JPH0680097A - Attitude control method for underwater running body - Google Patents

Attitude control method for underwater running body

Info

Publication number
JPH0680097A
JPH0680097A JP4234436A JP23443692A JPH0680097A JP H0680097 A JPH0680097 A JP H0680097A JP 4234436 A JP4234436 A JP 4234436A JP 23443692 A JP23443692 A JP 23443692A JP H0680097 A JPH0680097 A JP H0680097A
Authority
JP
Japan
Prior art keywords
angle
attitude
rudder
inference
rudder angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4234436A
Other languages
Japanese (ja)
Other versions
JP2800582B2 (en
Inventor
Setsuo Matsumoto
せつお 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4234436A priority Critical patent/JP2800582B2/en
Publication of JPH0680097A publication Critical patent/JPH0680097A/en
Application granted granted Critical
Publication of JP2800582B2 publication Critical patent/JP2800582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable rapid attitude angle alteration in posture control of an underwater running body and also proper stability at a desired value. CONSTITUTION:An underwater running body is provided with a differentiator 1, a subtractor 5, a main rudder angle decision section 2 for deciding roughly a rudder angle, in the vicintity of an desired value in attitude control and a fine adjustment streerage speed decision section 3, an integrator 4 and an adder 6 for rapid decision of desired attitude angle and steerage speed command value decision for holding a desired value. A main rudder angle betam as an output of the main rudder angle decision section 2 and a fine adjustment rudder angle betas as the integration of an output of the fine adjustment steerange speed decision section are added together, so that a final rudder angle command beta is outputted to a steerage mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水中航走体の姿勢制御方
式に関し,特に注排水タンクを内蔵し,水中を航走する
水中航走体の姿勢制御を行なう水中航走体の姿勢制御方
式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an attitude control method for an underwater vehicle, and more particularly to an attitude control method for an underwater vehicle that has a built-in pouring / drainage tank and controls the attitude of an underwater vehicle traveling underwater. Regarding

【0002】[0002]

【従来の技術】従来,潜水艦船などの水中航走体の姿勢
制御方式は,図6の(A)〜(C)に示すいずれかの方
式が利用されていた。
2. Description of the Related Art Conventionally, any one of the methods shown in FIGS. 6A to 6C has been used as the attitude control method for an underwater vehicle such as a submarine ship.

【0003】図6の(A)は,姿勢角センサによる姿勢
角θと目標姿勢角θcとを入力して舵角命令βを求める
一般的なPID制御方式である。
FIG. 6A shows a general PID control method in which the attitude angle θ by the attitude angle sensor and the target attitude angle θc are input to obtain the steering angle command β.

【0004】図6の(B)は姿勢角θを目標姿勢角θc
から姿勢角偏差Δθ(=θc−θ)及び姿勢角速度dθ
/dtを求め,作成した制御ルール及びメンバシップ関
数で決まるファジィ推論を行い,取るべき舵角そのもの
も決定する方式である。
FIG. 6B shows the posture angle θ as the target posture angle θc.
To attitude angle deviation Δθ (= θc−θ) and attitude angular velocity dθ
/ Dt is calculated, fuzzy inference determined by the created control rule and membership function is performed, and the steering angle itself to be determined is also determined.

【0005】図6の(C)は,図6(B)と同じ入力を
用い,取るべき舵角ではなく,「数度増やせ」とか「数
度減らせ」といった増分値,すなわち舵角速度をファジ
ィ推論により決定し,その出力を時間tで積分すること
により取るべき舵角を決定する方式である。
FIG. 6 (C) uses the same input as in FIG. 6 (B), and instead of the rudder angle to be taken, the fuzzy inference is performed on the increment value such as "increase by several degrees" or "decrease by several degrees". The steering angle to be taken is determined by integrating the output at time t.

【0006】[0006]

【発明が解決しようとする課題】上述した図6に示す従
来の水中航走体の姿勢制御方式には,それぞれ次のよう
な問題点がある。
Each of the conventional attitude control systems for underwater vehicles shown in FIG. 6 has the following problems.

【0007】図6の(A)に示すPID制御方式は,基
本的に姿勢角水平である場合について比例ゲインKp ,
積分ゲインKi 及び微分ゲインKd を決定しており,大
きな姿勢角を制御する場合には最適ゲインとはならず,
最悪の場合は制御不能となるという問題点があった。
The PID control system shown in FIG. 6A basically has a proportional gain Kp, when the posture angle is horizontal.
Since the integral gain Ki and the differential gain Kd are determined, the optimum gain is not obtained when controlling a large attitude angle.
In the worst case, there is a problem that the control becomes impossible.

【0008】これは,PID制御方式の各ゲインの決定
は,制御対象が線形であると仮定して決定しており,大
きな姿勢角における非線形性のために設計時の仮定が成
立しなくなるためである。
This is because each gain of the PID control system is determined on the assumption that the controlled object is linear, and the assumption at the time of design is not satisfied due to the nonlinearity at a large attitude angle. is there.

【0009】また図6の(B)に示すファジィ制御方式
は,制御ルール及びメンバシップ関数をうまく決めれば
目標値に対しての到達を迅速化できるが,大きな姿勢角
を取った場合に水中航走体に作用する復元モーメントの
影響を相殺するための舵角を,ルールにより決定するこ
とが難しく,目標姿勢角によって復元モーメント相殺の
ための舵角が大きく変化するため,定常状態における偏
差(定常偏差)が大きく生じる。
In the fuzzy control system shown in FIG. 6B, if the control rule and membership function are well determined, the target value can be reached quickly. However, underwater navigation when a large attitude angle is taken. It is difficult to determine the rudder angle for canceling the effect of the restoring moment acting on the running body by a rule, and the rudder angle for canceling the restoring moment largely changes depending on the target attitude angle. Deviation) is large.

【0010】さらに,水中航走体の注排水タンクのタン
ク液量により変化する前後不釣合モーメントが存在する
と,この前後不釣合モーメントを相殺するための舵を取
る必要があり,その舵角はタンク状態や速力等によって
変化し,ルール化することが困難であるという問題点が
あった。
Further, if there is a front-rear unbalance moment that changes depending on the tank liquid amount of the water pouring / draining tank of the underwater vehicle, it is necessary to steer to cancel this front-rear unbalance moment, and the rudder angle is the tank state or There is a problem that it is difficult to make a rule because it changes depending on speed.

【0011】さらに,図6の(C)に示す方式は,前述
した復元モーメント及び不釣合モーメントの影響を考慮
した方式ではあるが,この方式は,どちらかといえば姿
勢保持のために使用する場合には有効であるが,姿勢保
持のためのパラメータ(メンバシップ関数等)で設計し
た場合だと,姿勢角変更を行う際に応答が遅くなるとい
う問題点があった。
Further, the method shown in FIG. 6C is a method considering the influence of the restoring moment and the unbalance moment described above. However, this method is rather used when maintaining the posture. Is effective, but when designing with parameters for maintaining the posture (membership function etc.), there was a problem that the response becomes slow when changing the posture angle.

【0012】また逆に,姿勢角変更のためのパラメータ
で設計した場合だと,目標値付近までの初期到達は速く
なるが,目標値付近で振動的となり目標保持に対する安
定性が悪くなるというい問題点があった。すなわち,図
6の(C)のような場合は,即応性と定常特性とを同時
に満足するパラメータを決定することが困難であるとい
う問題点があった。
On the contrary, if the design is made with the parameters for changing the posture angle, the initial arrival near the target value becomes faster, but it becomes oscillatory near the target value and the stability for holding the target deteriorates. There was a problem. That is, in the case of FIG. 6C, there is a problem that it is difficult to determine a parameter that simultaneously satisfies the responsiveness and the steady characteristic.

【0013】本発明の目的は上述した問題点を解決し,
迅速に目標とする姿勢角に到達し,かつ姿勢角が大きい
場合でも定常偏差を零とすることができ,しかも制御ア
ルゴリズムの開発が容易で保守性の高い水中航走体の姿
勢制御方式を提供することにある。
The object of the present invention is to solve the above-mentioned problems,
Providing an attitude control method for underwater vehicles that can quickly reach the target attitude angle and can reduce the steady-state deviation to zero even if the attitude angle is large, and the control algorithm is easy to develop and maintainability is high. To do.

【0014】[0014]

【課題を解決するための手段】本発明の水中航走体の姿
勢制御方式は,水中航走体の姿勢角変更に対応した舵角
をファジィ推論する姿勢角変更舵角推論と,目標姿勢角
に到達する以前にオーバーシュート抑止のための逆方向
に舵を切る当て舵をファジィ推論する当て舵舵角推論
と,おおよその姿勢角保持を行なうための舵角をファジ
ィ推論する姿勢角保持舵角推論の3種類のファジィ推論
によって求める3種類の操舵量の推論結果をそれぞれメ
ンバシップ関数の形式で出力し,これら推論結果を統合
して1つのメンバシップ関数としてまとめたのち,非フ
ァジィ化を施して大よその操舵量としてのメイン舵角を
決定するメイン舵角決定手段と,姿勢角がほぼ目標値に
あるときに目標値からのずれを補正して所要の舵角命令
とするための微調整舵角を姿勢角偏差と速力とを入力と
しファジィ推論によって求め前記メイン舵角に加算して
舵角命令とする微調整舵角決定手段とを備えた構成を有
する。
The attitude control system for an underwater vehicle according to the present invention includes a attitude angle change rudder angle inference for fuzzy inference of a rudder angle corresponding to a change in the attitude angle of the underwater vehicle, and a target attitude angle. To defeat the rudder in the opposite direction to prevent overshoot before reaching the target angle, and to deduce the rudder angle for fuzzy inference of the rudder rudder and the attitude angle holding rudder angle for fuzzy inference of the rudder angle to roughly maintain the attitude angle. The inference results of the three types of steering amounts obtained by the three types of inference of inference are output in the form of membership functions, and these inference results are integrated into one membership function and then defuzzified. The main rudder angle determining means for determining the main rudder angle as the steering amount, and the fine rudder for correcting the deviation from the target value when the attitude angle is almost the target value to give the required rudder angle command. Adjustment Angle a as input and attitude angle deviation and speed by adding to the main steering angle determined by the fuzzy inference has a configuration in which a fine adjustment steering angle determining means for the steering angle command.

【0015】また本発明の水中航走体の姿勢制御方式
は,前記姿勢角舵角推論は水中航走体の目標とする目標
姿勢角と姿勢角センサで取得した姿勢角との差分の姿勢
角偏差と,速力センサで取得した速力とを入力として推
論し,前記当て舵舵角推論と前記姿勢角保持舵角推論と
は,水中航走体の前記姿勢角偏差と前記姿勢角から得ら
れる姿勢角速度とを入力として推論するものとした構成
を有する。
In the attitude control system for an underwater vehicle of the present invention, the attitude angle rudder angle inference is based on the difference between the desired target attitude angle of the underwater vehicle and the attitude angle obtained by the attitude angle sensor. The deviation and the speed acquired by the speed sensor are inferred as inputs, and the rudder steering angle inference and the attitude angle holding rudder angle inference are the attitude obtained from the attitude angle deviation and the attitude angle of the underwater vehicle. The configuration is such that the inference is made with the angular velocity and the input.

【0016】[0016]

【実施例】次に,本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0017】図1は,本発明の一実施例のブロック図で
ある。図1に示す実施例は,大よその操舵量としてのメ
イン舵角を決定するメイン舵角決定手段としての微分器
1,減算器5およびメイン舵角決定部2と,操舵量を微
調整するための微調整舵角を求めメイン舵角に加算して
舵角命令を求める微調整舵角決定手段としての微調整操
舵速度決定部3,積分器4および加算器6とを備えて成
る。
FIG. 1 is a block diagram of an embodiment of the present invention. In the embodiment shown in FIG. 1, a differentiator 1, a subtractor 5 and a main steering angle determining unit 2 as main steering angle determining means for determining a main steering angle as a steering amount, and a steering amount are finely adjusted. A fine adjustment steering speed determination unit 3, an integrator 4 and an adder 6 are provided as fine adjustment steering angle determination means for determining a fine adjustment steering angle for adding the main steering angle to the main steering angle.

【0018】次に,本実施例の動作について説明する。Next, the operation of this embodiment will be described.

【0019】図1の実施例は,水中航走体の姿勢角セン
サから取得する姿勢角θと,速力センサから取得する速
力Vと,目標姿勢角θc とを入力とし,姿勢角を制御す
るため操舵系に与える舵角命令βを出力する。
In the embodiment shown in FIG. 1, the attitude angle θ acquired from the attitude angle sensor of the underwater vehicle, the speed V acquired from the speed sensor, and the target attitude angle θc are input to control the attitude angle. The steering angle command β given to the steering system is output.

【0020】姿勢角θは,姿勢角速度dθ/dtを得る
ために微分器1へ入力されるとともに,目標姿勢角θc
と組み合わせて姿勢角偏差Δθ(=θc −θ)を計算す
るのに用いられる。
The attitude angle θ is input to the differentiator 1 to obtain the attitude angular velocity dθ / dt, and the target attitude angle θc
It is used to calculate the attitude angle deviation Δθ (= θc −θ) in combination with.

【0021】微分器1により得られた姿勢角速度dθ/
dtは,姿勢角偏差Δθ及び速力Vとともに大よその舵
角としてのメイン舵角βm を決定するためこのメイン舵
角決定部2へ入力される。また,姿勢角偏差Δθと速力
Vとは,目標姿勢角付近での微調整を行なうための微調
整角を得るに必要な微調整操舵速度dβs /dtを決定
するために微調整操舵速度決定部3へ入力される。
Posture angular velocity dθ / obtained by differentiator 1
dt is input to the main rudder angle determining unit 2 to determine the main rudder angle βm as the rudder angle together with the attitude angle deviation Δθ and the speed V. Further, the attitude angle deviation Δθ and the speed V are used to determine the fine adjustment steering speed dβs / dt necessary for obtaining the fine adjustment angle for performing the fine adjustment in the vicinity of the target attitude angle. Input to 3.

【0022】微調整操舵速度決定部3の出力する微調整
操舵速度dβs /dtは積分器4に入力され,積分処理
により微調整舵角βs を出力する。
The fine adjustment steering speed dβs / dt output from the fine adjustment steering speed determination unit 3 is input to the integrator 4, and the fine adjustment steering angle βs is output by the integration processing.

【0023】微調整舵角βs はメイン舵角決定部2の出
力するメイン舵角βm と加算され,最終的な舵角命令β
(=βm +βs )を得る。
The finely adjusted rudder angle βs is added to the main rudder angle βm output from the main rudder angle determiner 2 to obtain the final rudder angle command β.
(= Βm + βs) is obtained.

【0024】次に,本発明の主要部分であるメイン舵角
決定部2及び微調整操舵速度決定部3の動作について説
明する。
Next, the operations of the main rudder angle determination unit 2 and the fine adjustment steering speed determination unit 3 which are the main parts of the present invention will be described.

【0025】メイン舵角決定部2は,姿勢角の変更量が
大きい場合に大まかに目標姿勢角へ近づけるためのメイ
ン舵角を決定する部分であり,例えば人間が操舵を大ま
かに行う動作に対応する。
The main rudder angle determining section 2 is a part for deciding the main rudder angle for roughly approaching the target attitude angle when the amount of change in the attitude angle is large, and corresponds to, for example, an operation in which a person roughly performs steering. To do.

【0026】メイン舵角決定部2は,姿勢角偏差Δθ,
姿勢角速度dθ/dt及び速力データVを入力値として
ファジィ推論によりメイン舵角βm を決定する。
The main rudder angle determination unit 2 is arranged to change the attitude angle deviation Δθ,
The main steering angle βm is determined by fuzzy inference using the posture angular velocity dθ / dt and the speed data V as input values.

【0027】メイン舵角決定部2は,図2に示すよう
に,姿勢角変更の場合に対応した舵角をファジィ推論す
姿勢角変更舵角推論部7と,目標姿勢角にある程度近づ
いてきて目標姿勢角に対する行き過ぎ(オーバーシュー
ト)を防ぐために逆方向に舵を切る当て舵をとる場面に
対応した舵角をファジィ推論する当て舵舵角推論部8及
び目標姿勢角を保持する場面に対応した操舵量を推論す
る姿勢角保持舵角推論部9の3種類の舵角推論部から構
成されていて,各場面に対応した操舵量の推論結果をメ
ンバシップ関数(以下MFと記す)の形で出力する。
As shown in FIG. 2, the main rudder angle determining unit 2 approaches the target attitude angle to some extent with the attitude angle changing rudder angle inferring unit 7 which fuzzy infers the rudder angle corresponding to the attitude angle change. Corresponding to the case where the target rudder angle inference unit 8 for fuzzy reasoning of the rudder angle corresponding to the case where the rudder is steered in the opposite direction to prevent the overshooting against the target attitude angle and the target attitude angle is held The steering angle inference unit 9 for inferring the steering amount is composed of three kinds of steering angle inference units, and the inference result of the steering amount corresponding to each scene is expressed in the form of a membership function (hereinafter referred to as MF). Output.

【0028】これらの出力された結論MFは,結論統合
化部10に出力され,1つの結論MFにまとめられる。
These output conclusions MF are output to the conclusion integrating unit 10 and are combined into one conclusion MF.

【0029】1つにまとめられた結論MFは,メイン舵
角決定部2における最終的な舵角推論結果を表すMFで
あり,このままでは制御に使用できないため,非ファジ
ィ化部11に入力されて重心計算された後メイン舵角β
m に変換出力される。
The conclusion MF put together into one is an MF that represents the final steering angle inference result in the main steering angle determination unit 2 and cannot be used for control as it is, so it is input to the defuzzification unit 11. After the center of gravity is calculated, the main steering angle β
Converted to m and output.

【0030】微調整操舵速度決定部3は,姿勢角がほぼ
目標値にある場合に目標値からのずれを補正するための
微調整角度を得るための微調整操舵速度を決定するもの
であり,図4に示す如く,姿勢角偏差Δθと速力Vとを
入力とし,微調整操舵速度dβs /dtをメイン舵角決
定部3と同様に,微調整操舵速度推論部12でファジィ
推論し,結論統合化部13で結論統合されたあと,非フ
ァジィ化部14で重心計算して求める。ただし,推論の
ためのルールは異なる。
The fine adjustment steering speed determiner 3 determines the fine adjustment steering speed for obtaining the fine adjustment angle for correcting the deviation from the target value when the posture angle is almost the target value. As shown in FIG. 4, using the attitude angle deviation Δθ and the speed V as inputs, the fine adjustment steering speed dβs / dt is fuzzy inferred by the fine adjustment steering speed inference unit 12 as in the main steering angle determination unit 3, and the conclusions are integrated. After the conclusions are integrated by the phasing unit 13, the defuzzification unit 14 calculates and calculates the center of gravity. However, the rules for inference are different.

【0031】次に,各推論部のルールについて説明す
る。
Next, the rules of each inference unit will be described.

【0032】メイン舵角決定部2のルール例を図3の
(A)〜(D)に示す。また,微調整操舵速度推論部3
のルール例を図5に示す。
Examples of the rules of the main steering angle determination unit 2 are shown in FIGS. 3 (A) to 3 (D). In addition, the fine adjustment steering speed inference unit 3
An example of the rule is shown in FIG.

【0033】図3の(A)は,姿勢角変更舵角推論ルー
ル例を示し,ルール数N1は11としている。また図3
の(B)は当て舵舵角推論ルール例を示し,ルール数N
2は4としている。さらに図3の(C)は姿勢角保持舵
角推論ルール例を示し,ルール数N3は5としている。
また,図3の(D)は,図3の(A)〜(C)に利用す
るラレベルの意味を表記して示す。
FIG. 3A shows an example of a posture angle changing rudder angle inference rule, where the number of rules N1 is 11. See also FIG.
(B) shows an example of a rudder rudder angle inference rule.
2 is 4. Further, FIG. 3C shows an example of the attitude angle holding steering angle inference rule, and the rule number N3 is 5.
Further, (D) of FIG. 3 shows the meaning of the L level used in (A) to (C) of FIG.

【0034】いま,たとえば図3の(B)を例として推
論ルールを示すと,No.1〜No.4はそれぞれ次の
内容を示す。
Now, the inference rules will be described by taking, for example, FIG. 1-No. 4 indicates the following contents, respectively.

【0035】No.1:IFΔθ=PM and dθ
/dt=PL,THEN βm =NS (姿勢角偏差が正に中くらいかつ姿勢角速度が正に大き
ければ,メイン舵角を小さく負とせよ。) orNo.2:IFΔθ=NM and dθ/dt=
NL,THEN βm =PS (姿勢角偏差が負に中くらいかつ姿勢角速度が負に大き
ければ,メイン舵角を小さく正とせよ。) orNo.3:IFΔθ=PM and dθ/dt=
PM,THEN βm =ZR (姿勢角偏差が正に中くらいかつ姿勢角速度が正に中く
らいなら,メイン舵角をほぼ0とせよ。) orNo.4:IFΔθ=NM and dθ/dt=
NM,THEN βm =ZR (姿勢角偏差が負に中くらいかつ姿勢角速度が負に中く
らいなら,メイン舵角をほぼ0とせよ。) 図5を含む他の推論部のルールについても同様であるの
で,個個の詳細な説明は省略する。
No. 1: IFΔθ = PM and dθ
/ Dt = PL, THEN βm = NS (If the attitude angle deviation is positive and medium and the attitude angular velocity is positively large, make the main steering angle small and negative.) Or No. 2: IFΔθ = NM and dθ / dt =
NL, THEN βm = PS (If the attitude angle deviation is negative and medium and the attitude angular velocity is negative, set the main rudder angle small and positive.) Or No. 3: IFΔθ = PM and dθ / dt =
PM, THEN βm = ZR (If the attitude angle deviation is positive and medium and the attitude angular velocity is positive and medium, set the main steering angle to almost 0.) or No. 4: IFΔθ = NM and dθ / dt =
NM, THEN βm = ZR (If the attitude angle deviation is negative and medium and the attitude angular velocity is negative and medium, set the main steering angle to approximately 0.) The same applies to the rules of other inference units including FIG. Therefore, detailed description of each item is omitted.

【0036】[0036]

【発明の効果】以上説明したように本発明は,大まかな
舵角を決定するメイン舵角決定により速やかに目標姿勢
角付近に到達することができ,目標値付近での微調整を
メイン舵角に施すことにより,姿勢角が大きい場合でも
姿勢角偏差が無くなるまで舵を切る指令が出るため,定
常偏差を0にできるという効果がある。
As described above, according to the present invention, it is possible to quickly reach the vicinity of the target attitude angle by determining the main rudder angle for determining the rough rudder angle. By performing the above, since there is a command to turn the steering until the posture angle deviation disappears even if the posture angle is large, the steady-state deviation can be made zero.

【0037】さらに,メイン舵角の決定及び微調整舵角
の決定にはファジィ推論を用いているため,操舵に関す
るノウハウを容易に言語表現にて組み込め,制御アルゴ
リズムの開発が容易かつ保守性が高くなるという効果が
ある。
Further, since the fuzzy inference is used for determining the main steering angle and the fine adjustment steering angle, the know-how about steering can be easily incorporated in the language expression, and the control algorithm can be easily developed and maintainability is high. There is an effect that.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のフロック図である。FIG. 1 is a flock diagram of an embodiment of the present invention.

【図2】図1の,メイン舵角決定部2のブロック図であ
る。
FIG. 2 is a block diagram of a main steering angle determination unit 2 in FIG.

【図3】図2の姿勢角変更舵角推論部7の推論ルール例
を示す図(A),当て舵舵角推論部8の推論ルール例を
示す図(B),姿勢角保持舵角推論部9の推論ルール例
を示す図(C)およびラベル内容を表記して示す図
(D)である。
FIG. 3 is a diagram showing an inference rule example of a posture angle change rudder angle inference unit 7 in FIG. 2 (A), a diagram showing an inference rule example of a steering rudder angle inference unit 8 in FIG. It is a figure (C) which shows the example of the inference rule of the part 9, and a figure (D) which shows and shows the label content.

【図4】図1の微調整操舵速度決定部3のブロック図で
ある。
FIG. 4 is a block diagram of a fine adjustment steering speed determination unit 3 in FIG.

【図5】図4の微調整操舵速度決定部3の推論ルール例
を示す図である。
5 is a diagram showing an inference rule example of a fine adjustment steering speed determination unit 3 in FIG.

【図6】従来の姿勢制御方式の第1例を示す機能ブロッ
ク図(A),第2例を示す機能ブロック図(B)および
第3例を示す機能ブロック図(C)である。
FIG. 6 is a functional block diagram (A) showing a first example of a conventional attitude control system, a functional block diagram (B) showing a second example, and a functional block diagram (C) showing a third example.

【符号の説明】[Explanation of symbols]

1 微分器 2 メイン舵角決定部 3 微調整操舵速度決定部 4 積分器 5 減算器 6 加算器 7 姿勢角変更舵角推論部 8 当て舵舵角推論部 9 姿勢角保持舵角推論部 10 結論統合化部 11 非ファジィ化部 12 微調整操舵速度推論部 13 結論統合化部 14 非ファジィ化部 1 Differentiator 2 Main rudder angle determination unit 3 Fine adjustment steering speed determination unit 4 Integrator 5 Subtractor 6 Adder 7 Attitude angle change rudder angle inference unit 8 Target rudder angle inference unit 9 Attitude angle holding rudder angle inference unit 10 Conclusion Integration part 11 Defuzzification part 12 Fine adjustment steering speed inference part 13 Conclusion Integration part 14 Defuzzification part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中航走体の姿勢角変更に対応した舵角
をファジィ推論する姿勢角変更舵角推論と,目標姿勢角
に到達する以前にオーバーシュート抑止のための逆方向
に舵を切る当て舵をファジィ推論する当て舵舵角推論
と,おおよその姿勢角保持を行なうための舵角をファジ
ィ推論する姿勢角保持舵角推論の3種類のファジィ推論
によって求める3種類の操舵量の推論結果をそれぞれメ
ンバシップ関数の形式で出力し,これら推論結果を統合
して1つのメンバシップ関数としてまとめたのち,非フ
ァジィ化を施して大よその操舵量としてのメイン舵角を
決定するメイン舵角決定手段と,姿勢角がほぼ目標値に
あるときに目標値からのずれを補正して所要の舵角命令
とするための微調整舵角を姿勢角偏差と速力とを入力と
しファジィ推論によって求め前記メイン舵角に加算して
舵角命令とする微調整舵角決定手段とを備えることを特
徴とする水中航走体の姿勢制御方式。
1. A posture angle change rudder angle inference for fuzzy inference of a rudder angle corresponding to a change in posture angle of an underwater vehicle, and steering in the opposite direction to prevent overshoot before reaching a target posture angle. Inference results of three types of steering amounts obtained by three types of fuzzy inference: a rudder rudder angle inference for fuzzy inference of a rudder and an attitude angle holding rudder angle inference for fuzzy inference of a rudder angle for roughly maintaining the attitude angle Are output in the form of membership functions, and these inference results are integrated into one membership function and then defuzzified to determine the main steering angle as the steering amount. The determination means and the finely adjusted rudder angle for correcting the deviation from the target value to give the required rudder angle command when the attitude angle is almost at the target value are obtained by fuzzy reasoning by inputting the attitude angle deviation and the speed. An attitude control system for an underwater vehicle, comprising: a finely adjusted rudder angle determining means for obtaining a rudder angle command by adding to the main rudder angle.
【請求項2】 前記姿勢角舵角推論は水中航走体の目標
とする目標姿勢角と姿勢角センサで取得した姿勢角との
差分の姿勢角偏差と,速力センサで取得した速力とを入
力として推論し,前記当て舵舵角推論と前記姿勢角保持
舵角推論とは,水中航走体の前記姿勢角偏差と前記姿勢
角から得られる姿勢角速度とを入力として推論するもの
であることを特徴とする請求項1記載の記載の水中航走
体の姿勢制御方式。
2. The attitude angle rudder angle inference inputs the attitude angle deviation of the difference between the target attitude angle of the underwater vehicle and the attitude angle acquired by the attitude angle sensor, and the speed acquired by the speed sensor. And that the rudder rudder angle inference and the attitude angle holding rudder angle inference are inferred with the attitude angle deviation of the underwater vehicle and the attitude angular velocity obtained from the attitude angle as inputs. The attitude control system for an underwater vehicle according to claim 1, which is characterized in that.
JP4234436A 1992-09-02 1992-09-02 Attitude control method for underwater vehicles Expired - Lifetime JP2800582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4234436A JP2800582B2 (en) 1992-09-02 1992-09-02 Attitude control method for underwater vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4234436A JP2800582B2 (en) 1992-09-02 1992-09-02 Attitude control method for underwater vehicles

Publications (2)

Publication Number Publication Date
JPH0680097A true JPH0680097A (en) 1994-03-22
JP2800582B2 JP2800582B2 (en) 1998-09-21

Family

ID=16970983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4234436A Expired - Lifetime JP2800582B2 (en) 1992-09-02 1992-09-02 Attitude control method for underwater vehicles

Country Status (1)

Country Link
JP (1) JP2800582B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327634A (en) * 2020-11-27 2021-02-05 江苏科技大学 Underwater robot attitude control method based on BP neural network S-surface control
CN115571309A (en) * 2022-11-25 2023-01-06 青州鑫聚隆装备制造有限公司 Multifunctional intelligent-connection underwater robot control method and control system thereof
CN116774715A (en) * 2023-05-31 2023-09-19 新兴际华(北京)智能装备技术研究院有限公司 Underwater vehicle attitude control method and device
US11873933B2 (en) 2019-09-12 2024-01-16 Nitto Kohki Co., Ltd. Pipe coupling member
US11945083B2 (en) 2016-08-31 2024-04-02 Koki Holdings Co., Ltd. Driver, pressure regulator and driving unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11945083B2 (en) 2016-08-31 2024-04-02 Koki Holdings Co., Ltd. Driver, pressure regulator and driving unit
US11873933B2 (en) 2019-09-12 2024-01-16 Nitto Kohki Co., Ltd. Pipe coupling member
CN112327634A (en) * 2020-11-27 2021-02-05 江苏科技大学 Underwater robot attitude control method based on BP neural network S-surface control
CN112327634B (en) * 2020-11-27 2022-04-26 江苏科技大学 Underwater robot attitude control method based on BP neural network S-surface control
CN115571309A (en) * 2022-11-25 2023-01-06 青州鑫聚隆装备制造有限公司 Multifunctional intelligent-connection underwater robot control method and control system thereof
CN115571309B (en) * 2022-11-25 2023-03-24 青州鑫聚隆装备制造有限公司 Multifunctional intelligent-connection underwater robot control method and control system thereof
CN116774715A (en) * 2023-05-31 2023-09-19 新兴际华(北京)智能装备技术研究院有限公司 Underwater vehicle attitude control method and device

Also Published As

Publication number Publication date
JP2800582B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
Bounemeur et al. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures
Mirzaei et al. Fuzzy scheduled optimal control of integrated vehicle braking and steering systems
Nie et al. Improved adaptive integral line-of-sight guidance law and adaptive fuzzy path following control for underactuated MSV
JP4339016B2 (en) Thrust distribution method and thrust distribution apparatus
US8510034B2 (en) Perception model for trajectory following autonomous and human augmented steering control
JP2002019634A (en) Control device for lane follow up driving
CN112373470A (en) Nash game control method for automatic driving, steering and braking under emergency avoidance working condition
Hu et al. A real-time collision avoidance system for autonomous surface vessel using fuzzy logic
Sebastián et al. Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle
JP2800582B2 (en) Attitude control method for underwater vehicles
JP3033571B1 (en) Submersible depth control system
US7083025B2 (en) Method for implementing vehicle stability enhancement reference models for active steer systems
JP2576778B2 (en) Depth control method for underwater vehicles
Manceur et al. Higher order sliding mode controller for driving steering vehicle wheels: Tracking trajectory problem
CN115480570A (en) Agricultural vehicle automatic navigation control method and device and agricultural vehicle
JP2002193126A (en) Lane follow-up control device of vehicle
Lucet et al. Sliding-mode velocity and yaw control of a 4WD skid-steering mobile robot
Goodridge et al. Multi-layered fuzzy behavior fusion for real-time control of systems with many sensors
JPH07239712A (en) Automatic navigation control method
JPS59220496A (en) Automatic steering system for vessel
Tong et al. Constrained control using novel nonlinear mapping for underactuated unmanned surface vehicles with unknown sideslip angle
Xu High performance and robust control
Hu et al. Robust tube-based model predictive control for autonomous vehicle path tracking
JP2653196B2 (en) Rolling control device for vehicle
CN116552520A (en) High-performance lane keeping control system based on rolling pretreatment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980609