JPH06815Y2 - Feedthrough capacitor - Google Patents

Feedthrough capacitor

Info

Publication number
JPH06815Y2
JPH06815Y2 JP1986124760U JP12476086U JPH06815Y2 JP H06815 Y2 JPH06815 Y2 JP H06815Y2 JP 1986124760 U JP1986124760 U JP 1986124760U JP 12476086 U JP12476086 U JP 12476086U JP H06815 Y2 JPH06815 Y2 JP H06815Y2
Authority
JP
Japan
Prior art keywords
axis direction
feedthrough capacitor
capacitor
insulating case
feedthrough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986124760U
Other languages
Japanese (ja)
Other versions
JPS6331521U (en
Inventor
節雄 佐々木
昭一 岩谷
照男 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1986124760U priority Critical patent/JPH06815Y2/en
Publication of JPS6331521U publication Critical patent/JPS6331521U/ja
Application granted granted Critical
Publication of JPH06815Y2 publication Critical patent/JPH06815Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、高周波大電力装置、例えば電子レンジ、放送
用のマグネトロンまたはX線管等のノイズフィルタとし
て使用される高耐電圧の貫通形コンデンサに関し、接地
金具の一面上に固着された貫通コンデンサを絶縁ケース
で包囲し、絶縁ケースで包囲された貫通コンデンサまわ
りに絶縁樹脂を充填した貫通形コンデンサにおいて、長
径方向と短径方向とを有する筒状に形成された絶縁ケー
スに対し、貫通導体の板状端子部を、板面が絶縁ケース
の長径方向と平行になるように配置することにより、高
圧発生部となる貫通導体の端子部と絶縁ケースとの間の
空間距離を大きくして、端子部から接地金具までの沿面
距離を拡大し、耐圧を上げ、耐焼損性を向上させたもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a high withstand voltage feed-through capacitor used as a noise filter for a high frequency and high power device such as a microwave oven, a magnetron for broadcasting, or an X-ray tube. With regard to a through-type capacitor in which a feedthrough capacitor fixed to one surface of a grounding metal is surrounded by an insulating case, and a feedthrough capacitor surrounded by the insulating case is filled with an insulating resin, a tube having a major axis direction and a minor axis direction is provided. By arranging the plate-shaped terminal part of the through conductor in a striped insulating case so that the plate surface is parallel to the major axis direction of the insulating case, it is insulated from the terminal part of the through conductor that becomes the high voltage generating part. The space distance between the case and the case is increased to increase the creepage distance from the terminal portion to the grounding metal to increase the pressure resistance and improve the burnout resistance.

〈従来の技術〉 第6図は従来の貫通形コンデンサの分解斜視図、第7図
は同じく正面部分断面図、第8図は同じく側面部分断面
図を示し、貫通孔2、3を間隔をおいて開口させた両面
に、互いに独立した電極4、5及び共通電極6を有する
貫通磁器コンデンサ1の共通電極6を、接地金具7の浮
上り部71上に半田付け等の手段によって固着すると共
に、貫通磁器コンデンサ1の貫通孔2、3及び接地金具
7の貫通孔8を通って、絶縁チューブ9、10を被せた
貫通導体11、12を貫通させ、この貫通導体11、1
2を、貫通磁器コンデンサ1の電極4、5上に半田付け
固定された電極接続体13、14に、半田付け等の手段
によって挿着してある。
<Prior Art> FIG. 6 is an exploded perspective view of a conventional feedthrough capacitor, FIG. 7 is a front partial sectional view of the same, and FIG. 8 is a side sectional view of the same. The common electrode 6 of the through-hole porcelain capacitor 1 having the electrodes 4 and 5 and the common electrode 6 which are independent from each other is fixed to the floating portion 71 of the grounding metal 7 by means of soldering or the like, on both sides of the opening. The through conductors 11 and 12 covered with the insulating tubes 9 and 10 are passed through the through holes 2 and 3 of the through ceramic capacitor 1 and the through hole 8 of the grounding metal 7, and the through conductors 11 and 1 are penetrated.
2 is attached to the electrode connectors 13 and 14 fixed to the electrodes 4 and 5 of the through-hole porcelain capacitor 1 by soldering by means such as soldering.

貫通磁器コンデンサ1は貫通孔2、3を間隔をおいて併
設してあるので、貫通孔2、3のある方向を長径方向と
し、これに直交する方向を短径方向とする形状とし、長
径方向の両端の外周面を半円弧状とすると共に、半円弧
状の両端部間を平行平面で連続させた形状となってい
る。
Since the through-hole porcelain capacitor 1 has through-holes 2 and 3 arranged side by side, a direction in which the through-holes 2 and 3 are present is defined as a major axis direction, and a direction orthogonal to this is defined as a minor axis direction. The outer peripheral surfaces of both ends are formed in a semi-circular shape, and both end portions of the semi-arcuate shape are connected by parallel planes.

接地金具7は、鉄板等の金属板材に対して絞り成形加工
を施すことにより、一面側の中間部に、平面状外周縁か
ら適当な高さで立上がる浮上り部71を突出させ、浮上
り部71の外周に、貫通磁器コンデンシサ1を包囲する
ように、絶縁ケース17を挿着すると共に、他面側に、
貫通導体11、12を包囲するように、絶縁カバー18
を挿着させてある。接地金具7の浮上り部71の平面形
状及び絶縁ケース17の内径形状は、貫通磁器コンデン
サ1の外形形状と略相似の、長径方向と短径方向とを有
する形状となっている。そして、絶縁ケース17及び絶
縁カバー18で包囲された貫通磁器コンデンサ1の内外
に、エポキシ樹脂等でなる外部充填絶縁樹脂15及び内
部充填絶縁緑樹脂16を充填し、耐湿性及び絶縁性を確
保してある。
The grounding metal 7 is formed by subjecting a metal plate material such as an iron plate to a drawing process so that a floating portion 71, which rises at an appropriate height from a flat outer peripheral edge, is projected at an intermediate portion on the one surface side to float. The insulating case 17 is attached to the outer periphery of the portion 71 so as to surround the through-hole porcelain condenser 1, and the other surface side is
The insulating cover 18 is provided so as to surround the through conductors 11 and 12.
Is attached. The plane shape of the floating portion 71 of the grounding metal 7 and the inner diameter shape of the insulating case 17 are substantially similar to the outer shape of the through-hole porcelain capacitor 1 and have a major axis direction and a minor axis direction. Then, the inside and outside of the through-hole porcelain capacitor 1 surrounded by the insulating case 17 and the insulating cover 18 are filled with an externally filled insulating resin 15 and an internally filled insulating green resin 16 made of epoxy resin or the like to secure moisture resistance and insulation. There is.

貫通導体11、12の絶縁ケース17側の端部には、絶
縁樹脂15の表面151から外部に突出するファストン
タブ接続子等の平板状の端子部111、121を形成してあ
る。この端子部111、121は、幅方向が絶縁ケース17の
短径方向と一致するように配置してある。
Flat terminal portions 111 and 121, such as Faston tab connectors, which project outward from the surface 151 of the insulating resin 15 are formed at the ends of the through conductors 11 and 12 on the insulating case 17 side. The terminal portions 111 and 121 are arranged so that the width direction thereof coincides with the short diameter direction of the insulating case 17.

絶縁ケース17は、一般には、PBT等の熱可塑性絶縁
樹脂を用いて筒状に形成されている。
The insulating case 17 is generally formed in a tubular shape using a thermoplastic insulating resin such as PBT.

第9図は上記した貫通形コンデンサをマグネトロンのフ
ィルタとして使用した場合の部分断面図で、19はフィ
ルタボックスである。貫通形コンデンサは接地金具7を
フィルタボックス19に取付け固定してある。
FIG. 9 is a partial cross-sectional view when the feedthrough capacitor described above is used as a magnetron filter, and 19 is a filter box. In the feedthrough capacitor, the grounding metal 7 is attached and fixed to the filter box 19.

〈考案が解決しようとする課題〉 上述したように、従来は、内径が長径方向と短径方向と
を有する形状となっている筒状の絶縁ケース17を使用
し、絶縁樹脂15の表面151から外部に突出する平板状
の端子部111、121を、寸法的に長い幅方向が絶縁ケース
17の短径方向と一致するように配置してあったため、
端子部111、121の端部から絶縁ケース17の内壁
面までの空間距離Gが短くなってしまう。
<Problems to be Solved by the Invention> As described above, conventionally, the cylindrical insulating case 17 having an inner diameter having a major axis direction and a minor axis direction is used, and the surface 151 of the insulating resin 15 is removed from the surface 151. Since the flat plate-shaped terminal portions 111 and 121 protruding to the outside are arranged so that the dimensionally long width direction thereof coincides with the short diameter direction of the insulating case 17,
The spatial distance G 1 from the ends of the terminal portions 111 and 121 to the inner wall surface of the insulating case 17 becomes short.

しかも、当該貫通形コンデンサを、第9図に示したよう
に、電子レンジのマグネトロン等に使用した場合、その
使用環境が台所や厨房等のように、湿度が高く、油煙、
ゴミ、チリ等の多い場所となる。このように、使用環境
が悪い上に、高電圧が印加されて静電的力が発生するた
め、絶縁樹脂15の表面151及び絶縁ケース17の表面
に大気中の油煙、ゴミ、チリ(ロ)が付着する。特に、
端子111、121の端部から絶縁ケース17の短径方向の内
壁面までの空間距離Gが前述のように短いため、この
部分に油煙、ゴミ、チリ(ロ)が詰まり易い。これに周
囲温度変化による結露が加わった場合、絶縁樹脂15の
表面151及び絶縁ケース17の表面が吸湿性となって、
その表面抵抗が著しく低下してしまう。
Moreover, as shown in FIG. 9, when the feedthrough capacitor is used in a magnetron of a microwave oven, the environment of use is high, such as in a kitchen or kitchen, and the oil smoke,
It becomes a place with lots of garbage and dust. In this way, in addition to the bad working environment, a high voltage is applied to generate an electrostatic force, so that the surface 151 of the insulating resin 15 and the surface of the insulating case 17 contain oil fumes, dust, dust (b) in the atmosphere. Adheres. In particular,
Since the spatial distance G 1 from the end portions of the terminals 111 and 121 to the inner wall surface of the insulating case 17 in the minor axis direction is short as described above, this portion is easily clogged with oil smoke, dust, and dust (B). When dew condensation is caused by a change in ambient temperature, the surface 151 of the insulating resin 15 and the surface of the insulating case 17 become hygroscopic,
The surface resistance is significantly reduced.

このため、端子部111、121と絶縁ケース17との間の狭
い空間距離G、絶縁樹脂15の表面151及び絶縁ケー
ス17の表面に付着した油煙、ゴミ、チリ(ロ)および
結露による吸湿により、端子部111、121から外部充填絶
縁樹脂15の表面151及び絶縁ケース17の表面を通
り、接地金具7に至る経路(イ)で沿面放電を発生し、
絶縁ケース17の焼損事故を発生するという問題点があ
った。
Therefore, due to a narrow space distance G 1 between the terminal portions 111 and 121 and the insulating case 17, the surface 151 of the insulating resin 15 and the oil smoke adhering to the surface of the insulating case 17, dust, dust (b), and moisture absorption due to dew condensation. , Creeping discharge is generated in a path (a) from the terminal portions 111 and 121 to the grounding metal 7 through the surface 151 of the external filling insulating resin 15 and the surface of the insulating case 17.
There is a problem in that the insulating case 17 is burnt out.

焼損事故を防止する手段として、絶縁ケース17を難燃
性の熱硬化性樹脂または磁器で形成したものも知られて
いるが、この場合には、エポキシ樹脂でなる外部充填絶
縁樹脂15の充填硬化処理工程において、絶縁ケース1
7の内面に外部充填絶縁樹脂15が強く密着し、外部充
填絶縁樹脂15に絶縁ケース17の方向に向う引張り応
力が発生する。このため、外部充填絶縁樹脂15と貫通
磁器コンデンサ1との界面に剥離を発生し、耐圧不良を
生じてしまうという問題点を生じる。
As a means for preventing a burnout accident, it is known that the insulating case 17 is made of flame-retardant thermosetting resin or porcelain. In this case, the filling and hardening of the external filling insulating resin 15 made of epoxy resin is performed. Insulation case 1 in the treatment process
The outer filling insulating resin 15 strongly adheres to the inner surface of 7, and tensile stress is generated in the outer filling insulating resin 15 toward the insulating case 17. Therefore, there is a problem that peeling occurs at the interface between the externally filled insulating resin 15 and the through-hole porcelain capacitor 1 and a breakdown voltage defect occurs.

〈課題を解決するための手段〉 上述した課題解決のため、本考案は、接地金具と、貫通
コンデンサと、絶縁ケースと、絶縁樹脂と、電極接続体
と、貫通導体とを含む貫通形コンデンサであって、 前記接地金具は、板材で構成され、一面側に浮上り部を
有しており、 前記貫通コンデンサは、相対向する両面に電極を有する
と共に、前記両面の方向に貫通する貫通孔を有し、前記
電極の一方が前記接地金具の前記浮上り部の表面上に固
着されて前記接地金具の上に取付けられており、 前記絶縁ケースは、内径が長径方向と短径方向とを有す
る筒状に形成され、前記貫通コンデンサを包囲するよう
に配置されており、 前記絶縁樹脂は、前記絶縁ケースで包囲された前記貫通
コンデンサのまわりに充填されており、 前記電極接続体は、前記貫通コンデンサの前記電極の他
方に接続されており、 前記貫通導体は、端子部と、貫通導体部とを有し、前記
貫通コンデンサの前記電極の他方に前記電極接続体を介
して接続されており、 前記端子部は、板状であって、前記電極接続体の上方に
おいて前記絶縁樹脂の外部に突出して導出され、幅方向
が前記絶縁ケースの長径方向に一致するように配置され
ており、前記貫通導体部は、幅が前記端子部の幅よりも
十分に小さく、かつ、幅と厚みとの差が前記端子部の幅
と厚みとの差よりも充分に小さい棒状に形成され、前記
貫通孔内を貫通している。
<Means for Solving the Problems> In order to solve the above problems, the present invention provides a feedthrough capacitor including a grounding metal fitting, a feedthrough capacitor, an insulating case, an insulating resin, an electrode connector, and a feedthrough conductor. There, the grounding metal is composed of a plate material, and has a floating portion on one surface side, the through-capacitor has electrodes on both surfaces facing each other, and a through-hole penetrating in the direction of both surfaces. One of the electrodes is fixed on the surface of the floating portion of the grounding metal and is mounted on the grounding metal, and the insulating case has an inner diameter in a major axis direction and a minor axis direction. It is formed in a tubular shape and is arranged so as to surround the feedthrough capacitor, the insulating resin is filled around the feedthrough capacitor surrounded by the insulating case, and the electrode connection body is formed through the feedthrough. Ko It is connected to the other of the electrodes of the denser, the through conductor has a terminal portion, and a through conductor portion, is connected to the other of the electrodes of the through capacitor via the electrode connection body, The terminal portion is plate-shaped, is projected and led out of the insulating resin above the electrode connector, and is arranged so that a width direction thereof coincides with a major axis direction of the insulating case. The conductor portion is formed in the shape of a rod whose width is sufficiently smaller than the width of the terminal portion and whose difference between the width and the thickness is sufficiently smaller than the difference between the width and the thickness of the terminal portion. Penetrates through.

〈作用〉 貫通コンデンサは相対向する両面に電極を有し、電極の
一方が接地金具の浮上り部の表面上に固着されて接地金
具の上に取付けられており、電極接続体は貫通コンデン
サの電極の他方に接続されており、貫通導体は端子部が
電極接続体の上方において外部に突出して導出されてい
るから、貫通導体の端子部が接地金具上に設置されてい
る貫通コンデンサ側に位置する。この構造のために、端
子部をマグネトロン等の外部に位置させ、外部から組合
されるコネクタをそのまま端子部で受けることが可能に
なる。また、貫通コンデンサが貫通導体の端子部と同一
の方向に位置するので、端子部をマグネトロン等の外部
に位置させた場合、貫通コンデンサもマグネトロンなの
外部に位置する。このため、端子部に対する外部コネク
タの接続の容易さと共に、貫通コンデンサに対するマグ
ネトロン内部雰囲気の悪影響を回避できる。
<Action> The feedthrough capacitor has electrodes on opposite sides, and one of the electrodes is fixed on the surface of the floating part of the grounding metal fitting and is mounted on the grounding metal fitting. Since the terminal part of the through conductor is connected to the other side of the electrode and the terminal part projects out above the electrode connector, the terminal part of the through conductor is located on the side of the through capacitor that is installed on the grounding metal fitting. To do. Due to this structure, it is possible to position the terminal portion outside the magnetron or the like and receive the connector assembled from the outside with the terminal portion as it is. Further, since the feedthrough capacitor is located in the same direction as the terminal portion of the feedthrough conductor, when the terminal portion is located outside the magnetron or the like, the feedthrough capacitor is also located outside the magnetron. Therefore, it is possible to easily connect the external connector to the terminal portion and avoid the adverse effect of the magnetron internal atmosphere on the feedthrough capacitor.

絶縁樹脂は絶縁ケースで包囲された貫通コンデンサのま
わりに充填されており、貫通導体は端子部が電極接続体
の上方において絶縁樹脂の外部に突出して導出されてい
るから、貫通導体の端子部を絶縁樹脂によって補強し、
特に、外部コネクタ挿脱時の外力に充分に対抗できる機
械的強度を確保することができる。
The insulating resin is filled around the feedthrough capacitor surrounded by the insulating case, and the terminal portion of the feedthrough conductor is projected and led out to the outside of the insulating resin above the electrode connector, so that the terminal portion of the feedthrough conductor is Reinforce with insulating resin,
In particular, it is possible to ensure the mechanical strength that can sufficiently resist the external force when the external connector is inserted and removed.

絶縁ケースは内径が長径方向と短径方向とを有する筒状
に形成されており、貫通導体の端子部は、板状であっ
て、幅方向が絶縁ケースの長径方向に一致するように配
置されているから、端子部から絶縁ケースの内面までの
空間距離を大きくとることが可能になる。このため、貫
通コンデンサが貫通導体の端子部と同一の方向に位置す
る構造をとり、絶縁ケースで囲った構造において、絶縁
ケースに油煙、ゴミもしくはチリ等が付着した場合で
も、焼損事故を確実に防止できる。
The insulating case is formed in a cylindrical shape having an inner diameter having a major axis direction and a minor axis direction, and the terminal portion of the through conductor is plate-shaped and arranged so that the width direction thereof coincides with the major axis direction of the insulating case. Therefore, it is possible to increase the spatial distance from the terminal portion to the inner surface of the insulating case. Therefore, the feedthrough capacitor has a structure in which it is located in the same direction as the terminal portion of the feedthrough conductor, and in the structure surrounded by the insulating case, even if oil smoke, dust, dust, or the like adheres to the insulating case, the burnout accident can be ensured. It can be prevented.

貫通導体部は、幅が端子部の幅よりも十分に小さく、か
つ、幅と厚みとの差が端子部の幅と厚みとの差よりも充
分に小さい棒状に形成されているから、貫通導体部によ
る誘電体磁器の体積縮小を最小限に抑えることができ
る。このため、相対向する両面に電極を有する貫通コン
デンサを用いたこの種の貫通形コンデンサにおいて、誘
電体磁器の体積縮小による容量低下を招くことがない。
Since the penetrating conductor portion is formed in a rod shape whose width is sufficiently smaller than the width of the terminal portion and whose difference between the width and thickness is sufficiently smaller than the difference between the width and thickness of the terminal portion, the penetrating conductor portion The volume reduction of the dielectric porcelain due to the portion can be suppressed to the minimum. Therefore, in this type of feedthrough capacitor that uses feedthrough capacitors having electrodes on opposite sides, the capacitance does not decrease due to the volume reduction of the dielectric porcelain.

従って、端子部による耐圧向上と共に、容量低下を防止
した貫通形コンデンサが得られる。
Therefore, it is possible to obtain a feedthrough capacitor in which the withstand voltage is improved by the terminal portion and the capacitance is prevented from decreasing.

〈実施例〉 第1図は本考案に係る貫通形コンデンサの正面部分断面
図、第2図は同じくその側面部分断面図、第3図は同じ
くその平面図である。図において、第6図〜第8図と同
一の参照符号は同一性ある構成部分を示している。従来
と同様に、貫通磁器コンデンサ1は長径方向に間隔をお
いて2つの貫通孔2、3を併設し、貫通孔2、3のそれ
ぞれに対して、貫通導体11、12を備えさせてあり、
長径方向の両端部の外周面を半円弧状に形成すると共
に、短径方向の外周面を平面状とした形状とし、この貫
通磁器コンデンシサ1のまわりに間隔をおいて、同筒状
に、絶縁ケース17を配置してある。
<Embodiment> FIG. 1 is a partial front sectional view of a feedthrough capacitor according to the present invention, FIG. 2 is a partial side sectional view thereof, and FIG. 3 is a plan view thereof. In the figure, the same reference numerals as those in FIGS. 6 to 8 denote the same components. Similarly to the conventional case, the through-hole porcelain capacitor 1 is provided with two through-holes 2 and 3 spaced apart in the major axis direction, and the through-hole conductors 11 and 12 are provided for the through-holes 2 and 3, respectively.
The outer peripheral surfaces of the both ends in the major axis direction are formed in a semi-circular shape, and the outer peripheral surface in the minor axis direction is formed into a flat shape. A case 17 is arranged.

絶縁ケース17は、従来と同様に、PBT等の熱可塑性
絶縁樹脂を用い、内径が長径方向と短径方向とを有する
筒状に形成してある。貫通導体11、12は接地金具7
とは反対側に位置する電極接続体13、14の上方にお
いて絶縁樹脂15の表面151から外部に突出して導出さ
れた板状の端子部111、121を、幅方向が絶縁ケース17
の長径方向に一致するように配置してある。つまり、従
来との比較では、90度回転させた構造である。
As in the conventional case, the insulating case 17 is made of a thermoplastic insulating resin such as PBT and is formed in a tubular shape having an inner diameter in the major axis direction and a minor axis direction. The through conductors 11 and 12 are the grounding metal 7
The plate-shaped terminal portions 111, 121 protruding outward from the surface 151 of the insulating resin 15 above the electrode connecting bodies 13, 14 located on the opposite side to the insulating case 17 are arranged in the width direction.
Are arranged so as to coincide with the major axis direction of. That is, compared with the conventional structure, the structure is rotated by 90 degrees.

従って、端子部111、121は、寸法的に長い幅方向が絶縁
ケース17の長径方向に一致し、寸法的に短い板厚方向
が短径方向に一致する。このため、端子部111、121から
絶縁ケース17の内面までの長径方向での空間距離Aの
みならず、短径方向での空間距離Bをも大きくとること
が可能になり、絶縁ケース17に油煙、ゴミもしくはチ
リ等が付着した場合でも、沿面放電を阻止し、焼損事故
を確実に防止できる。空間距離A、Bは全方向での空間
距離が均一になるように、略等しくするのが望ましい。
Therefore, in the terminal portions 111 and 121, the dimensionally long width direction is aligned with the major axis direction of the insulating case 17, and the dimensionally short plate thickness direction is aligned with the minor axis direction. For this reason, not only the spatial distance A in the major axis direction from the terminal portions 111 and 121 to the inner surface of the insulating case 17 but also the spatial distance B in the minor axis direction can be made large, and the insulating case 17 can be covered with oil smoke. Even if dust, dust, or the like adheres, the creeping discharge can be prevented and the burnout accident can be reliably prevented. It is desirable that the spatial distances A and B be substantially equal so that the spatial distances in all directions are uniform.

貫通導体部112、122は、幅が端子部111、121の幅よりも十
分に小さく、かつ、幅と厚みとの差が端子部111、121の
幅と厚みとの差よりも十分に小さい棒状に形成されてい
る。従って、貫通導体部112、122による誘電磁器の体積
縮小を最小限に抑えることができる。このため、相対向
する両面に電極4、5を有する貫通コンデンサを用いた
この種の貫通形コンデンサにおいて、誘電体磁器の体積
縮小による容量低下を招くことがない。
The penetrating conductor portions 112, 122 have a width that is sufficiently smaller than the width of the terminal portions 111, 121, and the difference between the width and the thickness is sufficiently smaller than the difference between the width and thickness of the terminal portions 111, 121. Is formed in. Therefore, it is possible to minimize the volume reduction of the dielectric ceramic due to the penetrating conductors 112 and 122. For this reason, in this type of feedthrough capacitor using feedthrough capacitors having electrodes 4 and 5 on opposite sides, the capacity is not reduced due to the volume reduction of the dielectric ceramic.

本考案に係る貫通形コンデンサは、マグネトロン等のフ
ィルタとして組込んだ場合は、第4図に示すような取付
け構造になり、端子部111、121の板厚方向の面が、床面
に対し平行になるように取付けられる。
When the feedthrough capacitor according to the present invention is incorporated as a filter such as a magnetron, it has a mounting structure as shown in FIG. 4, and the surfaces of the terminal portions 111 and 121 in the plate thickness direction are parallel to the floor surface. Is installed.

第5図は本考案に係る貫通形コンデンサ(本考案品)と
従来の貫通形コンデンサ(従来品)の加湿耐圧試験デー
タを示す図である。加湿耐圧試験は、貫通形コンデンサ
を電子レンジのマグネトロンのフィルタボッスクに取付
けると共に、超音波加湿器を用いて連続加湿し、更に電
子レンジをオン、オフさせて断続的に電圧を印加するモ
デル実験を行なった。
FIG. 5 is a diagram showing humidification withstand voltage test data of a feedthrough capacitor according to the present invention (product of the present invention) and a conventional feedthrough capacitor (conventional product). The humidification pressure test is a model experiment in which a feedthrough capacitor is attached to the filter box of the magnetron of a microwave oven, continuous humidification is performed using an ultrasonic humidifier, and the microwave oven is turned on and off to intermittently apply voltage. Was done.

この第5図の試験データから明らかなように、従来品で
は350時間で累積故障率が90%を越えてしまう。こ
れに対して、本考案品では、350時間では累積故障率
は零である。その倍の700時間でようやく10%以下
の故障を生じる程度であり、耐湿、耐圧特性が著しく改
善されていることが解る。
As is clear from the test data of FIG. 5, the cumulative failure rate exceeds 90% in 350 hours in the conventional product. On the other hand, in the product of the present invention, the cumulative failure rate is zero at 350 hours. It is only about 10% or less of failure at 700 hours, which is twice that, and it can be seen that the moisture resistance and pressure resistance characteristics are remarkably improved.

〈考案の効果〉 以上述べたように、本考案によれば、次のような効果が
得られる。
<Effect of the Invention> As described above, according to the present invention, the following effects can be obtained.

(a)端子部をマグネトロン等の外部に位置させ、外部
から組合されるコネクタをそのまま端子部で受けること
の可能な貫通形コンデンサを提供できる。また、貫通コ
ンデンサが貫通導体の端子部と同一の方向に位置するの
で、端子部をマグネトロン等の外部に位置させた場合、
貫通コンデンサもマグネトロン等の外部に位置する。こ
のため、端子部に対する外部コネクタの接続の容易さと
共に、貫通コンデンサに対するマグネトロン内部雰囲気
の悪影響を回避し得る貫通形コンデンサを提供できる。
(A) It is possible to provide a feedthrough capacitor in which the terminal portion is located outside the magnetron or the like, and the connector assembled from the outside can be directly received by the terminal portion. Further, since the feedthrough capacitor is located in the same direction as the terminal portion of the feedthrough conductor, when the terminal portion is located outside the magnetron, etc.,
The feedthrough capacitor is also located outside the magnetron or the like. For this reason, it is possible to provide a feedthrough capacitor which can easily connect the external connector to the terminal portion and can avoid the adverse effect of the magnetron internal atmosphere on the feedthrough capacitor.

(b)貫通導体の端子部を絶縁樹脂によって補強し、特
に、外部コネクタ挿脱時の外力に充分に対向できる機械
的強度を確保することができる。
(B) The terminal portion of the penetrating conductor is reinforced with an insulating resin, and in particular, it is possible to secure mechanical strength that can sufficiently oppose external force when the external connector is inserted and removed.

(c)端子部から絶縁ケースの内面までの空間距離を大
きくとり、貫通コンデンサが貫通導体の端子部と同一の
方向に位置する構造をとり、絶縁ケースで囲った構造の
貫通形コンデンサにおいて、絶縁ケースに油煙、ゴミも
しくはチリ等が付着した場合でも、焼損事故を確実に防
止できる。
(C) In a feedthrough capacitor having a structure in which the space distance from the terminal portion to the inner surface of the insulating case is large and the feedthrough capacitor is located in the same direction as the terminal portion of the feedthrough conductor, the feedthrough capacitor is surrounded by the insulating case. Even if oily smoke, dust, dust, etc. adhere to the case, it is possible to reliably prevent a burnout accident.

(d)貫通導体部による誘電体磁器の体積縮小を最小限
に抑えることができる。このため、相対向する両面に電
極を有する貫通コンデンサを用いたこの種の貫通形コン
デンサにおいて、誘電体磁器の体積縮小による容量低下
を招くことがない。この結果、端子部による耐圧向上と
共に、容量低下を防止した貫通形コンデンサを提供でき
る。
(D) It is possible to minimize the volume reduction of the dielectric ceramic due to the penetrating conductor portion. Therefore, in this type of feedthrough capacitor that uses feedthrough capacitors having electrodes on opposite sides, the capacitance does not decrease due to the volume reduction of the dielectric porcelain. As a result, it is possible to provide a feedthrough capacitor in which the withstand voltage is improved by the terminal portion and the capacitance is prevented from decreasing.

【図面の簡単な説明】[Brief description of drawings]

第1図は同じく正面部分断面図、第2図は同じくその側
面部分断面図、第3図は同じく平面図、第4図は本考案
に係る貫通形コンデンサをマグネトロンのフィルタとし
て使用した状態を示す図、第5図は本考案に係る貫通形
コンデンサ(本考案品)と従来の貫通形コンデンサ(従
来品)の加湿耐圧試験データを示す図、第6図は従来の
貫通形コンデンサの分解斜視図、第7図は同じく正面部
分断面図、第8図は同じく側面部分断面図、第9図は従
来の貫通形コンデンサをマグネトロンのフィルタとして
使用した状態を示す図である。 1……貫通コンデンサ 4、5、6……電極 7……接地金具 11、12……貫通導体 15……絶縁樹脂 17……絶縁ケース 111、121……端子部
1 is a front partial sectional view, FIG. 2 is a side partial sectional view of the same, FIG. 3 is a plan view of the same, and FIG. 4 shows a state in which the feedthrough capacitor according to the present invention is used as a magnetron filter. 5 and 5 are views showing humidification withstand voltage test data of a feedthrough capacitor according to the present invention (product of the present invention) and a conventional feedthrough capacitor (conventional product), and FIG. 6 is an exploded perspective view of the conventional feedthrough capacitor. FIG. 7 is a front partial sectional view of the same, FIG. 8 is a side partial sectional view of the same, and FIG. 9 is a diagram showing a state in which a conventional feedthrough capacitor is used as a magnetron filter. 1 ... Feed-through capacitor 4, 5, 6 ... Electrode 7 ... Grounding metal fitting 11, 12 ... Feed-through conductor 15 ... Insulating resin 17 ... Insulation case 111, 121 ... Terminal part

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】接地金具と、貫通コンデンサと、絶縁ケー
スと、絶縁樹脂と、電極接続体と、貫通導体とを含む貫
通形コンデンサであって、 前記接地金具は、板材で構成され、一面側に浮上り部を
有しており、 前記貫通コンデンサは、相対向する両面に電極を有する
と共に、前記両面の方向に貫通する貫通孔を有し、前記
電極の一方が前記接地金具の前記浮上り部の表面上に固
着されて前記接地金具の上に取付けられており、 前記絶縁ケースは、内径が長径方向と短径方向とを有す
る筒状に形成され、前記貫通コンデンサを包囲するよう
に配置されており、 前記絶縁樹脂は、前記絶縁ケースで包囲された前記貫通
コンデンサのまわりに充填されており、 前記電極接続体は、前記貫通コンデンサの前記電極の他
方に接続されており、 前記貫通導体は、端子部と、貫通導体部とを有し、前記
貫通コンデンサの前記電極の他方に前記電極接続体を介
して接続されており、 前記端子部は、板状であって、前記電極接続体の上方に
おいて前記絶縁樹脂の外部に突出して導出され、幅方向
が前記絶縁ケースの長径方向に一致するように配置され
ており、 前記貫通導体部は、幅が前記端子部の幅よりも十分に小
さく、かつ、幅と厚みとの差が前記端子部の幅と厚みと
の差よりも充分に小さい棒状に形成され、前記貫通孔内
を貫通している貫通形コンデンサ。
1. A through-type capacitor including a grounding metal fitting, a feedthrough capacitor, an insulating case, an insulating resin, an electrode connector, and a feedthrough conductor, wherein the grounding metal fitting is made of a plate material, and one surface side thereof is provided. The feedthrough capacitor has electrodes on both surfaces facing each other, and has a through hole penetrating in the direction of both sides, and one of the electrodes is the floating portion of the grounding metal. Fixed on the surface of the part and mounted on the grounding metal, the insulating case is formed in a tubular shape having an inner diameter in a major axis direction and a minor axis direction, and is arranged so as to surround the feedthrough capacitor. The insulating resin is filled around the feedthrough capacitor surrounded by the insulating case, the electrode connection body is connected to the other of the electrodes of the feedthrough capacitor, The body has a terminal portion and a through conductor portion, and is connected to the other of the electrodes of the through capacitor via the electrode connecting body, and the terminal portion is plate-shaped, and the electrode connection is provided. It is projected to the outside of the insulating resin above the body and is arranged so that the width direction matches the major axis direction of the insulating case, and the through conductor portion has a width sufficiently larger than the width of the terminal portion. A through-type capacitor that is formed into a rod shape having a very small difference in width and thickness sufficiently smaller than a difference in width and thickness of the terminal portion and penetrates through the through hole.
【請求項2】前記貫通コンデンサは、長径方向と短径方
向とを有し長径方向に間隔をおいて2つの貫通孔を併設
してなり、 前記貫通導体は、前記貫通孔のそれぞれに対して備えら
れている 実用新案登録請求の範囲第1項に記載の貫通形コンデン
サ。
2. The feedthrough capacitor has two through holes provided in parallel with each other in a major axis direction and a minor axis direction and spaced from each other in the major axis direction, and the through conductor is provided for each of the through holes. The feed-through capacitor according to claim 1, which is provided with the utility model registration claim.
【請求項3】前記貫通コンデンサは、長径方向の両端部
の外周面が円弧状で、短径方向の両外周面が平面状であ
り、 前記絶縁ケースは、前記貫通コンデンサに対して同筒状
に配置されている 実用新案登録請求の範囲第2項に記載の貫通形コンデン
サ。
3. The feedthrough capacitor has arcuate outer peripheral surfaces at both ends in the major axis direction, and both outer peripheral surfaces in the minor axis direction are flat, and the insulating case has the same tubular shape as the feedthrough capacitor. The feedthrough capacitor according to claim 2 which is located in the utility model registration claim.
【請求項4】前記端子部の端部から前記絶縁ケースの内
壁面に至る短径方向の空間距離と、長径方向の空間距離
とが略等しい実用新案登録請求の範囲第3項に記載の貫
通形コンデンサ。
4. The penetration according to claim 3, wherein the spatial distance in the minor axis direction from the end portion of the terminal portion to the inner wall surface of the insulating case is substantially equal to the spatial distance in the major axis direction. Shaped capacitors.
JP1986124760U 1986-08-14 1986-08-14 Feedthrough capacitor Expired - Lifetime JPH06815Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986124760U JPH06815Y2 (en) 1986-08-14 1986-08-14 Feedthrough capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986124760U JPH06815Y2 (en) 1986-08-14 1986-08-14 Feedthrough capacitor

Publications (2)

Publication Number Publication Date
JPS6331521U JPS6331521U (en) 1988-03-01
JPH06815Y2 true JPH06815Y2 (en) 1994-01-05

Family

ID=31017073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986124760U Expired - Lifetime JPH06815Y2 (en) 1986-08-14 1986-08-14 Feedthrough capacitor

Country Status (1)

Country Link
JP (1) JPH06815Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171238U (en) * 1985-04-10 1986-10-24

Also Published As

Publication number Publication date
JPS6331521U (en) 1988-03-01

Similar Documents

Publication Publication Date Title
KR920007980B1 (en) Through-type capacitor and magnetron using the same
US4768129A (en) Through type twin capacitor
JPH10149948A (en) High-voltage coaxial capacitor
JP3803258B2 (en) High-voltage feedthrough capacitor and magnetron
JPH06815Y2 (en) Feedthrough capacitor
JPH0423310Y2 (en)
JPH0423311Y2 (en)
JPH0423309Y2 (en)
JP2580629Y2 (en) High voltage capacitors and magnetrons
JPS5930521Y2 (en) High voltage feed-through capacitor
JPS5930522Y2 (en) High voltage feed-through capacitor
JP2571361Y2 (en) High voltage capacitors and magnetrons
JPS6348112Y2 (en)
JPH0419786Y2 (en)
JPS593567Y2 (en) Electrolytic capacitor
JPH0423312Y2 (en)
JPS587633Y2 (en) Feedthrough capacitor
JPS5915480Y2 (en) High voltage feed-through capacitor
JPH0310665Y2 (en)
JP2580628Y2 (en) High voltage capacitors and magnetrons
JP2519511Y2 (en) High voltage capacitors
JP3690662B2 (en) High-voltage feedthrough capacitor and magnetron
JP2519507Y2 (en) High voltage capacitors
JPS631446Y2 (en)
JPH0528021U (en) High voltage capacitor and magnetron