JPH0679532A - Electric discharge machining process and its device - Google Patents
Electric discharge machining process and its deviceInfo
- Publication number
- JPH0679532A JPH0679532A JP25389492A JP25389492A JPH0679532A JP H0679532 A JPH0679532 A JP H0679532A JP 25389492 A JP25389492 A JP 25389492A JP 25389492 A JP25389492 A JP 25389492A JP H0679532 A JPH0679532 A JP H0679532A
- Authority
- JP
- Japan
- Prior art keywords
- current
- power supply
- electrodes
- electric discharge
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は放電加工方法及び装置に
関し、特に加工速度を向上せしめる放電加工方法及び装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining method and apparatus, and more particularly to an electric discharge machining method and apparatus for improving machining speed.
【0002】[0002]
【従来の技術】形彫放電加工機やワイヤ放電加工機等の
放電加工装置では、加工電極(以下、単に「電極」と言
う)とワーク電極(以下、単に「ワーク」と言う)との
極間に電圧を印加してワークを放電加工する。放電加工
装置における電源としては、通常、例えば150〜30
0Vの高圧電源と、70〜100V程度の低圧電源が用
いられ、高圧電源により電極とワーク間の極間で放電開
始した後、低圧電源(主加工電流)を極間に供給して放
電加工を行なう。これらの電源から電極とワークへの電
流の供給は給電線(ケーブル)を介して行なわれる。2. Description of the Related Art In an electric discharge machine such as a die-sinking electric discharge machine or a wire electric discharge machine, a pole between a machining electrode (hereinafter simply referred to as "electrode") and a work electrode (hereinafter simply referred to as "workpiece") is used. A voltage is applied between them to perform electric discharge machining on the work. As a power source in an electric discharge machine, usually, for example, 150 to 30
A high-voltage power supply of 0 V and a low-voltage power supply of about 70 to 100 V are used. After the electric discharge is started between the electrode and the work by the high-voltage power supply, the low-voltage power supply (main machining current) is supplied between the electrodes to perform electric discharge machining. To do. The supply of current from these power sources to the electrodes and the work is performed via a power supply line (cable).
【0003】ところで、形彫放電加工機による焼結合金
の加工やワイヤ放電加工機による加工時の加工速度は、
電源から供給されるパルス放電電流波形によって同一の
平均電流であっても変化する。例えば、図9(a)に示
すような立ち上がりの緩やかな電流波形を用いた加工
(通常、電極を銅として鉄を加工する場合に用いられ、
電極の消耗の少ない低消耗加工である)と比較して、同
図(b)に示すような急峻立ち上がり波形のパルス電流
を用いた場合(電極の消耗が大きい)には、加工速度は
数倍高速化される。通常、電源から供給されるパルス電
圧は同図(c)に示す如く、立ち上がり、立ち下がりの
急峻な矩形波パルスであるが、電源と機械(電極、ワー
ク)を接続する給電線がインダクタンス成分を有するた
め極間に流れる電流波形は同図(a)のように立ち上が
りが緩慢な波形となってしまい、加工速度の向上が困難
となる。By the way, the machining speed at the time of machining a sintered alloy by a die-sinking electric discharge machine or machining by a wire electric discharge machine is
The same average current varies depending on the pulse discharge current waveform supplied from the power supply. For example, processing using a current waveform having a gradual rise as shown in FIG. 9A (usually used when processing iron with copper as an electrode,
The machining speed is several times higher when using a pulsed current with a steep rising waveform as shown in Fig. 7 (b) (the consumption of the electrode is large), compared with the low consumption of the electrode that consumes less. It will be faster. Normally, the pulse voltage supplied from the power source is a rectangular wave pulse with a sharp rise and fall as shown in FIG. 7C, but the power supply line connecting the power source and the machine (electrode, work) has an inductance component. Because of this, the waveform of the current flowing between the poles has a slow rising waveform as shown in FIG. 4A, and it is difficult to improve the processing speed.
【0004】図7には従来の放電加工機の電源供給系の
構成ブロック図が示されている。高圧電源1、トランジ
スタスイッチ3及び抵抗R2から成る高圧パルス電源の
出力は給電線LN12及びLN11に接続され、電極7
及びワーク8にパルス電圧を供給している。同様に、低
圧電源6、トランジスタ4と抵抗R1及び高圧電源から
の逆流防止用のダイオードDから成る低圧パルス電源の
出力も給電線LN12及びLN11に接続され、電極7
及びワーク8にパルス電圧を供給している。トランジス
タ3と4のON/OFF制御は、次のように行なわれ
る。即ち、パルス制御部10は、先ずプリアンプ2にト
ランジスタ3をONにする信号を送出し、極間に高圧電圧
を供給する。放電検出部9が、極間の放電開始を、例え
ば極間電圧の低下をモニターすることにより検出する
と、放電検出信号がパルス制御部10に送出される。パ
ルス制御部10は、この放電検出信号を受けると、プリ
アンプ5にトランジスタ4をONにする信号を送出し、
極間に加工用電流を供給する。パルス制御部10は、放
電開始時からの時間を計数し所定時間τONが経過した
ら、プリアンプ2と5にトランジスタ3と4をOFFする
信号を送出する。その後、所定の休止時間τOFFを設け
て、上述した制御を繰り返す。FIG. 7 shows a block diagram of a power supply system of a conventional electric discharge machine. The output of the high-voltage pulse power supply including the high-voltage power supply 1, the transistor switch 3 and the resistor R2 is connected to the power supply lines LN12 and LN11, and the electrode 7
And a pulse voltage is supplied to the work 8. Similarly, the output of the low-voltage pulse power source, which is composed of the low-voltage power source 6, the transistor 4, the resistor R1, and the diode D for preventing backflow from the high-voltage power source, is also connected to the power supply lines LN12 and LN11, and the electrode 7
And a pulse voltage is supplied to the work 8. ON / OFF control of the transistors 3 and 4 is performed as follows. That is, the pulse control unit 10 first sends a signal for turning on the transistor 3 to the preamplifier 2 to supply a high voltage between the electrodes. When the discharge detection unit 9 detects the start of discharge between the electrodes, for example, by monitoring a decrease in the voltage between the electrodes, a discharge detection signal is sent to the pulse control unit 10. Upon receiving this discharge detection signal, the pulse control unit 10 sends a signal for turning on the transistor 4 to the preamplifier 5,
Supply machining current to the gap. The pulse control unit 10 counts the time from the start of discharge, and when a predetermined time τON has elapsed, sends a signal to the preamplifiers 2 and 5 to turn off the transistors 3 and 4. After that, a predetermined rest time τOFF is provided and the above control is repeated.
【0005】図8には、図7に示す回路構成の動作を説
明する波形タイミング図が示されている。電極7とワー
ク8間は、トランジスタ3のON動作(c)で供給され
る高圧電源により放電し、(a)に示すような極間電圧
となり、一方、トランジスタ4の放電開始タイミング
(d)でのON動作に伴い流れる極間電流は(b)の如
くの波形となる。この極間電流の緩慢な立ち上がりは前
述の如くの給電線のインダクタンス成分に起因する。FIG. 8 is a waveform timing chart for explaining the operation of the circuit configuration shown in FIG. The voltage between the electrode 7 and the work 8 is discharged by the high-voltage power supply supplied by the ON operation (c) of the transistor 3, and the voltage between the electrodes is as shown in (a), while the discharge start timing (d) of the transistor 4 is reached. The inter-electrode current flowing along with the ON operation of No. 2 has a waveform as shown in (b). This slow rise of the inter-electrode current is caused by the inductance component of the power supply line as described above.
【0006】以上のように、従来の放電加工機は給電線
のもつインダクタンス成分に起因して極間電流波形の立
ち上がりが緩やかとなるため、加工速度の高速化の大き
な阻害要因となっていた。かかる阻害要因を解決するた
め、従来、出力ケーブル(給電線)として同軸ケーブル
やツイストケーブルを用いたり、特開平 2ー274423号公
報に開示されているような同軸ケーブルのシールド側に
逆方向の電流を流す構成の提案が為されている。As described above, in the conventional electric discharge machine, the rise of the machining gap current waveform becomes gradual due to the inductance component of the power supply line, which has been a major impediment to increasing the machining speed. In order to solve such an obstructing factor, conventionally, a coaxial cable or a twisted cable is used as an output cable (power supply line), or a current in the reverse direction is applied to the shield side of the coaxial cable as disclosed in JP-A-2-274423. A proposal has been made for a configuration that causes the current to flow.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、同軸ケ
ーブルやツイストケーブルを用いる方法では、加工間隙
部(電極とワーク極間)がオープン状態から略ショート
状態に変化するために、同軸ケーブルに対してインピー
ダンスマッチングをとることができず、また、立ち上が
り特性も改善はされるものの充分ではない。また、同軸
ケーブルのシールド側に逆方向電流を流す場合も、その
ための帰線部分をインダクタンスのない無誘導配線とす
ることは不可能であるから依然問題は解消しない。However, in the method using the coaxial cable or the twisted cable, since the machining gap (between the electrode and the work electrode) changes from the open state to the substantially short state, impedance to the coaxial cable is increased. Although matching cannot be achieved and the rising characteristic is improved, it is not sufficient. Further, even when a reverse current is applied to the shield side of the coaxial cable, it is impossible to use a non-inductive wiring with no return line for that purpose, so the problem still remains.
【0008】そこで、本発明の目的は、電極間に流れる
放電電流波形の立ち上がりを急峻とし、放電加工速度の
高速化を可能とする放電加工方法及び装置を提供するこ
とにある。Therefore, an object of the present invention is to provide an electric discharge machining method and apparatus which makes the rise of the waveform of the electric discharge current flowing between the electrodes steep and enables the electric discharge machining speed to be increased.
【0009】[0009]
【課題を解決するための手段】前述の課題を解決するた
め、本発明による放電加工方法は、電源と両電極とを接
続し加工電流を供給する給電線の極間側に、極間と並列
に側路を設け、極間の放電開始前に前記側路を介して前
記給電線に所定レベルの電流を流し、極間の放電開始と
ともに前記側路を遮断して極間に加工電流を流すように
構成される。また、本発明の放電加工装置は、電源と両
電極とを接続する給電線と、該給電線の極間側に極間と
並列に設けた側路と、該側路に流れる電流を継続する側
路開閉手段と、極間の放電状態を検出する検出手段と、
極間の放電開始前に前記側路開閉手段を閉じて前記電源
から所定レベルの電流を前記側路を介して前記給電線に
流し、前記検出手段が極間の放電開始を検出したら前記
側路開閉手段を開にして前記電源からの加工電流を極間
に流すように制御する制御手段とを備えて成ることを特
徴とする放電加工装置。In order to solve the above-mentioned problems, an electric discharge machining method according to the present invention is arranged such that a power supply line and a pair of electrodes are connected to each other on the side of a feed line for supplying a machining current. A side path is provided in the power supply line, a current of a predetermined level is supplied to the power supply line through the side path before the discharge between the electrodes is started, and the side path is cut off when the discharge between the electrodes is started to flow a machining current between the electrodes. Is configured as follows. Further, the electric discharge machining apparatus of the present invention continues the power supply line connecting the power supply and both electrodes, the side path provided in parallel with the interelectrode space on the interelectrode side of the power supply line, and the current flowing through the side path. A bypass opening / closing means, a detecting means for detecting a discharge state between the electrodes,
Before the start of the discharge between the electrodes, the side opening / closing means is closed, and a current of a predetermined level is made to flow from the power source to the power supply line through the side path, and when the detecting means detects the start of the discharge between the electrodes, the side path is opened. An electric discharge machining apparatus comprising: a control unit that opens and closes the opening and closing unit to control a machining current from the power source to flow between the electrodes.
【0010】[0010]
【作用】本発明では、インダクタンスがそれまで流れて
いる電流を維持するように作用することに着目し、給電
線に予め所定レベルの電流を流しておき、極間の放電開
始の検出に応答して加工電流を上記給電線を介して上記
極間に供給することにより、極間に流れる放電電流波形
の立ち上がりを急峻とし、放電加工速度の高速化を可能
としている。In the present invention, paying attention to the fact that the inductance acts so as to maintain the current that has been flowing up to that point, a current of a predetermined level is made to flow in the power supply line in advance, and it responds to the detection of the discharge start between the electrodes. By supplying a machining current between the electrodes via the power supply line, the rising of the waveform of the discharge current flowing between the electrodes becomes steep, and the electrical discharge machining speed can be increased.
【0011】[0011]
【実施例】次に、本発明の実施例について図面を参照し
ながら説明する。図1は、本発明による放電加工方法及
び装置の一例を説明するための構成図である。図1にお
いて、図7と同一符号が付与されている構成部は同様な
機能を有する構成部を示す。高圧電源1は、トランジス
タスイッチ3と抵抗R2及び給電線LN3を介してワイ
ヤ電極7に接続され、低圧電源6は、トランジスタスイ
ッチ4、抵抗R1、給電線LN2及び高圧電源1からの
高圧逆流防止用のダイオードD1を介して電極7に接続
されている。トランジスタスイッチ3及び4の動作は、
パルス制御部10から供給され、プリアンプ2と5によ
り増幅された制御信号により制御される。Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a configuration diagram for explaining an example of an electric discharge machining method and apparatus according to the present invention. In FIG. 1, the components designated by the same reference numerals as those in FIG. 7 indicate components having the same function. The high voltage power supply 1 is connected to the wire electrode 7 via the transistor switch 3, the resistor R2 and the power supply line LN3, and the low voltage power supply 6 is for preventing the high voltage backflow from the transistor switch 4, the resistor R1, the power supply line LN2 and the high voltage power supply 1. Is connected to the electrode 7 via the diode D1. The operation of the transistor switches 3 and 4 is
It is controlled by the control signal supplied from the pulse control unit 10 and amplified by the preamplifiers 2 and 5.
【0012】給電線LN1と給電線LN2の極間側に極
間と並列の側路14が設けられ、また給電線LN2とワ
ーク8に接続された給電線LN1間の電源側には、ダイ
オードD2と補助電源11が接続されている。補助電源
11からは、ダイオードD2とD1を介して低電圧(例
えば、5〜10V)の電圧が電極7とワーク8間に印加
される。トランジスタスイッチ(側路用開閉手段)13
は、ダイオードD1の給電線LN12側とワーク間に接
続され、その動作がプリアンプ12から供給される制御
信号により制御される。トランジスタ3,4及び13の
動作は、放電検出部9からの放電検出信号を受けてパル
ス制御部10から出力される制御信号により制御され
る。給電線LN1は、低圧電源1と高圧電源6に対して
独立としても共用としても良い。A side path 14 parallel to the gap between the feed lines LN1 and LN2 is provided between the feed lines LN1 and LN2, and a diode D2 is provided on the power supply side between the feed line LN2 and the feed line LN1 connected to the work 8. And the auxiliary power supply 11 are connected. A low voltage (for example, 5 to 10 V) is applied between the electrode 7 and the work 8 from the auxiliary power supply 11 via the diodes D2 and D1. Transistor switch (opening / closing means for bypass) 13
Is connected between the power feeding line LN12 side of the diode D1 and the work, and its operation is controlled by a control signal supplied from the preamplifier 12. The operations of the transistors 3, 4 and 13 are controlled by a control signal output from the pulse control unit 10 upon receiving a discharge detection signal from the discharge detection unit 9. The power supply line LN1 may be independent or shared with the low voltage power supply 1 and the high voltage power supply 6.
【0013】本実施例では、先にトランジスタ13をO
Nにして補助電源11から、ダイオードD2を介して給
電線LN1とLN2間に予め所定の電流isを流してお
き、高圧電源1からの高圧パルスを供給し、放電が開始
したらトランジスタ13をOFFするとともに、トラン
ジスタ4をONにし、極間に低圧電源6から放電電流が
供給される。加工電流は、図2(a),(b)に示す如
く、切り換えた瞬間、放電電流は給電線に予め流してい
た電流まで立ち上がり、それから徐々に低圧電源の設定
電流値に向かって変化する。すなわち、トランジスタ1
3がON状態にあれば補助電源11からの電流は、給電
線LN1とLN2に流れ、OFF状態になると電極7と
ワーク8間に流れる。In this embodiment, the transistor 13 is first turned off.
A predetermined current is is supplied from the auxiliary power supply 11 to the feeding line LN1 and LN2 via the diode D2 in advance to supply the high voltage pulse from the high voltage power supply 1 and turn off the transistor 13 when the discharge is started. At the same time, the transistor 4 is turned on, and a discharge current is supplied from the low voltage power source 6 between the electrodes. As shown in FIGS. 2 (a) and 2 (b), the machining current rises up to the current that was previously passed through the feeder line at the moment of switching, and then gradually changes toward the set current value of the low-voltage power supply. That is, the transistor 1
When 3 is in the ON state, the current from the auxiliary power supply 11 flows through the power supply lines LN1 and LN2, and when it is in the OFF state, it flows between the electrode 7 and the work 8.
【0014】図3には、図1に示す実施例の各部の動作
を説明する波形タイミング図が示されている。トランジ
スタ13が動作すると(同図(d)のハイレベルに対
応)、給電線LN1とLN2及びトランジスタ13に
(c)に示すような電流が流れる。この電流は、(d)
に示すパルスの立ち上がり時点t0から徐々に上昇し、
上述所定の電流値isに至る。この電流値が略isに至
るまでの時間τd(トランジスタスイッチ13のON時
点t0からの時間)を経過した時点t1でトランジスタス
イッチ3を動作させると(e)、電極7とワーク8間に
は、(a)に示すような放電点弧用パルス(極間電圧)
が供給される。時間τdは、給電線の材質や長さにより
異なり、実験的に予め定めることができる。極間で放電
が開始するまでの時間τWが経過した時点(放電開始
点)t2から放電が開始されると、電極7とワーク8間
には(b)に示すような極間電流が流れる。極間電流
は、事前に給電線に流していた所定電流値に起因して立
ち上がりの急峻な電流となる。放電開始時には、(f)
に示すように、トランジスタスイッチ4がON動作して
低圧電源が極間に供給される。放電加工時間τonが経過
すると、次の放電準備時点までの時間τaの期間は、ト
ランジスタスイッチ3,4及び13は、OFF状態にな
る(時点t3)。同図(a)において、τoffは、放電
終了時点t3から次に高圧電源が供給される時点t1’ま
での時間を示す。FIG. 3 is a waveform timing chart for explaining the operation of each part of the embodiment shown in FIG. When the transistor 13 operates (corresponding to the high level in FIG. 7D), a current as shown in (c) flows through the power supply lines LN1 and LN2 and the transistor 13. This current is (d)
The pulse gradually rises from the rising time t0 of
The predetermined current value is is reached. When the transistor switch 3 is operated at a time t1 when a time τd (time from the ON time t0 of the transistor switch 13) until the current value reaches approximately is is passed (e), between the electrode 7 and the work 8, Discharge ignition pulse (voltage between electrodes) as shown in (a)
Is supplied. The time τd varies depending on the material and length of the power supply line and can be experimentally determined in advance. When the discharge is started from a time point (discharge start point) t2 when the time τW until the discharge is started between the electrodes is started, an inter-electrode current as shown in (b) flows between the electrode 7 and the work 8. The inter-electrode current becomes a current with a steep rise due to the predetermined current value that has been passed through the power supply line in advance. At the start of discharge, (f)
As shown in, the transistor switch 4 is turned on and low voltage power is supplied between the electrodes. After the electric discharge machining time τon elapses, the transistor switches 3, 4 and 13 are in the OFF state during the time τa until the next electric discharge preparation time (time t3). In FIG. 7A, τoff indicates the time from the discharge end time t3 to the next time t1 ′ when the high voltage power is supplied.
【0015】図4には、補助電源11の一構成例が示さ
れている。出力電流が電流センサ112で検出され、電
圧制御部111に出力される。電圧制御部111は、検
出電流と所定値isとの差に基づいて可変電源110を
調整して出力電流を所定値に設定する。FIG. 4 shows an example of the configuration of the auxiliary power supply 11. The output current is detected by the current sensor 112 and output to the voltage control unit 111. The voltage control unit 111 adjusts the variable power supply 110 based on the difference between the detected current and the predetermined value is to set the output current to the predetermined value.
【0016】図5は、補助電源11の他の構成例を示
し、電源113に可変抵抗器114を直列接続し、可変
抵抗器114の抵抗値を調整することにより出力電流を
制御する。FIG. 5 shows another configuration example of the auxiliary power source 11, in which a variable resistor 114 is connected in series to the power source 113 and the output current is controlled by adjusting the resistance value of the variable resistor 114.
【0017】図6には、補助電源11の更に他の構成例
が示されている。本例では、電源115に直列にトラン
ジスタスイッチ116が接続され、該トランジスタスイ
ッチ6のゲートにパルス制御部10からの制御信号がト
ランジスタスイッチ13のOFF動作に同期して供給さ
れ、極間短絡時の大電流の発生が防止される。また、不
要時には切り離される。また、電源115を図4又は図
5のように構成すれば電流を任意に制御できる。FIG. 6 shows still another configuration example of the auxiliary power supply 11. In this example, the transistor switch 116 is connected in series to the power supply 115, the control signal from the pulse control unit 10 is supplied to the gate of the transistor switch 6 in synchronization with the OFF operation of the transistor switch 13, and a short circuit between electrodes occurs. Generation of large current is prevented. Also, it is separated when not needed. Further, if the power supply 115 is configured as shown in FIG. 4 or 5, the current can be controlled arbitrarily.
【0018】図1において、補助電源の接続点a,bは低
圧パルス電源の出力(すなわち電源6,抵抗R1)に近
いほど、トランジスタスイッチ13と給電線との接続点
c,dは、電極7やワーク8に近いほど好ましく、上述
給電線以外の電線の長さが短くて済み、電線のインダク
タンス成分の影響を軽減できる。上記側路14を給電線
の極間側に極間と並列に設けるとは、この接続点c,dが
電極7とワーク8との極間近傍に設けることを意味して
いるのである。更に、給電線として同軸ケーブルやツイ
ストケーブルを使用できることは勿論である。In FIG. 1, as the connection points a and b of the auxiliary power supply are closer to the output of the low-voltage pulse power supply (that is, the power supply 6 and the resistor R1), the connection points c and d between the transistor switch 13 and the power supply line are connected to the electrode 7 The closer to the workpiece 8 is, the shorter the length of the electric wire other than the above-mentioned power supply line is, and the influence of the inductance component of the electric wire can be reduced. The provision of the bypass 14 on the interelectrode side of the power supply line in parallel with the interelectrode means that the connection points c and d are provided in the vicinity of the interelectrode between the electrode 7 and the work 8. Furthermore, it goes without saying that a coaxial cable or a twisted cable can be used as the power supply line.
【0019】以上は、補助電源11とダイオードD2の
ある場合を説明したが、この補助電源11とダイオード
D2がなくても本発明は成立する。すなわち、極間にお
ける放電が開始される前にトランジスタ13を閉にして
側路14に低圧電源6からの電流を予め流しておき、高
圧電源1による極間電圧が加えられ放電が開始したらト
ランジスタ13を開にして低圧電源6から加工電流を極
間に作用させるのである。こうすると、予め給電線に流
す電流が加工電流と同じレベルなので、極間に流れる放
電電流波形の立ち上がりはより急峻となる。しかし、省
エネルギーの観点からは補助電源11を用い、低圧電源
6より低いレベルの電流を予め給電線に流すのが好まし
い。Although the case where the auxiliary power supply 11 and the diode D2 are provided has been described above, the present invention can be realized without the auxiliary power supply 11 and the diode D2. That is, before the discharge between the electrodes is started, the transistor 13 is closed and a current from the low-voltage power supply 6 is made to flow in the bypass 14 in advance. Is opened to allow the machining current from the low voltage power source 6 to act between the electrodes. In this case, since the current flowing through the power supply line in advance has the same level as the machining current, the waveform of the discharge current flowing between the poles becomes steeper. However, from the viewpoint of energy saving, it is preferable that the auxiliary power supply 11 is used and a lower level current than that of the low voltage power supply 6 is made to flow in the power supply line in advance.
【0020】[0020]
【発明の効果】以上説明したように、本発明による放電
加工方法及び装置によれば急峻な立ち上がり放電電流の
供給が可能となり、加工速度が大幅に改善される。As described above, according to the electric discharge machining method and apparatus of the present invention, a sharp rising discharge current can be supplied, and the machining speed is greatly improved.
【図1】本発明による放電加工方法及び装置の一実施例
を示す構成ブロック図である。FIG. 1 is a configuration block diagram showing an embodiment of an electric discharge machining method and apparatus according to the present invention.
【図2】図1に示す実施例の動作を説明する電流波形図
である。FIG. 2 is a current waveform diagram for explaining the operation of the embodiment shown in FIG.
【図3】図1に示す実施例の動作を説明する波形タイミ
ング図である。FIG. 3 is a waveform timing chart explaining the operation of the embodiment shown in FIG.
【図4】図1に示す実施例の補助電源の一構成例を示す
図である。FIG. 4 is a diagram showing a configuration example of an auxiliary power supply of the embodiment shown in FIG.
【図5】図1に示す実施例の補助電源の他の構成例を示
す図である。5 is a diagram showing another configuration example of the auxiliary power supply of the embodiment shown in FIG.
【図6】図1に示す実施例の補助電源の更に他の構成例
を示す図である。FIG. 6 is a diagram showing still another configuration example of the auxiliary power supply of the embodiment shown in FIG.
【図7】従来の放電加工装置の構成ブロック図である。FIG. 7 is a configuration block diagram of a conventional electric discharge machine.
【図8】図7に示す装置の動作を説明するための波形タ
イミング図である。FIG. 8 is a waveform timing chart for explaining the operation of the apparatus shown in FIG.
【図9】従来方法及び装置の問題点を説明するための波
形図である。FIG. 9 is a waveform diagram for explaining problems of the conventional method and apparatus.
1 高圧電源 2,5,12 プリアンプ 3,4,13 トランジスタスイッチ 6 低圧電源 7 加工電極 8 ワーク電極 9 放電検出部 10 パルス制御部 11 補助電源 14 側路 LN1,LN2,LN3 給電線 1 High-voltage power supply 2, 5, 12 Preamplifier 3, 4, 13 Transistor switch 6 Low-voltage power supply 7 Machining electrode 8 Work electrode 9 Discharge detection part 10 Pulse control part 11 Auxiliary power supply 14 Side path LN1, LN2, LN3 Feed line
Claims (3)
る給電線の極間側に、極間と並列に側路を設け、極間の
放電開始前に前記側路を介して前記給電線に所定レベル
の電流を流し、極間の放電開始とともに前記側路を遮断
して極間に加工電流を流すようにしたことを特徴とする
放電加工方法。1. A side path is provided in parallel with the gap between the electrodes of a power supply line that connects a power source and both electrodes and supplies a machining current, and the bypass is provided through the bypass before the start of discharge between the poles. An electric discharge machining method characterized in that a current of a predetermined level is caused to flow through a power supply line, and when the electric discharge between the electrodes is started, the bypass is cut off so that a machining current is caused to flow between the electrodes.
から所定レベルの電流を前記側路を介して前記給電線に
流し、前記検出手段が極間の放電開始を検出したら前記
側路開閉手段を開にして前記電源からの加工電流を極間
に流すように制御する制御手段とを備えて成ることを特
徴とする放電加工装置。2. A power supply line connecting a power source and both electrodes, a bypass provided on the interelectrode side of the power supply line in parallel with the interelectrode, and a bypass opening / closing means for continuing a current flowing through the bypass. Detecting means for detecting the discharge state between the electrodes, and closing the bypass opening / closing means before the start of the discharge between the poles to cause a current of a predetermined level from the power source to flow through the bypass to the power supply line to detect the current. An electric discharge machining apparatus comprising: a control unit that opens the bypass opening / closing unit and controls the machining current from the power source to flow between the poles when the means detects the start of discharge between the poles.
する加工電源と、前記所定レベルの電流を供給する補助
電源とから成る請求項2に記載の放電加工装置。3. The electric discharge machining apparatus according to claim 2, wherein the power source includes a machining power source that supplies a current for electrical discharge machining between the electrodes, and an auxiliary power source that supplies a current of the predetermined level.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25389492A JP2918748B2 (en) | 1992-08-29 | 1992-08-29 | Electric discharge machining method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25389492A JP2918748B2 (en) | 1992-08-29 | 1992-08-29 | Electric discharge machining method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0679532A true JPH0679532A (en) | 1994-03-22 |
JP2918748B2 JP2918748B2 (en) | 1999-07-12 |
Family
ID=17257581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25389492A Expired - Lifetime JP2918748B2 (en) | 1992-08-29 | 1992-08-29 | Electric discharge machining method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2918748B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000073007A1 (en) * | 1999-06-01 | 2000-12-07 | Sodick Co., Ltd. | Power supply for electrodischarge machining and method of electrodischarge machining |
US6660957B1 (en) | 2000-05-15 | 2003-12-09 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for electric discharge machining |
-
1992
- 1992-08-29 JP JP25389492A patent/JP2918748B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000073007A1 (en) * | 1999-06-01 | 2000-12-07 | Sodick Co., Ltd. | Power supply for electrodischarge machining and method of electrodischarge machining |
US6423920B1 (en) | 1999-06-01 | 2002-07-23 | Sodick Co., Ltd. | Electric discharge machining power supply, and electric discharge machining method |
US6660957B1 (en) | 2000-05-15 | 2003-12-09 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for electric discharge machining |
Also Published As
Publication number | Publication date |
---|---|
JP2918748B2 (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920006506B1 (en) | Wire electric discharge machine apparatus | |
US4447713A (en) | Power supply unit for electric discharge machine | |
US5168144A (en) | Arc welding power apparatus having plural selectable electrode feed quantity settings | |
US4492841A (en) | Constant potential/constant current automatic control system for air-carbon arc metal removal | |
JP2918748B2 (en) | Electric discharge machining method and apparatus | |
US5378866A (en) | Electric discharge machining system having a secondary power supply including a controllable voltage source and impedance | |
JPS58206312A (en) | Wire cut discharge machining power supply | |
US7175752B2 (en) | Method and apparatus for electrochemical machining | |
US4431895A (en) | Power source arrangement for electric discharge machining | |
US5872347A (en) | Method and device for controlling discharging current slope of wire cut electrical discharge machine | |
JP3323457B2 (en) | Electric discharge machining method and power supply device for electric discharge machining | |
JPS6368318A (en) | Electric discharge machining device | |
JPH03178726A (en) | Power circuit for electric discharge machine | |
US5393947A (en) | Method and device for controlling a wire cut electric discharging machine | |
JP2801280B2 (en) | Wire cut EDM power supply | |
JPH059209B2 (en) | ||
JP3727391B2 (en) | Electric discharge machine power supply | |
JPS6344490B2 (en) | ||
JPH11333632A (en) | Electrical discharging device | |
JPS61111841A (en) | Wire-cut electric discharge machinine | |
JPH0453646B2 (en) | ||
US3521083A (en) | Electronic control circuit | |
JP2003266244A (en) | Electric discharge machining method, and discharge control device for electric discharge machine | |
KR950017037A (en) | Power control device of wire cut electric discharge machine | |
JPH0230810B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |
|
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |
|
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 13 |
|
FPAY | Renewal fee payment |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20120423 |
|
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 14 |