is rotating at a high speed, and to drive the injector 18 for a predetermined injection time PL when the engine is rotating at a low speed. As a result, at high speed, turbulence can be promoted and rapid combustion can be realized by starting the mixing of the fuel and the air forming the reverse tumble flow TF early. On the other hand, at a low speed, the injection is delayed to execute the latter in-cylinder injection, wait for the generation of the compact combustion chamber C, inject the fuel there, and also receive the stirring action of the squish SF to sufficiently secure the ignitability. be able to.

【0025】更に、インジェクタ取付部1aは一対の吸
気導通路4aの外側に位置し、インジェクタ本体及び燃
料の冷却性の向上を比較的図りやすく、インジェクタの
耐久性の確保、熱害の回避をも図りやすい。り、室用早
期に開始して、混合気の生成を十分に図り、高出力の発
生を促進し、他方、低速時には噴射を遅らせて、コンパ
クト燃焼室Cの生成を待ち、ここに燃料噴射を行って、
スキッシュSFの撹拌作用も受けて、着火性、燃焼安定
性の確保を十分に図ることができる。更に、コンパクト
燃焼室Cが球形化しており、熱損失の低減を図れ、低負
荷運転の安定化をも図れる。図1乃至図5には2サイク
ルのガソリンエンジンを説明したが、これに代えて、4
サイクルのガソリンエンジンに本発明を適用しても良
い。この場合、そのエンジン本体の構成は同様のものが
使用可能であり、重複説明を避ける。
Further, the injector mounting portion 1a is located outside the pair of intake passages 4a, and it is relatively easy to improve the cooling performance of the injector body and the fuel, and the durability of the injector is secured and the heat damage is avoided. Easy to plan. Therefore, it starts early for the chamber to sufficiently generate the air-fuel mixture and promotes the generation of high output, while delaying the injection at low speed to wait for the generation of the compact combustion chamber C and inject fuel there. go,
The stirring action of the squish SF is also received, and it is possible to sufficiently secure the ignitability and the combustion stability. Furthermore, since the compact combustion chamber C is spherical, heat loss can be reduced and low-load operation can be stabilized. Although a two-cycle gasoline engine has been described with reference to FIGS. 1 to 5, instead of this, a four-cycle gasoline engine is used.
The present invention may be applied to a gasoline engine of a cycle. In this case, the same engine body configuration can be used, and duplicated description will be avoided.

【0026】この場合の4サイクルエンジンは図7に示
すように、TDCの0°前より吸気弁10を開き、吸気
行程に入ると共にTDCの0°経過後に排気弁11を閉
じ、前回よりの排気行程を終了させる。この後、クラン
ク角で180°までピストン2は降下し、この間逆タン
ブル流TFが生成され、この逆タンブル流TF中に、高
回転高出力時にはインジェクタより燃料噴射が成され
る。このインジェクタ18の噴射タイミングは図7に示
すように吸気行程が210°を経過後、吸気弁10を閉
じ終えた後の圧縮行程でも行われる。即ち、インジェク
タ18は機関が高速回転時には吸入早期の所定噴射時間
PHに噴射駆動し、低速低出力時には圧縮後期の後期P
Lに後期筒内噴射が成されるように制御される。
In the four-cycle engine in this case, as shown in FIG. 7, the intake valve 10 is opened from 0 ° before TDC, and the exhaust valve 11 is closed after 0 ° of TDC while the intake stroke starts and the exhaust gas from the previous exhaust is exhausted. Finish the process. After that, the piston 2 descends to 180 ° at the crank angle, the reverse tumble flow TF is generated during this, and fuel is injected from the injector during the high rotation and high output in the reverse tumble flow TF. The injection timing of the injector 18 is also performed in the compression stroke after the intake valve 10 has been closed after the intake stroke has passed 210 ° as shown in FIG. 7. That is, the injector 18 performs the injection drive during the predetermined injection time PH of the intake early when the engine rotates at high speed, and the latter P of the latter stage of compression at the time of low speed and low output.
It is controlled so that the latter-stage in-cylinder injection is performed on L.

【0027】これによって、高速高負荷には、燃料と逆
タンブル流TFを成す空気との混合を早期に開始しする
ことによって、乱れを促進し、急速燃焼の実現を図るこ
とができる。他方、低速時には噴射を遅らせて、コンパ
クト燃焼室Cの生成を待ち、ここに燃料噴射を行って、
スキッシュSFの撹拌作用も受けて、着火性の確保、リ
ーンバーンを十分に図ることができる。この後、TDC
360°前近傍では図8に示すスキッシュSFも働き、
コンパクト燃焼室Cより点火プラグ20に向かう混合気
に乱れを更に生じさせ、燃焼性をより改善できる。その
直後での所定点火時期に達すると、点火プラグ20を駆
動して点火処理(図7には符号△で示した)に入る。こ
の点火処理によって燃焼室の筒内圧が上昇し、ピストン
を押し下げ、出力を発っし、燃焼行程をクランク角で5
40°近くまで行う。クランク角480°近傍では排気
弁11を開き、クランク角720経過まで排気行程を継
続し、次回の吸気行程のための吸気弁10の開処理を行
い、4サイクルを完了する。この場合も、2サイクの場
合と同様の作用効果が得られる。
Thus, at high speed and high load, the turbulence can be promoted and the rapid combustion can be realized by starting the mixing of the fuel and the air forming the reverse tumble flow TF early. On the other hand, at low speed, the injection is delayed to wait for the generation of the compact combustion chamber C, and fuel injection is performed here.
With the stirring action of the squish SF, ignitability can be secured and lean burn can be sufficiently achieved. After this, TDC
Near 360 °, the squish SF shown in Fig. 8 also works,
The turbulence of the air-fuel mixture from the compact combustion chamber C toward the ignition plug 20 is further disturbed, and the combustibility can be further improved. Immediately after that, when the predetermined ignition timing is reached, the ignition plug 20 is driven to start the ignition process (indicated by the symbol Δ in FIG. 7). Due to this ignition process, the cylinder pressure in the combustion chamber rises, the piston is pushed down, an output is generated, and the combustion process is performed at a crank angle of 5 degrees.
Perform up to nearly 40 °. In the vicinity of the crank angle of 480 °, the exhaust valve 11 is opened, the exhaust stroke is continued until the crank angle 720 elapses, the intake valve 10 is opened for the next intake stroke, and four cycles are completed. In this case as well, the same operational effect as in the case of two cycles can be obtained.

【0028】図1のエンジンEの吸気導通路4a,4b
は上下に直状を成していたが、これに代えて、図9乃至
図11に示すようなエンジンE1を構成しても良い。こ
のエンジンE1は図1のエンジンEと比べて、吸気導通
路4a,4b及びピストン2aの構成が異なり、順タン
ブル流TF1を生成する点で異なり、その他の構成はエ
ンジンEと同等であるので、その重複説明を略す。ここ
での一対の吸気ポート8a,8b及び吸気導通路4c,
4dはシリンダ対向下壁面6シリンダ軸線Lを含む平面
FCの一側にあり、吸気導通路4c,4dは平面FCに
対してまっすぐ離れる方向に延び、これによって流入さ
れた吸気はシリンダ内でシリンダ対向下壁面6に沿い他
側(排気ポート9a,9b側)に向かって吸気を導入す
る様に構成される。他方、ピストン2aはスカート部2
1と主部22を有し、ピストンの主部22’の上面には
凹部24’及び隆起部23’が形成されている。ここで
凹部24’及び隆起部23’は平面FC内のシリンダ軸
線Lの直行線LHの平行線LH1のまわりの吸気の順タ
ンブル流TF1を助長すべく形成される。
The intake passages 4a and 4b of the engine E shown in FIG.
Although the engine has a straight upper and lower shape, an engine E1 as shown in FIGS. 9 to 11 may be configured instead. The engine E1 is different from the engine E of FIG. 1 in the configuration of the intake passages 4a, 4b and the piston 2a, and is different in that a forward tumble flow TF1 is generated. Since the other configuration is the same as that of the engine E, The duplicate explanation is omitted. The pair of intake ports 8a, 8b and the intake passage 4c,
4d is on one side of the plane FC including the cylinder facing lower wall surface 6 cylinder axis L, and the intake passages 4c and 4d extend in a direction straight away from the plane FC, so that the intake air that flows in is opposed to the cylinder in the cylinder. The intake air is introduced along the lower wall surface 6 toward the other side (exhaust ports 9a, 9b side). On the other hand, the piston 2a is the skirt portion 2
1 and a main part 22, and a recess 24 'and a raised part 23' are formed on the upper surface of the main part 22 'of the piston. Here, the concave portion 24 'and the raised portion 23' are formed so as to promote the forward tumble flow TF1 of the intake air around the parallel line LH1 of the orthogonal line LH of the cylinder axis L in the plane FC.

【0029】この場合、凹所24’はシリンダ軸線Lを
含む状態で排気ポート9a側に偏心して形成されると共
に少なくとも直行線LHの直行面視(図9中に直行面視
相当の凹所24’が示される)において下に凸の曲面を
呈する。隆起部23’は凹所24’の吸気ポート8a側
に連設され、平面FCと対向したままで平面方向に延び
る側壁vf、外側壁231及び両壁の結合端の峰232
を有する。特に、図9に実線で示すように、ピストン2
aが上死点TDCに位置する際に、峰232がシリンダ
対向下壁面6に近接するように構成されている。なお、
この隆起部23の側壁vfは凹所24からなだらかに隆
起してくる曲面に連続的に接続している。
In this case, the recess 24 'is formed eccentrically on the exhaust port 9a side in a state including the cylinder axis L, and at least the straight line LH of the recess 24' (the recess 24 corresponding to the direct surface view in FIG. 9). 'Is shown) and presents a downwardly convex curved surface. The raised portion 23 ′ is continuously provided on the intake port 8 a side of the recess 24 ′ and extends in the plane direction while facing the plane FC, the side wall vf, the outer wall 231 and the peak 232 at the joint end of both walls.
Have. In particular, as shown by the solid line in FIG.
When a is located at the top dead center TDC, the ridge 232 is configured to approach the cylinder facing lower wall surface 6. In addition,
The side wall vf of the raised portion 23 is continuously connected to a curved surface that gently rises from the recess 24.

【0030】このため、図10に示すように、ピストン
2aが吸気終了時に吸気ポート8aより流入した吸気は
シリンダS内でシリンダ対向下壁面6に沿い他側(排気
ポート9a,9b側)に向かって吸気を導入し、更に、
吸気は軸線Lの方向に沿ってピストン上面に向かい、凹
所24’及び側壁vfによってUターンし、シリンダ軸
線Lを含む平面FC内直行線LHの平行線LH1回りに
回転する順タンブル流TF1が生成される。
Therefore, as shown in FIG. 10, the intake air that has flowed in from the intake port 8a when the piston 2a finishes the intake air is directed to the other side (exhaust ports 9a, 9b side) along the cylinder facing lower wall surface 6 in the cylinder S. To introduce intake air,
The intake air flows toward the upper surface of the piston along the direction of the axis L, makes a U-turn by the recess 24 ′ and the side wall vf, and the forward tumble flow TF1 that rotates around the parallel line LH1 of the orthogonal line LH in the plane FC including the cylinder axis L is generated. Is generated.

【0031】さらに、図9に実線で示すように、ピスト
ン2aが圧縮終了時に達した際、コンパクト燃焼室Cが
形成される。この燃焼室C内に噴射された燃料は凹所2
4’及び側壁vfに衝突し、衝突後の噴霧燃料は点火プ
ラグ20に向かって飛散でき、しかも、コンパクト燃焼
室C内に生成されている気流は流動規制を受けて点火プ
ラグ20に向けて流動し、点火プラグ20に向かう混合
気流には外側壁231側で生じたスキッシュSFがぶつ
かり、混合気が更に撹拌され、より燃焼性が改善される
こととなる。この場合も、図1のエンジンEと同様の作
用効果を得られる。
Further, as shown by the solid line in FIG. 9, when the piston 2a reaches the end of compression, the compact combustion chamber C is formed. The fuel injected into the combustion chamber C has a recess 2
4'and the side wall vf, the sprayed fuel after the collision can be scattered toward the spark plug 20, and the airflow generated in the compact combustion chamber C is flow-controlled toward the spark plug 20 under flow regulation. However, the squish SF generated on the outer wall 231 side collides with the mixed airflow toward the ignition plug 20, and the mixed air is further agitated, so that the combustibility is further improved. In this case as well, the same operational effects as the engine E of FIG. 1 can be obtained.

【0032】図1の2サイクル4弁式のエンジンEに代
えて、例えば、2サイクル5弁式や図12に示す3弁式
のエンジンE’を構成することもできる。この図13に
示す3弁式のエンジンE’のシリンダSの場合、一対の
吸気ポート8a,8bに各吸気導通路が連通し、1つの
排気ポート9’に排気導通路5’が連通する。ここで
も、シリンダ軸線Lを含む平面FCを挾んだ一側には一
対の吸気導通路4a,4bに続く吸気ポート8a及び他
側には一つの排気導通路5’に続く排気ポート9’がそ
れぞれ形成され、各ポートは吸気弁10及び排気弁11
によってそれぞれ開閉される。更に、シリンダ軸線Lと
の対向位置に点火プラグ20が装着される。
Instead of the 2-cycle 4-valve engine E shown in FIG. 1, for example, a 2-cycle 5-valve engine or a 3-valve engine E'shown in FIG. 12 may be constructed. In the case of the cylinder S of the three-valve engine E ′ shown in FIG. 13, the intake passages are in communication with the pair of intake ports 8a and 8b, and the exhaust passage 5 ′ is in communication with one exhaust port 9 ′. Here, too, an intake port 8a following the pair of intake passages 4a and 4b across the plane FC including the cylinder axis L and an exhaust port 9'following one exhaust passage 5'on the other side. Each is formed and each port has an intake valve 10 and an exhaust valve 11
Each is opened and closed by. Further, the spark plug 20 is mounted at a position facing the cylinder axis L.

【0033】この場合にも、図1のエンジンEと同様の
作用効果が得られる。上述の各エンジンE,E’等は火
花点火式エンジンで有ったが、これに代えて、圧縮点火
内燃機関に本発明を適用することも出来、この場合にも
図1の2サイクルエンジンEと同様の各ポートやインジ
ェクタの配置構成を取れ、同様の作用効果が得られる。
Also in this case, the same operational effect as that of the engine E of FIG. 1 can be obtained. Although each of the above-mentioned engines E, E ', etc. was a spark ignition type engine, the present invention can be applied to a compression ignition internal combustion engine instead of this, and in this case as well, the two-cycle engine E of FIG. The same arrangement and effect of each port and injector can be taken, and the same effect can be obtained.

【0034】[0034]

【発明の効果】以上のように、この発明は、吸気ポート
をシリンダ軸線を含む平面を挾んだシリンダヘッドの一
側に配備し、ピストン上面の凹所を平面内シリンダ軸線
との直行線の平行線まわりに吸気の渦流を助長すべく形
成し、しかも直行線との直行面視において下に凸の曲面
を呈するように形成し、上死点近傍でインジェクタが凹
所に向けて燃料を噴射させた際に、インジェクタからの
燃料を隆起部との対向位置の点火プラグに確実に導くこ
とができ、混合気を容易に着火出来、燃焼安定性の向上
を図れる。
As described above, according to the present invention, the intake port is provided on one side of the cylinder head which is across the plane including the cylinder axis, and the recess on the upper surface of the piston is defined by a line perpendicular to the in-plane cylinder axis. It is formed around the parallel lines to promote the vortex flow of the intake air, and it is also formed so as to have a downwardly convex curved surface when viewed orthogonally to the orthogonal line, and the injector injects fuel toward the recess near the top dead center. When this is done, the fuel from the injector can be reliably guided to the spark plug at a position facing the raised portion, the mixture can be easily ignited, and combustion stability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての筒内噴射型内燃機関
の全体構成図である。
FIG. 1 is an overall configuration diagram of a cylinder injection internal combustion engine as an embodiment of the present invention.

【図2】図1の筒内噴射型内燃機関の1の気筒の側断面
図である。
FIG. 2 is a side sectional view of one cylinder of the in-cylinder injection internal combustion engine of FIG.

【図3】図1の筒内噴射型内燃機関の1のシリンダの概
略透視図である。
3 is a schematic perspective view of one cylinder of the in-cylinder injection internal combustion engine of FIG. 1. FIG.

【図4】図3のA視概略図である。FIG. 4 is a schematic view taken along line A of FIG.

【図5】図1の筒内噴射型内燃機関の1のシリンダの概
略上面図である。
5 is a schematic top view of one cylinder of the in-cylinder injection internal combustion engine of FIG. 1. FIG.

【図6】図1の筒内噴射型内燃機関の駆動サイクル説明
図である。
FIG. 6 is a drive cycle explanatory diagram of the in-cylinder injection internal combustion engine of FIG. 1.

【図7】他の実施例の筒内噴射型内燃機関の駆動サイク
ル説明図である。
FIG. 7 is a drive cycle explanatory diagram of a cylinder injection internal combustion engine of another embodiment.

【図8】図1の筒内噴射型内燃機関の1のシリンダ内ピ
ストンの作動説明図である。
8 is an operation explanatory view of a piston 1 in a cylinder of the in-cylinder injection internal combustion engine of FIG. 1. FIG.

【図9】本発明の他の実施例としての筒内噴射型内燃機
関の1のシリンダの要部概略側断面図である。
FIG. 9 is a schematic side sectional view of an essential part of one cylinder of an in-cylinder injection internal combustion engine as another embodiment of the present invention.

【図10】図9の筒内噴射型内燃機関の1のシリンダの
概略透視図である。
10 is a schematic perspective view of one cylinder of the in-cylinder injection internal combustion engine of FIG. 9. FIG.

【図11】図9の筒内噴射型内燃機関の1のシリンダの
要部概略配置図である。
FIG. 11 is a schematic layout diagram of main parts of one cylinder of the in-cylinder injection internal combustion engine of FIG. 9.

【図12】本発明の他の実施例としての筒内噴射型内燃
機関の1のシリンダの要部概略配置図である。
FIG. 12 is a schematic layout view of a main portion of one cylinder of a cylinder injection type internal combustion engine as another embodiment of the present invention.

【図13】従来の筒内噴射型内燃機関の要部概略側面図
である。
FIG. 13 is a schematic side view of a main portion of a conventional in-cylinder injection internal combustion engine.

【図14】図13の筒内噴射型内燃機関のB視の概略側
面図である。
FIG. 14 is a schematic side view of the direct injection internal combustion engine of FIG.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 2 ピストン 3 シリンダブロック 4a 吸気導通路 4b 吸気導通路 5a 排気導通路 5b 排気導通路 6 シリンダ対向下壁面 7 燃焼室 8a 吸気ポート 8b 吸気ポート 9a 排気ポート 9b 排気ポート 10 吸気弁 11 排気弁 18 インジェクタ 20 点火プラグ 23 隆起部 24 凹所 vf 側壁 TF 逆タンブル流 TF1 順タンブル流 SF スキッシュ L シリンダ軸線 FC 平面 E エンジン S シリンダ 1 cylinder head 2 piston 3 cylinder block 4a intake passage 4b intake passage 5a exhaust passage 5b exhaust passage 6 cylinder facing lower wall 7 combustion chamber 8a intake port 8b intake port 9a exhaust port 9b exhaust port 10 intake valve 11 exhaust valve 18 injector 20 spark plug 23 raised portion 24 recess vf side wall TF reverse tumble flow TF1 forward tumble flow SF squish L cylinder axis FC plane E engine S cylinder

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02B 31/00 Z 7541−3G F02F 3/26 C 8503−3G Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02B 31/00 Z 7541-3G F02F 3/26 C 8503-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリンダ内に嵌挿されるピストンの上面と
シリンダヘッドの下面との間に形成れた燃焼室と、上記
シリンダの中心に沿ったシリンダ軸線を含む平面を挾ん
だ上記シリンダヘッドの一側に配備されると共に吸気弁
を介して上記燃焼室に連通される吸気ポートと、燃焼室
内での上記平面内シリンダ軸線直行線の平行線まわりの
吸気の渦流を助長すべくピストン上面に形成されると共
に少なくとも上記直行線との直行面視において下に凸の
曲面を呈する凹所と、上記ピストン上面において上記凹
所の側端に連設されて上記凹所からなだらかに隆起する
と共にピストン上死点においてシリンダヘッド下面に近
接する隆起部と、上記ピストンが上死点近傍に位置した
際に上記凹所に向けて燃料噴射する噴口を有したインジ
ェクタと、上記インジェクタの噴射燃料が上記凹所の流
動規制を受けて達する上記隆起部との対向位置に配設さ
れる点火プラグとを備えたことを特徴とする筒内噴射型
内燃機関。
1. A combustion chamber formed between an upper surface of a piston inserted into a cylinder and a lower surface of a cylinder head, and a cylinder head sandwiched by a plane including a cylinder axis line along a center of the cylinder. Formed on the upper surface of the piston to promote intake vortex flow around the parallel to the intake port that is located on one side and communicates with the combustion chamber via the intake valve and the in-plane cylinder axis orthogonal line in the combustion chamber And a recess having a downwardly convex curved surface when viewed at right angles to at least the perpendicular line, and a piston which is continuously provided at the side end of the recess on the upper surface of the piston and gently swells from the recess and above the piston. A raised portion near the bottom surface of the cylinder head at the dead point; an injector having an injection port for injecting fuel toward the recess when the piston is located near the top dead center; Cylinder injection type internal combustion engine, characterized in that a spark plug fuel injected injector is disposed in a position facing the said protuberance reaching receiving flow restriction of the recess.
JP4044008A 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine Expired - Fee Related JP2943486B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4044008A JP2943486B2 (en) 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine
US08/022,630 US5305720A (en) 1992-02-28 1993-02-25 Internal combustion engine
AU33851/93A AU657392B2 (en) 1992-02-28 1993-02-26 Internal combustion engine
DE69301470T DE69301470T2 (en) 1992-02-28 1993-02-26 Internal combustion engine
EP93103136A EP0558072B1 (en) 1992-02-28 1993-02-26 Internal combustion engine
KR1019930002927A KR950003740B1 (en) 1992-02-28 1993-02-27 Internal combustion engine
US08/637,528 USRE36500E (en) 1992-02-28 1996-04-25 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044008A JP2943486B2 (en) 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10074636A Division JP2991182B2 (en) 1998-03-23 1998-03-23 In-cylinder injection type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0681651A true JPH0681651A (en) 1994-03-22
JP2943486B2 JP2943486B2 (en) 1999-08-30

Family

ID=12679674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044008A Expired - Fee Related JP2943486B2 (en) 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2943486B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030633A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
WO1996036808A1 (en) * 1995-05-16 1996-11-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal-combustion engine
US5720253A (en) * 1995-09-11 1998-02-24 Nissan Motor Co., Ltd. Direct-injection type spark-ignition internal combustion engine
JPH10159647A (en) * 1996-11-26 1998-06-16 Suzuki Motor Corp Piston and cylinder injection type engine
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
EP0875670A2 (en) * 1997-04-30 1998-11-04 Yamaha Hatsudoki Kabushiki Kaisha Direct injection type internal combustion engine
EP0928887A2 (en) 1998-01-07 1999-07-14 Nissan Motor Company, Limited In-cylinder direct-injection spark-ignition engine
US6009849A (en) * 1996-08-12 2000-01-04 Mazda Motor Corporation Direct fuel injection engine
US6334427B1 (en) 1998-10-01 2002-01-01 Hitachi, Ltd. Fuel injection method of a direct injection type internal combustion engine, a fuel injector, an internal combustion engine, and a combustion method
EP1188920A2 (en) 2000-09-18 2002-03-20 Hitachi, Ltd. Internal combustion engine
EP1199462A2 (en) 2000-10-20 2002-04-24 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine and piston for internal combustion engine
KR100515254B1 (en) * 1996-08-12 2005-11-25 마츠다 가부시키가이샤 Internal injection engine
JP5909307B1 (en) * 2015-12-26 2016-04-26 康仁 矢尾板 Engine with improved knock resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458030A (en) * 1990-06-27 1992-02-25 Toyota Motor Corp Cylinder injection type two-cycle internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458030A (en) * 1990-06-27 1992-02-25 Toyota Motor Corp Cylinder injection type two-cycle internal combustion engine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
WO1996030633A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
WO1996036808A1 (en) * 1995-05-16 1996-11-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal-combustion engine
US5740777A (en) * 1995-05-16 1998-04-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
US5720253A (en) * 1995-09-11 1998-02-24 Nissan Motor Co., Ltd. Direct-injection type spark-ignition internal combustion engine
US6009849A (en) * 1996-08-12 2000-01-04 Mazda Motor Corporation Direct fuel injection engine
KR100515254B1 (en) * 1996-08-12 2005-11-25 마츠다 가부시키가이샤 Internal injection engine
JPH10159647A (en) * 1996-11-26 1998-06-16 Suzuki Motor Corp Piston and cylinder injection type engine
US6035822A (en) * 1997-04-30 2000-03-14 Yamaha Hatsudoki Kabushiki Kaisha Combustion chamber for direct injected engine
EP0875670A3 (en) * 1997-04-30 1999-07-14 Yamaha Hatsudoki Kabushiki Kaisha Direct injection type internal combustion engine
EP0875670A2 (en) * 1997-04-30 1998-11-04 Yamaha Hatsudoki Kabushiki Kaisha Direct injection type internal combustion engine
US6116211A (en) * 1997-04-30 2000-09-12 Yamaha Hatsudoki Kabushiki Kaisha Injection control for direct injected engine
US6138639A (en) * 1998-01-07 2000-10-31 Nissan Motor Co., Ltd. In-cylinder direct-injection spark-ignition engine
EP0928887A2 (en) 1998-01-07 1999-07-14 Nissan Motor Company, Limited In-cylinder direct-injection spark-ignition engine
US6334427B1 (en) 1998-10-01 2002-01-01 Hitachi, Ltd. Fuel injection method of a direct injection type internal combustion engine, a fuel injector, an internal combustion engine, and a combustion method
DE19947342B4 (en) * 1998-10-01 2008-11-20 Hitachi, Ltd. A fuel injection method and method in a direct injection internal combustion engine, as well as a direct injection fuel injection device and internal combustion engine
EP1188920A2 (en) 2000-09-18 2002-03-20 Hitachi, Ltd. Internal combustion engine
US6668793B2 (en) 2000-09-18 2003-12-30 Hitachi, Ltd. Internal combustion engine
EP1199462A2 (en) 2000-10-20 2002-04-24 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine and piston for internal combustion engine
US6508226B2 (en) 2000-10-20 2003-01-21 Yamaha Hatsudoki Kabushiki Kaisha Combustion chamber for direct injection engine
JP5909307B1 (en) * 2015-12-26 2016-04-26 康仁 矢尾板 Engine with improved knock resistance
JP2017115846A (en) * 2015-12-26 2017-06-29 康仁 矢尾板 Engine with improved anti-knocking characteristic

Also Published As

Publication number Publication date
JP2943486B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JP3158443B2 (en) In-cylinder injection internal combustion engine
KR950003740B1 (en) Internal combustion engine
US4732117A (en) Two-cycle internal combustion engine
JP2002048035A (en) Cylinder fuel injection engine with supercharger
US6612282B2 (en) Combustion chamber for DISI engine
JPH086585B2 (en) 2-cycle internal combustion engine
JPS6312820A (en) Two-cycle internal combustion engine
EP0249129B1 (en) Two-cycle internal combustion engine
JP2943486B2 (en) In-cylinder injection type internal combustion engine
JP2792308B2 (en) In-cylinder injection type internal combustion engine
JP2946917B2 (en) Internal combustion engine
JP2917713B2 (en) In-cylinder injection type internal combustion engine
JPH04506990A (en) Improvement of diesel compression ignition two-cycle internal combustion engine
JP2991182B2 (en) In-cylinder injection type internal combustion engine
JPH05240045A (en) Swirl generating internal combustion engine
JPH04166656A (en) Sub-chamber type engine having exhaust gas recirculation device
JPH0663453B2 (en) 2-cycle internal combustion engine
JPH09242550A (en) Spark ignition engine of direct cylinder fuel injection type
JPH0568608B2 (en)
JPS639627A (en) Two cycle internal combustion engine
JPH06147022A (en) Cylinder injection type internal combustion engine
JPH033934A (en) Fuel injection control device for two-cycle engine
JPH0533650A (en) Two-cycle internal combustion engine
JPH072978Y2 (en) 2-cycle internal combustion engine
JPH086586B2 (en) 2-cycle internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees