JPH0680592A - Method for purifying chlorofluoroalkane - Google Patents

Method for purifying chlorofluoroalkane

Info

Publication number
JPH0680592A
JPH0680592A JP3116670A JP11667091A JPH0680592A JP H0680592 A JPH0680592 A JP H0680592A JP 3116670 A JP3116670 A JP 3116670A JP 11667091 A JP11667091 A JP 11667091A JP H0680592 A JPH0680592 A JP H0680592A
Authority
JP
Japan
Prior art keywords
hours
cfc
reaction
ppm
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3116670A
Other languages
Japanese (ja)
Other versions
JP2937539B2 (en
Inventor
Shizuo Chiba
静男 千葉
Yasumasa Mochizuki
康誠 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP3116670A priority Critical patent/JP2937539B2/en
Publication of JPH0680592A publication Critical patent/JPH0680592A/en
Application granted granted Critical
Publication of JP2937539B2 publication Critical patent/JP2937539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a highly pure chlorofluoroalkane by decomposing chlorofluoro alkenes contained in the chlorofluoroalkane in a slight amount. CONSTITUTION:The chlorofluoro alkane containing chlorofluoro alkenes is brought into contact with an active carbon catalyst at a temperature of 80-300 deg.C in the presence of oxygen in gas phase to decompose the chlorofluoroalkenes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩弗化アルカン中に微
量に含まれる塩弗化アルケンを分解し、高純度の塩弗化
アルカンを得るのに好適な方法に関する。
TECHNICAL FIELD The present invention relates to a method suitable for obtaining a highly pure salt-fluorinated alkane by decomposing a salt-fluorinated alken contained in a small amount in the salt-fluorinated alkane.

【0002】[0002]

【従来の技術】塩弗化アルケンは、クロロフルオロカー
ボン、例えばトリクロロフルオロメタン又はジクロロフ
ルオロメタンの代替品と考えられている塩弗化アルカ
ン、例えば2,2-ジクロロ-1,1,1−トリフルオロエタン又
は1,1,1,2-テトラフルオロエタンの製造過程において副
生物として形成される。これら副生物の幾つかは潜在的
に毒性があり且つ腐食性を有するため、比較的少量存在
しても好ましくなく、塩弗化アルカンから塩弗化アルケ
ンを除去することが必要になる。しかし塩弗化アルケン
の沸点は製品となる塩弗化アルカンの沸点と非常に近い
ので、通常の分別蒸留方法では十分に低いレベルまで簡
単に除去できない。
BACKGROUND OF THE INVENTION Chlorofluorinated alkenes are chlorofluorocarbons such as trichlorofluoromethane or dichlorofluoromethane, which are believed to be alternatives to dichlorofluoromethane, such as 2,2-dichloro-1,1,1-trifluoro. It is formed as a by-product in the production process of ethane or 1,1,1,2-tetrafluoroethane. Since some of these by-products are potentially toxic and corrosive, their presence in relatively small amounts is undesirable and necessitates the removal of chlorofluorinated alkenes from chlorofluorinated alkanes. However, since the boiling point of the chlorofluoroalkane is very close to that of the chlorofluoroalkane to be the product, it cannot be easily removed to a sufficiently low level by a conventional fractional distillation method.

【0003】従来このような塩弗化アルカン中の塩弗化
アルケンの除去には、酸化分解法として、過マンガン酸
アルカリ金属塩の水溶液と接触させる方法(特開平2-28
2338号, 米国特許第 4129603号)が示されているが、多
量の過マンガン酸アルカリ金属塩が必要となるばかり
か、廃液処理も問題となる。また吸着法として活性炭で
吸着させ除去する方法(特開平2-268124号)も示されて
いるが、除去すべき塩弗化アルケンの濃度の影響を受け
やすいばかりでなく、除去量に対し大量の活性炭が必要
とされるか、活性炭床の頻繁な再生が必要とされる。さ
らに、水素化法として白金族の触媒の存在下で水素と反
応させる方法(特開平2-273634号)が示されているが、
水素化に伴う多数の副生物が発生し、また用いる触媒の
価格も高価である。
Conventionally, in order to remove the chlorofluoroalkene in the chlorofluoroalkane, a method of contacting with an aqueous solution of an alkali metal permanganate salt is used as an oxidative decomposition method (JP-A-2-28).
2338, U.S. Pat. No. 4,129,603), but not only the large amount of alkali metal permanganate is required, but also waste liquid treatment becomes a problem. As an adsorption method, a method of adsorbing and removing with activated carbon (Japanese Patent Laid-Open No. 2-268124) is also shown, but it is not only easily affected by the concentration of the chlorofluorinated alkene to be removed, but also a large amount relative to the amount removed. Activated carbon is required or frequent regeneration of activated carbon bed is required. Further, as a hydrogenation method, a method of reacting with hydrogen in the presence of a platinum group catalyst is disclosed (JP-A-2-273634).
A large number of by-products are generated due to hydrogenation, and the cost of the catalyst used is expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記従来法
の欠点を解消した、塩弗化アルケンを含有する塩弗化ア
ルカンの精製方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for purifying a chlorofluorinated alkane containing a chlorofluorinated alkene, which is free from the drawbacks of the above-mentioned conventional methods.

【0005】[0005]

【課題を解決するための手段】本発明にかかわる塩弗化
アルカンの精製方法は、塩弗化アルケンを含有する塩弗
化アルカンを気相にて、酸素共存下、80℃〜300℃
の範囲の温度で活性炭触媒に接触させて塩弗化アルケン
を分解させることを特徴とする。
The method for purifying a salt-fluorinated alkane according to the present invention is a salt-fluorinated alkane containing a salt-fluorinated alkene in a gas phase in the presence of oxygen at 80 ° C. to 300 ° C.
Is characterized in that the chlorofluoroalkene salt is decomposed by contacting it with an activated carbon catalyst at a temperature in the range of.

【0006】本発明の対象となる塩弗化アルカンは炭素
数2〜6もので、代表的な例としては2,2-ジクロロ-1,
1,1−トリフルオロエタン(以下、HCFC-123と記す)、
1,1,1,2-テトラフルオロエタン(以下、HFC-134aと記
す)、1-クロロ-1,2,2,2−テトラフルオロエタンなどが
挙げられる。
The fluorinated alkanes to which the present invention is applied have 2 to 6 carbon atoms, and a typical example thereof is 2,2-dichloro-1,
1,1-trifluoroethane (hereinafter referred to as HCFC-123),
1,1,1,2-Tetrafluoroethane (hereinafter referred to as HFC-134a), 1-chloro-1,2,2,2-tetrafluoroethane and the like can be mentioned.

【0007】これらの塩弗化アルカン中に含まれる塩弗
化アルケンの代表的な例としては、1,1-ジクロロ−2,2-
ジフルオロエチレン(以下、CFC-1112a と記す)、1-ク
ロロ−1,2,2-トリフルオロエチレン(以下、CFC-1113と
記す)、2-クロロペルフルオロブテン-2(以下、CFC-13
17mxと記す)、1-クロロ−2,2-ジフルオロエチレン、2-
クロロ−1,1,1,4,4,4-ヘキサフルオロブテン-2、1,1,2-
トリフルオロエチレンなどがある。
As a typical example of the salt-fluorinated alkenes contained in these salt-fluorinated alkanes, 1,1-dichloro-2,2-
Difluoroethylene (hereinafter referred to as CFC-1112a), 1-chloro-1,2,2-trifluoroethylene (hereinafter referred to as CFC-1113), 2-chloroperfluorobutene-2 (hereinafter referred to as CFC-13)
17mx), 1-chloro-2,2-difluoroethylene, 2-
Chloro-1,1,1,4,4,4-hexafluorobutene-2,1,1,2-
Examples include trifluoroethylene.

【0008】触媒となる活性炭は、比表面積が1000
2/g以上であり、かつフロンの吸着力に優れた、触
媒、触媒担体又は溶剤回収などの用途に使用される気相
用の活性炭が好ましく、例えば市販の日本カーボン社製
“コロムビアJXN”又は“コロムビアMBV”、太平
化学社製“ヤシコールLL”やクラレケミカル社製“G
C”などが挙げられる。
Activated carbon as a catalyst has a specific surface area of 1000
Activated carbon for the gas phase, which has a m 2 / g or more and is excellent in the adsorptive power of CFCs and which is used for the recovery of catalyst, catalyst carrier or solvent, is preferable, for example, commercially available Nippon Carbon Co., Ltd. “Columbia JXN”. Or "Columbia MBV", Taihei Chemical Co., Ltd. "Yashikor LL" and Kuraray Chemical Co. "G.
C "etc. are mentioned.

【0009】反応温度については、80℃以下では十分
に高い分解活性が得られず、一方300℃以上では塩弗
化アルカンの分解が起きてしまうため、80から300
℃の範囲が使用される。反応に用いる塩弗化アルケンを
含む塩弗化アルカン(以下、試料ガスと言う)の触媒と
の接触時間は、反応温度、試料ガス中の塩弗化アルケン
の濃度、試料ガスと酸素の割合、及び使用される触媒に
依存し適宜決められるが、0.3秒以下の接触時間では
十分に高い分解活性が得られず、一方、10秒以上の接
触時間では塩弗化アルケンを除いた塩弗化アルカンを得
るのに時間がかかりすぎることから、0.3から10秒
の範囲が好ましい。
With respect to the reaction temperature, if the reaction temperature is 80 ° C. or lower, a sufficiently high decomposition activity cannot be obtained.
A range of ° C is used. The contact time of the salt-fluorinated alkane containing the salt-fluorinated alken used for the reaction (hereinafter referred to as sample gas) with the catalyst is the reaction temperature, the concentration of the salt-fluorinated alken in the sample gas, the ratio of the sample gas and oxygen, Depending on the catalyst used, it may be appropriately determined, but a sufficiently high decomposition activity cannot be obtained with a contact time of 0.3 seconds or less, while a salt fluoride excluding the chlorofluorinated alkenes with a contact time of 10 seconds or more. Since it takes too long to obtain the modified alkane, the range of 0.3 to 10 seconds is preferable.

【0010】共存させる酸素の量については、反応温
度、試料ガスと触媒との接触時間、試料ガス中の塩弗化
アルケンの濃度及び使用される触媒に応じて適宜定めれ
ば良いが、塩弗化アルケンの量に対し酸素の量が少なす
ぎる場合には塩弗化アルケンを十分に分解させることが
できないため、塩弗化アルケン:酸素の体積比が1:1
以上、であることが必要である。すなわち塩弗化アルカ
ン中に不純物として含まれる塩弗化アルケンの量が1%
の場合は、使用される酸素の量は試料ガス:酸素の体積
比を1:0.01以上、にすれば良い。酸素量の最大値
は特に限定されないが、経済的な理由から試料ガス:酸
素の体積比が1:10以下、までの範囲が好ましい。使
用される酸素としては純粋な酸素又は酸素と他の不活性
ガスとの混合物例えば空気などを挙げることができる。
The amount of oxygen to be coexisted may be appropriately determined depending on the reaction temperature, the contact time between the sample gas and the catalyst, the concentration of the chlorofluorinated alkene in the sample gas, and the catalyst used. If the amount of oxygen is too small relative to the amount of alkene halide, the fluorinated alkene salt cannot be decomposed sufficiently, so that the fluorinated alkene: oxygen volume ratio is 1: 1.
The above is required. That is, the amount of chlorofluorinated alkenes contained as impurities in the chlorofluoroalkane is 1%.
In this case, the amount of oxygen used may be a sample gas: oxygen volume ratio of 1: 0.01 or more. The maximum value of the oxygen amount is not particularly limited, but for economic reasons, the range of sample gas: oxygen volume ratio of 1:10 or less is preferable. The oxygen used can be pure oxygen or a mixture of oxygen and other inert gases such as air.

【0011】反応後の塩弗化アルケンからの主な分解生
成物として、CO2 COなどが検出される。
CO 2 CO and the like are detected as the main decomposition products from the chlorinated alkene after the reaction.

【0012】以下、実施例により、本発明をさらに具体
的に説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【0013】[0013]

【実施例1】固定床気相流通系反応装置を用い、活性炭
として日本カーボン社製“コロムビアJXN”(比表面
積約1200m2/g)1.0gを電気炉により包囲され
た石英製反応管(内径10mm,長さ300mm)に入
れた。試料としてCFC-1112aを3000ppm含んだHCF
C-123を気化器を通しガス化して導入した。試料の供給
速度は120ml/分、共存させた酸素の供給速度は2
0ml/分とし、反応温度120℃にて触媒層を通過さ
せ反応を行った後、生成物についてガスロロマトグラフ
ィーを用い分析を行った。試験開始5時間後の生成物中
のCFC-1112a の含有率は2ppm以下で、15時間後も
同様であった。また反応後の活性炭の重量を測定し、反
応前後で活性炭の重量変化が認められないことから、CF
C-1112aが活性炭により吸着除去されたのではないこと
を確認した。
[Example 1] Using a fixed bed gas phase flow reactor, 1.0 g of "Columbia JXN" (specific surface area: about 1200 m 2 / g) manufactured by Nippon Carbon Co., Ltd. as activated carbon was surrounded by an electric furnace and made of a quartz reaction tube ( The inner diameter was 10 mm and the length was 300 mm. HCF containing 3000ppm of CFC-1112a as a sample
C-123 was gasified and introduced through a vaporizer. Sample supply rate is 120 ml / min, coexisting oxygen supply rate is 2
The reaction was carried out at 0 ml / min by passing through the catalyst layer at a reaction temperature of 120 ° C., and then the product was analyzed by gas chromatography. The content of CFC-1112a in the product 5 hours after the start of the test was 2 ppm or less, which was the same after 15 hours. In addition, the weight of the activated carbon after the reaction was measured and no change in the weight of the activated carbon was observed before and after the reaction.
It was confirmed that C-1112a was not adsorbed and removed by activated carbon.

【0014】[0014]

【実施例2】活性炭としてクラレケミカル社製“GC”
(比表面積約1000m2/g)を用いた以外は実施例1
と同様に反応を行った。試験開始5時間後の生成物中の
CFC-1112a の含有率は2ppm以下で、15時間後も同
様であった。
[Example 2] "GC" manufactured by Kuraray Chemical Co. as activated carbon
Example 1 except that (specific surface area of about 1000 m 2 / g) was used
The reaction was performed in the same manner as in. In the product 5 hours after the start of the test
The content of CFC-1112a was 2 ppm or less, which was the same after 15 hours.

【0015】[0015]

【実施例3】活性炭として太平化学社製“ヤシコールL
L”(比表面積約1200m2/g)を用いた以外は実施
例1と同様に反応を行った。試験開始5時間後の生成物
中のCFC-1112a の含有率は2ppm以下で、15時間後
も同様であった。
[Example 3] "Yashikor L" manufactured by Taihei Chemical Co., Inc.
The reaction was carried out in the same manner as in Example 1 except that L ″ (specific surface area: about 1200 m 2 / g) was used. The content of CFC-1112a in the product 5 hours after the start of the test was 2 ppm or less, and the reaction time was 15 hours. It was the same afterwards.

【0016】[0016]

【実施例4】反応温度を180℃に変えた以外は実施例
1と同様に反応を行った。試験開始5時間後の生成物中
のCFC-1112a の含有率は2ppm以下で、15時間後も
同様であった。
Example 4 The reaction was performed in the same manner as in Example 1 except that the reaction temperature was changed to 180 ° C. The content of CFC-1112a in the product 5 hours after the start of the test was 2 ppm or less, which was the same after 15 hours.

【0017】[0017]

【実施例5】試料の供給速度を70ml/分(ガス)、
酸素の供給速度を70ml/分に変えた以外は実施例1
と同様に反応を行った。試験開始5時間後の生成物中の
CFC-1112a の含有率は2ppm以下で、15時間後も同
様であった。
Fifth Embodiment Sample supply rate is 70 ml / min (gas),
Example 1 except that the oxygen supply rate was changed to 70 ml / min
The reaction was performed in the same manner as in. In the product 5 hours after the start of the test
The content of CFC-1112a was 2 ppm or less, which was the same after 15 hours.

【0018】[0018]

【実施例6】試料としてCFC-1317mxを30ppm含んだ
HCFC-123を用いた以外は実施例1と同様に反応を行った
結果、5時間後のCFC-1317mxの含有率は1ppm以下で
あった。また活性炭の反応前と5時間後での重量変化は
認められなかった。
Example 6 As a sample, 30 ppm of CFC-1317mx was contained.
As a result of the same reaction as in Example 1 except that HCFC-123 was used, the content of CFC-1317mx after 5 hours was 1 ppm or less. In addition, no change in weight was observed before the reaction with activated carbon and after 5 hours.

【0019】[0019]

【実施例7】試料としてCFC-1113を3%含んだHCFC-123
を用いた以外は、実施例1と同様に反応を行った結果、
5時間後のCFC-1113の含有率は0.9%であった。また
活性炭の反応前と5時間後での重量変化は認められなか
った。
Example 7 HCFC-123 containing 3% of CFC-1113 as a sample
As a result of carrying out the reaction in the same manner as in Example 1 except that
The content of CFC-1113 after 5 hours was 0.9%. In addition, no change in weight was observed before the reaction with activated carbon and after 5 hours.

【0020】[0020]

【比較例1】反応管に活性炭を入れない以外は、実施例
1と同様に反応を行った。試験開始5時間後の生成物中
のCFC-1112a の含有率は3000ppm、15時間後も
同様で、CFC-1112a は全く分解されていなかった。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that activated carbon was not placed in the reaction tube. The content of CFC-1112a in the product after 5 hours from the start of the test was 3000 ppm, the same after 15 hours, and CFC-1112a was not decomposed at all.

【0021】[0021]

【比較例2】酸素を供給しない以外は実施例1と同様に
反応を行った。試験開始5時間後の生成物中のCFC-1112
a の含有率は2900ppm、15時間後は3000p
pmで、CFC-1112a は分解も吸着もされていなかった。
Comparative Example 2 The reaction was performed in the same manner as in Example 1 except that oxygen was not supplied. CFC-1112 in the product 5 hours after the start of the test
Content of a is 2900ppm, 3000p after 15 hours
At pm, CFC-1112a was neither decomposed nor adsorbed.

【0022】[0022]

【比較例3】酸素の代わりに水素を供給した以外は、実
施例1と同様に反応を行った。試験開始5時間後の生成
物中のCFC-1112a の含有率は3000ppm、15時間
後も同様で、CFC-1112a は全く除去されていなかった。
Comparative Example 3 The reaction was performed in the same manner as in Example 1 except that hydrogen was supplied instead of oxygen. The content of CFC-1112a in the product after 5 hours from the start of the test was 3000 ppm, the same after 15 hours, and CFC-1112a was not removed at all.

【0023】[0023]

【比較例4】反応温度を70℃に変えた以外は実施例2
と同様に反応を行った。試験開始5時間後の生成物中の
CFC-1112a の含有率は450ppm、15時間後は12
00ppmで、CFC-1112a の分解率は低かった。
Comparative Example 4 Example 2 except that the reaction temperature was changed to 70 ° C.
The reaction was performed in the same manner as in. In the product 5 hours after the start of the test
Content of CFC-1112a is 450ppm, 12 after 15 hours
At 00 ppm, the decomposition rate of CFC-1112a was low.

【0024】実施例1〜5及び比較例1〜4の結果をま
とめると下記の通りである。 CFC-1112aの含有率 5時間後 15時間後 実施例1 <2ppm <2ppm 実施例2 <2ppm <2ppm 実施例3 <2ppm <2ppm 実施例4 <2ppm <2ppm 実施例5 <2ppm <2ppm 比較例1 3000ppm 3000ppm 比較例2 2900ppm 3000ppm 比較例3 3000ppm 3000ppm 比較例4 450ppm 1200ppm
The results of Examples 1 to 5 and Comparative Examples 1 to 4 are summarized below. Content of CFC-1112a After 5 hours After 15 hours Example 1 <2 ppm <2 ppm Example 2 <2 ppm <2 ppm Example 3 <2 ppm <2 ppm Example 4 <2 ppm <2 ppm Example 5 <2 ppm <2 ppm Comparative Example 1 3000ppm 3000ppm Comparative Example 2 2900ppm 3000ppm Comparative Example 3 3000ppm 3000ppm Comparative Example 4 450ppm 1200ppm

【0025】[0025]

【発明の効果】簡単な操作により塩弗化アルカン中の塩
弗化アルケンを除去することができ、廃液処理とか、副
生物処理とかの問題がない。
The fluorinated alkenes in the fluorinated alkanes can be removed by a simple operation, and there is no problem of waste liquid treatment or by-product treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塩弗化アルケンを含有する塩弗化アルカ
ンを気相にて、酸素共存下、80℃〜300℃の範囲の
温度で活性炭触媒に接触させて塩弗化アルケンを分解さ
せることを特徴とする塩弗化アルカンの精製方法。
1. A fluorinated alkane containing a fluorinated alkene is contacted with an activated carbon catalyst at a temperature in the range of 80 ° C. to 300 ° C. in the gas phase in the presence of oxygen to decompose the fluorinated alkene. A method for purifying a chlorofluoroalkane.
JP3116670A 1991-04-22 1991-04-22 Purification method of chlorofluoroalkane Expired - Fee Related JP2937539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116670A JP2937539B2 (en) 1991-04-22 1991-04-22 Purification method of chlorofluoroalkane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116670A JP2937539B2 (en) 1991-04-22 1991-04-22 Purification method of chlorofluoroalkane

Publications (2)

Publication Number Publication Date
JPH0680592A true JPH0680592A (en) 1994-03-22
JP2937539B2 JP2937539B2 (en) 1999-08-23

Family

ID=14692991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116670A Expired - Fee Related JP2937539B2 (en) 1991-04-22 1991-04-22 Purification method of chlorofluoroalkane

Country Status (1)

Country Link
JP (1) JP2937539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801294A (en) * 1996-06-06 1998-09-01 Elf Atochem S.A. Process for the purification of saturated hydrofluorocarbons
US5922175A (en) * 1997-02-04 1999-07-13 Elf Atochem S.A. Purification of chlorotetraflouroethane by extractive distillation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801294A (en) * 1996-06-06 1998-09-01 Elf Atochem S.A. Process for the purification of saturated hydrofluorocarbons
US5922175A (en) * 1997-02-04 1999-07-13 Elf Atochem S.A. Purification of chlorotetraflouroethane by extractive distillation

Also Published As

Publication number Publication date
JP2937539B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
AU624480B2 (en) Purification of saturated halocarbons
JP5562638B2 (en) High-pressure catalyst activation method and catalyst produced thereby
US3696156A (en) Process for purification of fluoroperhalocarbons
KR100573447B1 (en) Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
Tajima et al. Decomposition of chlorofluorocarbons in the presence of water over zeolite catalyst
JPH06256234A (en) Refining of pentafluoroethane
US6500994B1 (en) Purification of 1,1,1,3,3-pentafluorobutane
RU2051737C1 (en) Method of catalyst activation of recovery
US5057470A (en) Regeneration of noble metal catalysts used in hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
KR960004870B1 (en) Process for the purification of 1,1,1,2-tetrafluoroethane
JP4356149B2 (en) Method for treating 1,1,1,3,3-pentafluoropropane
JP2937539B2 (en) Purification method of chlorofluoroalkane
RU2010789C1 (en) Continuous method of 1,1-dichlorotetrafluoroethane synthesis
JP3862316B2 (en) Method for purifying pentafluoroethane
JP4057103B2 (en) Method for selectively removing perfluoroisobutylene from a halogenated hydrocarbon stream
KR100543253B1 (en) Production and use of hexafluoroethane
JP2002087808A (en) Adsorbent for purifying perfluorocarbon, manufacturing method thereof, high purity octafluorocyclobutane, method of purifying and manufacturing the same and utilization thereof
JP2638146B2 (en) Isomerization of hydrogen-containing fluorohydrocarbons
KR20010017372A (en) Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same
JP4098856B2 (en) Method for purifying pentafluoroethane
JP2003261476A (en) Method for producing fluoroethane and application of the fluoroethane
JPH06116181A (en) Method for purification of fluoroethne and chlorofluoroethane
KR0159176B1 (en) Method for purification of 1,1-difluoroethane
JP2570829B2 (en) Isomerization of hydrogen-containing chlorofluorohydrocarbons
JPH10330298A (en) Production of hcfc-123

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees