JPH0680202B2 - Far infrared radiation socks - Google Patents

Far infrared radiation socks

Info

Publication number
JPH0680202B2
JPH0680202B2 JP27298989A JP27298989A JPH0680202B2 JP H0680202 B2 JPH0680202 B2 JP H0680202B2 JP 27298989 A JP27298989 A JP 27298989A JP 27298989 A JP27298989 A JP 27298989A JP H0680202 B2 JPH0680202 B2 JP H0680202B2
Authority
JP
Japan
Prior art keywords
far
infrared radiation
far infrared
socks
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27298989A
Other languages
Japanese (ja)
Other versions
JPH0351302A (en
Inventor
信秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP27298989A priority Critical patent/JPH0680202B2/en
Publication of JPH0351302A publication Critical patent/JPH0351302A/en
Publication of JPH0680202B2 publication Critical patent/JPH0680202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Socks And Pantyhose (AREA)
  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は遠赤外線を放射する靴下に関するものである。TECHNICAL FIELD The present invention relates to socks that radiate far infrared rays.

[発明の背景] 従来、アルミナ系、ジルコニア系、マグネシア系等、或
いはこれらの複合体より成るセラミックスは遠赤外線を
放射することが広く知られている。また遠赤外線は人体
に温熱作用があることが知られており、人体に遠赤外線
を照射することにより充血作用が起こり、血行を促進
し、医療効果や健康増進効果を得ることも知られてお
り、数百度で遠赤外線を放射する遠赤外線照射装置等が
使用されている。
BACKGROUND OF THE INVENTION Ceramics made of alumina, zirconia, magnesia, etc., or composites thereof are widely known to emit far infrared rays. It is also known that far infrared rays have a heat effect on the human body, and by irradiating the human body with far infrared rays, a hyperemia effect occurs, which promotes blood circulation, and is also known to obtain medical effects and health promotion effects. Far-infrared irradiation devices that emit far-infrared rays at several hundred degrees are used.

然るに200℃以下、特に20〜50℃の低温域で遠赤外線を
放射し、且つ人体の保温効果が得られる様な放射体を内
部に含有せしめた繊維を用いた靴下は実用に供されてお
らず、また先行技術文献にも開示されていない。
However, socks made of fibers that radiate far-infrared rays in the low temperature range of 200 ° C or less, especially in the low temperature range of 20 to 50 ° C, and that have a heat-retaining effect of the human body inside, are not in practical use. Neither is it disclosed in the prior art documents.

本発明の目的は低温域で遠赤外線を放射する新規な靴下
を提案するにある。
An object of the present invention is to propose a new sock which emits far infrared rays in a low temperature range.

[発明の構成及び作用] 本発明の遠赤外線放射靴下は、30℃における遠赤外線放
射率が波長4.5〜30μの領域で、平均65%以上である遠
赤外線放射特性を有する粒子を含有するポリマーからな
る遠赤外線放射層を芯部に、厚み10μ以下のポリマーか
らなる被覆層を鞘部に配置してなり、芯部及び鞘部のポ
リマーがポリエチレン及び/又はポリアミドである複合
繊維の仮撚加工糸を用いたことを特徴とする。
[Structure and Action of the Invention] The far-infrared radiation socks of the present invention are made of a polymer containing particles having far-infrared radiation characteristics in which the far-infrared emissivity at 30 ° C. is 65% or more in the region of wavelength 4.5 to 30 μ. False-twisted yarn of a composite fiber in which the far-infrared radiation layer is formed in the core and the coating layer made of a polymer having a thickness of 10 μm or less is arranged in the sheath, and the polymer of the core and the sheath is polyethylene and / or polyamide. Is used.

本発明に使用できる遠赤外線放射特性を有する粒子は、
30℃における遠赤外線放射率が波長4.5〜30μの領域で
平均65%以上であることが必要であり、好ましくは75%
以上、特に好ましくは90%以上のものである。低温で人
体保温効果を得るには遠赤外線放射率65%は必要条件で
あり、これ以下だと人体保温効果は少なく本発明の目的
は達せられない。
Particles having far infrared radiation properties that can be used in the present invention include
Far-infrared emissivity at 30 ° C is required to be 65% or more on average in the wavelength range of 4.5 to 30μ, preferably 75%
More preferably, it is 90% or more. A far infrared radiation emissivity of 65% is a necessary condition for obtaining a human body heat retaining effect at a low temperature.

遠赤外線放射特性を有する粒子としては、酸化物系セラ
ミックス、非酸化物系セラミックス、非金属、金属、合
金、結晶等が挙げられる。例えば、酸化物系セラミック
スとしてはアルミナ(Al2O3)系、マグネシア(MgO)
系、ジルコニア(ZrO2)系の外、酸化チタン(TiO2)、
二酸化ケイ素(SiO2)、酸化クロム(Cr2O3)、フェラ
イト(FeO2,Fe3O4)、スピネル(MgO・Al2O3)、セリウ
ム(CaO2)、バリウム(BaO)等があり、炭化物系セラ
ミックスとしては、炭化ホウ素、(B4C)、炭化ケイ素
(SiC)、炭化チタン(TiC)、炭化モリブデン(Mo
C)、炭化タングステン(WC)等があり、窒化物系セラ
ミックスとしては、窒化ホウ素(BN)、窒化アルミ(Al
N)、窒化ケイ素(Si3N4)、窒化ジルコン(ZrN)等が
あり、非金属としては炭素(C)、グラファイトがあ
り、金属としてはタングステン(W)、モリブデン(M
o)、バナジウム(V)、白金(Pt)、タンタル(T
a)、マンガン(Mn)、ニッケル(Ni)、酸化銅(Cu
2O)、酸化鉄(Fe2O3)があり、合金としてはニクロ
ム、カンタル、ステンレス、アルメルがあり、また結晶
としては雲母、螢石、方解石、明ばん、水晶等がある。
Examples of particles having far-infrared radiation characteristics include oxide-based ceramics, non-oxide-based ceramics, non-metals, metals, alloys and crystals. For example, oxide-based ceramics include alumina (Al 2 O 3 ) and magnesia (MgO)
Type, zirconia (ZrO 2 ) type, titanium oxide (TiO 2 ),
There are silicon dioxide (SiO 2 ), chromium oxide (Cr 2 O 3 ), ferrite (FeO 2 , Fe 3 O 4 ), spinel (MgO ・ Al 2 O 3 ), cerium (CaO 2 ), barium (BaO), etc. , As carbide-based ceramics, boron carbide, (B 4 C), silicon carbide (SiC), titanium carbide (TiC), molybdenum carbide (Mo)
C), tungsten carbide (WC), etc., and nitride ceramics include boron nitride (BN) and aluminum nitride (Al).
N), silicon nitride (Si 3 N 4 ), zircon nitride (ZrN), etc., non-metals include carbon (C) and graphite, and metals include tungsten (W) and molybdenum (M).
o), vanadium (V), platinum (Pt), tantalum (T
a), manganese (Mn), nickel (Ni), copper oxide (Cu)
2 O) and iron oxide (Fe 2 O 3 ), alloys include nichrome, canthal, stainless steel, and alumel, and crystals include mica, fluorite, calcite, alum, and quartz.

第1図は遠赤外線放射率分布図である。曲線Aはアルミ
ナ系、曲線Bはマグネシア系、曲線Cはジルコニア系の
放射スペクトルであり、波長4.5〜30μの領域で平均放
射率はいずれも75%以上で本発明に採用できる。また曲
線Dは非酸化物である炭化物系セラミックスの炭化ジル
コン(ZrC)の放射スペクトルであり、また曲線Eは同
じく非酸化物である窒化系セラミックスの窒化チタン
(TiN)の放射スペクトルである。その平均放射率は60
%以下であり本発明には単独では採用できない。曲線F
は透明な石英セラミックスの放射スペクトルである。そ
の平均放射率は40%以下であり本発明に単独では採用で
きない。
FIG. 1 is a far-infrared emissivity distribution map. The curve A is an alumina-based spectrum, the curve B is a magnesia-based spectrum, and the curve C is a zirconia-based radiation spectrum. The average emissivity is 75% or more in the wavelength region of 4.5 to 30 .mu. Curve D is the emission spectrum of zircon carbide (ZrC) of non-oxide carbide ceramics, and curve E is the emission spectrum of titanium nitride (TiN) of non-oxide nitride ceramics. Its average emissivity is 60
% Or less and cannot be used alone in the present invention. Curve F
Is the emission spectrum of transparent quartz ceramics. Its average emissivity is 40% or less and cannot be used alone in the present invention.

遠赤外線放射率は上記の如くスペクトルを測定すること
によって求まるが、放射率は物質及びその純度、粒子粒
径または結晶体系、正方、六方、単方、立方、三方、斜
方等により決まるものである。
Far-infrared emissivity is obtained by measuring the spectrum as described above, but emissivity is determined by the substance and its purity, particle size or crystal system, tetragonal, hexagonal, unilateral, cubic, trigonal, orthogonal, etc. is there.

特に有用な遠赤外線放射特性を有するセラミックスとし
ては、アルミナ系、マグネシア系、ジルコニア系があ
る。これを更に細かく分類するとアルミナ系ではアルミ
ナ、ムライト、マグネシア系ではマグネシア、コージラ
イト、ジルコニア系ではジルコンサンド(ZrO2・Si
O2)、ジルコン(ZiO2)等が挙げられる。また上記の群
から選ばれた1種または2種以上のものを混合使用する
ことも有効であり、上記の群から選ばれた1種または2
種以上のものと他のセラミックス(例えば炭化物系セラ
ミックス)とを混合使用することも有効である。
Alumina-based, magnesia-based, and zirconia-based ceramics are particularly useful ceramics having far-infrared radiation characteristics. This is further subdivided into alumina and mullite for alumina, magnesia and cordierite for magnesia, and zircon sand (ZrO 2 · Si for zirconia).
O 2 ), zircon (ZiO 2 ) and the like. It is also effective to mix and use one kind or two or more kinds selected from the above group, and one kind or two kinds selected from the above group.
It is also effective to mix and use one or more kinds of ceramics and other ceramics (for example, carbide-based ceramics).

複合セラミックスを併用した場合の放射率の例を第2図
に示す。第2図の曲線Gはジルコニア(ZrO2)と酸化ク
ロム(CrO2)を1/1で混合した複合セラミックスの放射
率を示し、また第2図の曲線Hはアルミナ(Al2O3)を
マグネシア(MgO)を1/1で混合した複合セラミックスの
放射率を示すが、いずれも本発明に有用である。
Fig. 2 shows an example of the emissivity when the composite ceramics are used together. The curve G in FIG. 2 shows the emissivity of the composite ceramic in which zirconia (ZrO 2 ) and chromium oxide (CrO 2 ) are mixed at 1/1, and the curve H in FIG. 2 shows alumina (Al 2 O 3 ). The emissivity of a composite ceramic in which magnesia (MgO) is mixed at 1/1 is shown, and both are useful in the present invention.

上記の如き遠赤外線放射特性を有する粒子の純度は高い
程好ましいことが多く、純度95%以上で高放射率が得ら
れることが多い。例えば第3図はアルミナの純度を夫々
95%(曲線I)と85%(曲線J)にした場合の放射率を
示し、また第4図はムライトの純度を夫々95%(曲線
K)と85%(曲線L)にした場合の放射率を示し、いず
れも純度の高い程放射率が高いことを示している。
The higher the purity of the particles having far-infrared radiation characteristics as described above, the more preferable it is, and a high emissivity is often obtained at a purity of 95% or more. For example, Figure 3 shows the purity of alumina
The emissivity when 95% (curve I) and 85% (curve J) are shown, and Fig. 4 shows the emissivity when the purity of mullite is 95% (curve K) and 85% (curve L), respectively. The higher the purity, the higher the emissivity.

遠赤外線放射特性を有する粒子の粒径は、本発明靴下の
素材となる遠赤外線放射性芯鞘型複合繊維の生産に支障
のない程度に充分に小さいことが好ましい。比較的太い
繊維の場合は粒径5〜20μ程度のものの利用も可能であ
るが、通常は0.1〜5μ程度のもの、特に、0.2〜1.5μ
程度のものが好適である。逆に粒径が0.1μ以下の場合
は粒子の凝集が起り易く、不都合なことが多い。
The particle size of the particles having far-infrared radiation characteristics is preferably sufficiently small so as not to hinder the production of far-infrared radiation core-sheath type composite fibers which are the material of the sock of the present invention. For relatively thick fibers, it is possible to use fibers with a particle size of 5 to 20μ, but usually 0.1 to 5μ, especially 0.2 to 1.5μ
The thing of a grade is suitable. On the contrary, if the particle size is 0.1 μm or less, aggregation of particles is likely to occur, which is often inconvenient.

遠赤外線放射層のポリマーに対する遠赤外線放射特性を
有する粒子の混合率(重量)は、10〜80%の範囲が好ま
しく、20〜70%が特に好ましく、30〜60%が最も好まし
い。遠赤外線放射性能の点では、遠赤外線放射特性を有
する粒子の混合率が高い程好ましいが、一方繊維生産の
点ではその混合率が低い方が好ましいことが多い。
The mixing ratio (weight) of the particles having the far-infrared radiation property to the polymer of the far-infrared radiation layer is preferably in the range of 10 to 80%, particularly preferably 20 to 70%, most preferably 30 to 60%. From the viewpoint of far-infrared radiation performance, a higher mixing ratio of particles having far-infrared radiation characteristics is more preferable, while a lower mixing ratio is often preferable in terms of fiber production.

本発明靴下の素材となる遠赤外線放射性芯鞘型複合繊維
の特徴の一つは遠赤外線放射層の芯部が鞘部に覆われて
いることである。鞘部は遠赤外線放射層を保護したり、
前記遠赤外線放射性芯鞘型複合繊維の製造及びこれを用
いた本発明靴下の製造を容易にするためのものである。
すなわち遠赤外線放射特性を有する粒子を多量に含む遠
赤外線放射層が露出していると、接触する紡糸機、延伸
機、編機、織機等の金属やガイド類を甚しく摩耗損傷す
る傾向があり、これを防ぐ為に鞘部で覆うことが必要で
ある。
One of the features of the far-infrared radiation core-sheath type composite fiber which is a material of the sock of the present invention is that the core portion of the far-infrared radiation layer is covered with the sheath portion. The sheath protects the far infrared radiation layer,
The purpose of the present invention is to facilitate the production of the far-infrared radiation core-sheath type composite fiber and the sock of the present invention using the same.
That is, when the far-infrared radiation layer containing a large amount of particles having far-infrared radiation characteristics is exposed, there is a tendency that metals and guides such as spinning machines, drawing machines, knitting machines, and looms that come into contact with each other are significantly worn and damaged. , It is necessary to cover with a sheath to prevent this.

第5図〜第11図は本発明靴下の素材となる遠赤外線放射
性芯鞘型複合繊維の横断面の具体例を示す説明図であ
る。図において、1は遠赤外線放射層の芯部を示し、2
は鞘部を示す。鞘部2のポリマーは遠赤外線を吸収する
から、鞘部2の厚みをできるだけ薄くすることが好まし
く、通常は10μ以下、好ましくは5μ以下、特に2μ以
下にすることが望ましい。第7図、第8図、第11図は、
遠赤外線放射層の芯部1が複数個の例であり、鞘部2の
厚みが薄く、且つ鞘部2によって、繊維全体の強度も保
たれやすいので好ましいことが多い。第9〜第11図は中
空部3を有している複合繊維の例であり、セラミックス
層をできるだけ外層に近づける目的で好ましいことが多
い。
5 to 11 are explanatory views showing specific examples of the cross-section of the far-infrared radiation core-sheath type composite fiber which is a material of the sock of the present invention. In the figure, 1 indicates the core of the far infrared radiation layer, 2
Indicates a sheath. Since the polymer of the sheath 2 absorbs far infrared rays, it is preferable to make the thickness of the sheath 2 as thin as possible, usually 10 μm or less, preferably 5 μm or less, and particularly 2 μm or less. Figures 7, 8 and 11 show
This is an example in which the far-infrared radiation layer has a plurality of core portions 1, and the sheath portion 2 has a small thickness and the strength of the whole fiber is easily maintained by the sheath portion 2, which is preferable in many cases. 9 to 11 show examples of the composite fiber having the hollow portion 3, which is often preferable for the purpose of bringing the ceramic layer as close to the outer layer as possible.

遠赤外線放射層の芯部1と鞘部2のポリマーとしては、
波長4.5〜30μの領域での遠赤外線の吸収性が低く、透
過性の高いものが好ましく、特に従来より衣料用として
多く使用されているポリエチレンやポリアミドが好適で
ある。このポリエチレンやポリアミドは、夫々別々に芯
部1と鞘部2に使用してもよいし、またそのいずれかを
芯部1と鞘部2に使用してもよい。
As the polymer of the core portion 1 and the sheath portion 2 of the far infrared radiation layer,
A material having low far-infrared absorption in the wavelength region of 4.5 to 30 μm and high transparency is preferable, and polyethylene and polyamide, which have been widely used conventionally for clothing, are particularly preferable. This polyethylene or polyamide may be used separately for the core 1 and the sheath 2, or either of them may be used for the core 1 and the sheath 2.

遠赤外線透過性の高いポリマーとしてはポリエチレンが
優れている。低密度ポリエチレンは軟化点が105℃、高
密度ポリエチレン融点が128℃であり、耐熱性の点では
やや劣り使用温度が限定されるが、人体加温用には充分
利用出来る。更に放射線照射等で架橋したポリエチレン
は耐熱性に優れており(軟化点200℃以上)、本発明の
目的に好適である。ポリエチレンに次いで遠赤外線の吸
収の少ないポリマーとしては、ナイロン12,ナイロン11,
ナイロン610,ナイロン612,ナイロン6,ナイロン66等のポ
リアミドがあり、その厚みを充分薄くすれば遠赤外線の
吸収を防ぎ放射率を高めることができる。
Polyethylene is excellent as a polymer having a high far-infrared transparency. Low-density polyethylene has a softening point of 105 ° C and a high-density polyethylene melting point of 128 ° C, which makes it somewhat inferior in terms of heat resistance and limits its use temperature, but it can be sufficiently used for heating the human body. Furthermore, polyethylene crosslinked by irradiation with radiation has excellent heat resistance (softening point of 200 ° C. or higher) and is suitable for the purpose of the present invention. Nylon 12, nylon 11,
There are polyamides such as nylon 610, nylon 612, nylon 6, nylon 66, etc. If the thickness is made sufficiently thin, absorption of far infrared rays can be prevented and emissivity can be increased.

本発明靴下の素材となる複合繊維は、周知の複合紡糸方
法によって製造できる。通常の速度で紡糸、延伸、熱処
理等を行なうことができ、高速紡糸により半配向または
充分に配向した繊維を得ることができる。鞘部を有する
複合繊維は、遠赤外線放射層の芯部が直接紡糸ノズル、
ガイド、ローラー、トラベラー、加熱プレート等へ接触
しないから、それらの摩耗が少なく通常の繊維と同様の
工程で生産することが出来る。複合繊維は巻縮して、ま
たは巻縮しないで連続フィラメント状、またはステープ
ル状でそれ単独で、または通常繊維と混合して従来と同
様の方法で、靴下に仕上げること出来る。
The composite fiber used as the material for the sock of the present invention can be produced by a well-known composite spinning method. Spinning, stretching, heat treatment, etc. can be carried out at a normal speed, and semi-oriented or fully oriented fibers can be obtained by high-speed spinning. The composite fiber having a sheath portion has a core of the far-infrared radiation layer directly spun on the nozzle,
Since it does not come into contact with guides, rollers, travelers, heating plates, etc., they are less worn and can be produced in the same process as ordinary fibers. The composite fiber can be crimped or uncrimped in the form of continuous filaments, or in the form of staples, by itself, or can be mixed with ordinary fibers to finish socks in a conventional manner.

[実施例] 以下実施例により遠赤外線放射性芯鞘型複合繊維を用い
た本発明靴下を具体的に説明する。
[Example] The sock of the present invention using the far-infrared radiation core-sheath type composite fiber will be specifically described below with reference to Examples.

実施例1 25℃のメタクレゾール液での固有粘度が1.19の6ナイロ
ンをポリマーP-1とする。ポリマーP-1の粉末60重量部に
平均粒径が0.6μで、純度99%以上のγ−アルミナ30重
量部とポリエチレンワックス30重量部を混練した混合物
を加え、2軸混練機を通し混合ポリマーPC-1を得た。同
様の方法で名種粉末を混練し、第1表の混合ポリマーPC
-2〜PC-6を得た。
Example 1 6-nylon having an intrinsic viscosity of 1.19 in a meta-cresol solution at 25 ° C. is used as a polymer P-1. A mixture of 30 parts by weight of γ-alumina having an average particle size of 0.6% and a purity of 99% and 30 parts by weight of polyethylene wax is added to 60 parts by weight of the powder of polymer P-1 and a mixed polymer is passed through a biaxial kneader. I got PC-1. In the same manner, knead the various kinds of powder and mix the mixed polymer PC shown in Table 1.
I got -2 to PC-6.

次いで、溶融複合紡糸により、混合ポリマーPC-1が芯
に、ポリマーP-1が鞘になる様に、すなわち第5図の様
な構造に複合し(体積複合比1/1)、270℃で直径が0.25
mmのオリフィスから紡出して冷却オイリングを経て、80
0m/minの速度で巻取った。この未延伸糸を90℃で3.2倍
に延伸して延伸糸Y-1を得た。同様の方法で混合ポリマ
ーPC-2〜PC-6及びポリマーP-1を使用して紡糸延伸し、
それぞれ延伸糸Y-2〜Y-6を得た。更にポリマーP-1のみ
を使用した延伸系Y-7を得た。延伸系Y-1〜Y-7の繊度は7
0d/24fである。
Next, by melt-composite spinning, the mixed polymer PC-1 was compounded into the core and the polymer P-1 into the sheath, that is, into a structure as shown in FIG. 5 (volume compounding ratio 1/1), and at 270 ° C. 0.25 diameter
After being spun out from an orifice of mm and cooled and oiled,
It was wound at a speed of 0 m / min. This unstretched yarn was stretched 3.2 times at 90 ° C. to obtain a stretched yarn Y-1. In the same manner, using the mixed polymers PC-2 to PC-6 and the polymer P-1, spin drawing,
Stretched yarns Y-2 to Y-6 were obtained. Further, a stretching system Y-7 using only the polymer P-1 was obtained. The drawing system Y-1 to Y-7 has a fineness of 7
It is 0d / 24f.

比較の為に混合ポリマーPC-1のみを使用し、同じ条件で
紡糸しようとしたが、糸切れが頻発し紡糸不能であっ
た。そこでアルミナ粒子含有率を10%に低減して紡糸し
た処、若干糸切れしたが紡糸は可能であった。しかしな
がら次の延撚工程では、トラベラー摩耗が激しく30分も
連続して延撚することが出来なかった。トラベラーの他
にも混合ポリマーが接する紡糸オリフィス、紡糸巻取機
の糸道ガイドやトラバースガイド等、及び延撚機の糸道
ガイド等の損傷が著しく、工業生産は相当困難である。
更に仮撚、整経、織編工程等の後次工程に於いてもフィ
ラメントが接する個所の損傷、摩耗も著しいものであっ
た。これに対し前記延伸糸Y-1〜Y-6は通常延伸糸Y-7と
ほぼ同様に紡糸・延伸出来た。
For the purpose of comparison, only the mixed polymer PC-1 was used, and an attempt was made to spin under the same conditions, but yarn breakage occurred frequently and spinning was impossible. Therefore, when the content of alumina particles was reduced to 10% and spinning was performed, some yarn breakage occurred, but spinning was possible. However, in the next twisting step, the traveler was so worn that it could not be twisted continuously for 30 minutes. In addition to the traveler, the spinning orifices in contact with the mixed polymer, the yarn guides and traverse guides of the take-up winder, and the yarn guides of the twisting machine are seriously damaged, and industrial production is considerably difficult.
Further, in the subsequent steps such as false twisting, warping, and woven / knitting steps, the damage and wear of the parts where the filaments are in contact were significant. On the other hand, the drawn yarns Y-1 to Y-6 could be spun and drawn almost in the same manner as the ordinary drawn yarn Y-7.

次いで延伸糸Y-1〜Y-7をそれぞれ仮撚加工し、2本を揃
えた後40dのスパンデックスにカバリング加工し、綿70
%、アクリル30%の32番手混紡糸と組合せ、2口のソッ
クス編機でカジュアルソックスを試作した。延伸糸Y-1
〜Y-7を使用したソックスをそれぞれS-1〜S-7とする。
Next, draw yarns Y-1 to Y-7 are false twisted, and after aligning the two yarns, cover the spandex of 40d with cotton 70
%, 30% acrylic, and a 32nd blended yarn were used to fabricate a casual sock with a 2-piece sock knitting machine. Drawn yarn Y-1
Socks using ~ Y-7 are called S-1 ~ S-7, respectively.

通常糸を使用したS-7ソックス1本とソックスS-1〜S-6
中の1本とを組合せて150人を対象に着用試験を行な
い、温かさに関して有為差があるかどうかを調べ第2表
の結果を得た。
One S-7 sock and socks S-1 to S-6 using normal thread
A wear test was conducted on 150 people in combination with one of them, and it was examined whether there was a significant difference in warmth, and the results shown in Table 2 were obtained.

γ−アルミナ、ムライトを使用したソックスS-1、S-4で
は60%以上の人が有為差を認めており、純度の良いγ−
アルミナ、ムライトを使用した本発明靴下の保温性が優
れていることが判る。同じγ−アルミナでも粘土等の不
純物が15%入ったセラミックスを使用したソックスS-3
では有為差を認めた人は48%であり、純度は高い方が好
ましいことが判る。α‐アルミナを使用したソックスS-
2で有為差を認めた人は45%であり、同じアルミナでも
物性、構造により保温効果が変ることが判る。
With socks S-1 and S-4 that use γ-alumina and mullite, 60% or more of the people have a significant difference, and γ-
It can be seen that the socks of the present invention using alumina and mullite are excellent in heat retention. Socks S-3 using ceramics containing 15% of impurities such as clay even with the same γ-alumina
However, 48% of the respondents recognized a significant difference, indicating that higher purity is preferable. Socks S-using α-alumina
45% of the respondents recognized a significant difference in 2, and it can be seen that the heat retention effect varies depending on the physical properties and structure even with the same alumina.

遠赤外線放射特性を調べ、出来るだけ放射特性の高いセ
ラミックスを選ぶことが好ましい。炭化ジルコンを使用
したソックスS-5及び窒化チタンを使用したソックスS-6
で有為差を認めた着用者は、それぞれ8%と10%であ
り、比較的低温での保温効果がほとんど無いことが判
る。
It is preferable to examine the far-infrared radiation characteristics and select a ceramic with the highest radiation characteristics. Socks S-5 using zircon carbide and socks S-6 using titanium nitride
The wearers who recognized a significant difference were 8% and 10%, respectively, indicating that there is almost no heat retention effect at relatively low temperatures.

[発明の効果] 本発明は上述のようであるから、本発明靴下の素材とな
る遠赤外線放射性芯鞘型複合繊維によれば、ポリマーに
含有された遠赤外線放射特性を有する粒子から遠赤外線
が放射されるので、本発明靴下を被着すると、遠赤外線
放射効果により人体に熱分子運動が起きて人体が自己発
熱し、寒冷地に於ける使用に最適であり、更に充血作用
が短時間で起きるので、血液の血流を促進し、医療効果
や健康増進効果を得ることができる。
EFFECTS OF THE INVENTION Since the present invention is as described above, according to the far-infrared radiation core-sheath type composite fiber used as the material of the sock of the present invention, far-infrared rays are emitted from the particles having far-infrared radiation characteristics contained in the polymer. As it is radiated, when the sock of the present invention is applied, the far-infrared radiation effect causes a thermal molecule motion in the human body to cause the human body to self-heat, which is ideal for use in cold regions, and the hyperemic action can be achieved in a short time. Since it occurs, the blood flow of blood can be promoted and a medical effect and a health promoting effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は遠赤外線放射率を示す分布図、第2図は複合セ
ラミックスの放射率を示す分布図、第3図はアルミナの
放射率を示す分布図、第4図はムライト放射率を示す分
布図、第5図〜第11図は本発明靴下の素材となる遠赤外
線放射性芯鞘型複合繊維の具体例を示す横断面図であ
る。 図中、1は芯部、2は鞘部、3は中空部である。
FIG. 1 is a distribution chart showing the far infrared emissivity, FIG. 2 is a distribution chart showing the emissivity of composite ceramics, FIG. 3 is a distribution chart showing the emissivity of alumina, and FIG. 4 is a distribution showing the mullite emissivity. FIGS. 5 to 11 are cross-sectional views showing specific examples of far-infrared radiation core-sheath type composite fibers which are materials for the socks of the present invention. In the figure, 1 is a core part, 2 is a sheath part, and 3 is a hollow part.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】30℃における遠赤外線放射率が波長4.5〜3
0μの領域で、平均65%以上である遠赤外線放射特性を
有する粒子を含有するポリマーからなる遠赤外線放射層
を芯部に、厚み10μ以下のポリマーからなる被覆層を鞘
部に配置してなり、芯部及び鞘部のポリマーがポリエチ
レン及び/又はポリアミドである複合繊維の仮撚加工糸
を用いたことを特徴とする遠赤外線放射性靴下。
1. The far infrared emissivity at 30 ° C. has a wavelength of 4.5 to 3
In the region of 0μ, a far-infrared radiation layer made of a polymer containing particles having a far-infrared radiation characteristic of 65% or more on average is arranged in the core part, and a coating layer made of a polymer having a thickness of 10μ or less is arranged in the sheath part. A far-infrared radiation sock, wherein a false twisted textured yarn of a composite fiber in which the polymer of the core portion and the sheath portion is polyethylene and / or polyamide is used.
【請求項2】遠赤外線放射特性を有する粒子が、純度95
%以上のアルミナ、ジルコニア、マグネシアの群から選
ばれた1種又は2種以上の無機化合物である特許請求の
範囲第1項記載の遠赤外線放射性靴下。
2. Particles having far infrared radiation characteristics have a purity of 95.
% Or more inorganic compounds selected from the group consisting of alumina, zirconia and magnesia, or far infrared emitting socks according to claim 1.
【請求項3】遠赤外線放射特性を有する粒子の平均粒径
が0.2〜1.5μである特許請求の範囲第1項記載の遠赤外
線放射性靴下。
3. The far-infrared radiation socks according to claim 1, wherein the particles having far-infrared radiation characteristics have an average particle diameter of 0.2 to 1.5 μm.
【請求項4】遠赤外線放射層が遠赤外線放射特性を有す
る粒子を20〜70重量%含有してなる特許請求の範囲第1
項記載の遠赤外線放射性靴下。
4. The far infrared radiation layer contains 20 to 70% by weight of particles having far infrared radiation characteristics.
Far-infrared radiation socks as described in paragraph.
【請求項5】遠赤外線放射層の芯部が複数である特許請
求の範囲第1項記載の遠赤外線放射性靴下。
5. The far infrared radiation socks according to claim 1, wherein the far infrared radiation layer has a plurality of core portions.
【請求項6】遠赤外線放射層の芯部、鞘部の他に中空部
を有する特許請求の範囲第1項記載の遠赤外線放射性靴
下。
6. The far infrared radiation sock according to claim 1, which has a hollow portion in addition to the core portion and the sheath portion of the far infrared radiation layer.
JP27298989A 1989-10-20 1989-10-20 Far infrared radiation socks Expired - Lifetime JPH0680202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27298989A JPH0680202B2 (en) 1989-10-20 1989-10-20 Far infrared radiation socks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27298989A JPH0680202B2 (en) 1989-10-20 1989-10-20 Far infrared radiation socks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61234390A Division JPS6392720A (en) 1986-10-03 1986-10-03 Sheath-core composite fiber emitting far infrared radiation

Publications (2)

Publication Number Publication Date
JPH0351302A JPH0351302A (en) 1991-03-05
JPH0680202B2 true JPH0680202B2 (en) 1994-10-12

Family

ID=17521599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27298989A Expired - Lifetime JPH0680202B2 (en) 1989-10-20 1989-10-20 Far infrared radiation socks

Country Status (1)

Country Link
JP (1) JPH0680202B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3018319U (en) * 1995-05-19 1995-11-21 株式会社マルエーニット Heel socks

Also Published As

Publication number Publication date
JPH0351302A (en) 1991-03-05

Similar Documents

Publication Publication Date Title
US4999243A (en) Far infra-red radiant composite fiber
JPS6392720A (en) Sheath-core composite fiber emitting far infrared radiation
JPS6132405B2 (en)
CA1046537A (en) Alumina-chromia-metal (iv) oxide refractory fibers having a microcrystalline phase
JPS62199818A (en) Interior modified ceramic fiber
JPH11279830A (en) Fiber with excellent thermic ray radiation
KR101651757B1 (en) Fleece with heat-accumulating and keeping-warm property and preparation method thereof
US4968531A (en) Process for manufacturing far infra-red radiant fibrous structures
KR960008492B1 (en) Inorganic oxide fibers and their production
JPH0680203B2 (en) Far infrared radioactive underwear
KR100792118B1 (en) Manufacturing method for multi-functional polyester fiber and polyester fiber thereof
JP5735377B2 (en) Core-sheath type polyester flat cross-section fiber and fabric having permeation resistance
JPH0680202B2 (en) Far infrared radiation socks
KR101133106B1 (en) Antimicrobial polyester fiber with a modified cross-section and preparation thereof
JP2002266157A (en) X-ray-sensitive fiber
JPH01314715A (en) Fiber and fabric having heat insulating property
KR101213899B1 (en) Method for Manufacturing Multi-Function Nylon Fiber and Multi-Function Nylon Fiber Made Thereof
JP2897899B2 (en) Low wear far-infrared radioactive composite fiber
JPH0130955B2 (en)
KR930011324B1 (en) Manufacturing process of bio-ceramic fiber
JPH03227408A (en) Conjugate fiber of core-sheath type
JPH05321028A (en) Far-infrared radiating conjugate fiber having excellent abrasion resistance
JPH03137274A (en) Heat insulating material
KR960005961B1 (en) Method for the preparation of polyester fiber
JP2002161429A (en) Far infrared radiation particle-containing rayon-based fiber, method for producing the same and underwear containing the fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term