JPH0679426A - Sleeve for injection molding of molten metal - Google Patents

Sleeve for injection molding of molten metal

Info

Publication number
JPH0679426A
JPH0679426A JP4259049A JP25904992A JPH0679426A JP H0679426 A JPH0679426 A JP H0679426A JP 4259049 A JP4259049 A JP 4259049A JP 25904992 A JP25904992 A JP 25904992A JP H0679426 A JPH0679426 A JP H0679426A
Authority
JP
Japan
Prior art keywords
sleeve
cylinder
ceramics
temperature
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4259049A
Other languages
Japanese (ja)
Inventor
Hideki Haishi
秀機 葉石
Keiji Nagamori
啓二 長森
Masamichi Takai
政道 高井
Yukio Yamamoto
幸男 山本
Hisatoshi Nagashio
久翁 永塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP4259049A priority Critical patent/JPH0679426A/en
Publication of JPH0679426A publication Critical patent/JPH0679426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide the sleeve having excellent structural strength even in a high-temp. state by constituting the sleeve of a triple structure consisting of an inside cylinder made of sialon ceramics or dense silicon nitride ceramics, an intermediate cylinder made of zirconia ceramics and an outside cylinder made of a heat resistant metal. CONSTITUTION:The 'sialon ceramics or dense silicon nitride ceramics' which is the material having excellent heat-wear resistance, corrosion resistance, thermal impact resistance, strength and wettability even at a high temp. is selected as the inside cylinder 1. The material 'zirconia ceramics' which has the excellent heat insulating characteristic and strength and has the coefft. of thermal expansion of value higher than the inside cylinder and lower than the value of the outside cylinder is selected as the intermediate cylinder 2. The outside cylinder 3 consists of the triple structure of the material 'heat resistant metal' which is easy in design of the construction and production. Further, a heater for heating is mounted in the inside part or outer peripheral part of the inside cylinder or the inside part, inner peripheral part or outer peripheral part of the intermediate cylinder. As a result, the sleeve is forcibly heated to an ideal temp. distribution and is applicable even to casting of a high material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶湯射出成形用スリー
ブに関し、特に、(1) ダイカスト装置に装着される耐摩
耗性、耐食性、濡れ性、耐熱性、耐熱衝撃性、断熱性、
構造強度に優れた溶融金属の射出成形用スリーブ、及
び、(2) この射出成形用スリーブにおいて、溶湯と接す
る内筒を強制的に高い温度域に維持することができる溶
融金属の加熱式射出成形用スリーブ、に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melt injection molding sleeve, and in particular, (1) wear resistance, corrosion resistance, wettability, heat resistance, heat shock resistance, heat insulation,
Molten metal injection molding sleeve with excellent structural strength, and (2) In this injection molding sleeve, heating type injection molding of molten metal that can forcibly maintain the inner cylinder in contact with the molten metal in a high temperature range. For sleeves.

【0002】[0002]

【従来の技術】溶融金属の射出成形用スリーブにおいて
は、スリーブ内をプランジャーが高温下で軸方向に往復
運動し、高温の溶融金属を射出するため、このスリーブ
内面が溶融金属との接触により浸食され、また、プラン
ジャーとの摺動による摩耗が生じる。更に、上記の浸食
及び摩耗によってスリーブ内面は面性状が悪化し、プラ
ンジャーチップとのクリアランスが増大し、このため溶
融金属の付着が生じ、鋳造作業及び鋳物に対して悪影響
を及ぼす。
2. Description of the Related Art In a molten metal injection molding sleeve, a plunger reciprocates in the sleeve in the axial direction at a high temperature to inject the molten metal at a high temperature, so that the inner surface of the sleeve is contacted with the molten metal. It is eroded and wears due to sliding with the plunger. Further, due to the above-mentioned erosion and wear, the surface quality of the inner surface of the sleeve is deteriorated and the clearance with the plunger tip is increased, so that the adhesion of the molten metal occurs, which adversely affects the casting operation and the casting.

【0003】従来、上記浸食及び摩耗によるスリーブ内
面の損傷を防止するため、例えば射出成形用スリーブに
は、SKD-61のような熱間ダイス鋼が用いられている。し
かしながら、熱間ダイス鋼は、熱伝導率が高いため断熱
性に劣り、また、硬度及び強度の温度依存性も大きく、
高温下でこれら機械的特性値が著しく劣化するため、熱
間での耐摩耗性に劣る欠点を有している。
Conventionally, in order to prevent damage to the inner surface of the sleeve due to the above erosion and wear, for example, a hot die steel such as SKD-61 is used for the injection molding sleeve. However, hot die steel has poor heat insulation due to its high thermal conductivity, and also has a large temperature dependence of hardness and strength,
Since these mechanical property values are remarkably deteriorated at high temperatures, they have the drawback of being inferior in hot wear resistance.

【0004】上記の材料面での劣性を補うため、スリー
ブを水冷する構造の射出成形用スリーブが用いられてい
るが、水冷によるスリーブ内面の温度低下が余儀なくさ
れるため、溶湯の一部がスリーブ内で凝固し易く、この
凝固相の破断片が鋳物の内部に混入されるため、鋳物の
品質面で強度不足やバラツキが生じる。そこで、低温の
スリーブとの接触による溶湯温度の低下を防止するた
め、予め高温の溶湯を給湯する方法により鋳造されてい
るが、この方法では、スリーブ内面の浸食を増大させる
ためスリーブの耐用期間は短くなり、また、溶湯温度を
高くするため品質上及び省エネルギーの観点からも好ま
しくない。
In order to compensate for the above-mentioned inferiority in terms of material, an injection molding sleeve having a structure in which the sleeve is water-cooled is used. However, since the temperature of the inner surface of the sleeve is inevitably lowered by water-cooling, a part of the molten metal is Since the solidified phase is easily solidified inside and the broken fragments of the solidified phase are mixed inside the casting, insufficient strength and variations occur in the quality of the casting. Therefore, in order to prevent the temperature of the molten metal from lowering due to contact with the low-temperature sleeve, casting is carried out by a method in which hot molten metal is supplied in advance. It becomes shorter and the temperature of the molten metal is raised, which is not preferable in terms of quality and energy saving.

【0005】前述の熱間ダイス鋼製スリーブでの問題点
を解決するために、耐摩耗性、耐食性、耐熱性、耐熱衝
撃性、断熱性及び濡れ性に優れた特性を有する材料を使
用した内筒と、耐熱金属製の外筒からなる二重構造の射
出成形用スリーブが提案されている。例えば、緻密質窒
化珪素セラミックス等を用いた内筒と耐熱金属製の外筒
からなる二重構造の射出成形用スリーブが提案されてい
る(特開昭53−70034号公報参照)。
In order to solve the above-mentioned problems with the hot die steel sleeve, a material having excellent wear resistance, corrosion resistance, heat resistance, thermal shock resistance, heat insulation and wettability is used. A double-structured injection molding sleeve including a cylinder and an outer cylinder made of heat-resistant metal has been proposed. For example, there has been proposed a double-structured injection molding sleeve having an inner cylinder made of dense silicon nitride ceramics and the like and an outer cylinder made of heat-resistant metal (see Japanese Patent Laid-Open No. 53-70034).

【0006】この二重構造の射出成形用スリーブでは、
耐摩耗性、耐食性、耐熱性、耐熱衝撃性及び濡れ性に優
れているが、緻密質窒化珪素セラミックスは、熱伝導率
が比較的高いため断熱効果が不十分であり、鋳造時に外
筒の温度が高くなる欠点を有しており、また、スリーブ
内では溶湯の温度が低下する欠点を有している。
In this double-structured injection molding sleeve,
Although it has excellent wear resistance, corrosion resistance, heat resistance, thermal shock resistance, and wettability, dense silicon nitride ceramics has a relatively high thermal conductivity, so the heat insulating effect is insufficient, and the temperature of the outer cylinder during casting is low. Has the disadvantage that the temperature of the molten metal decreases in the sleeve.

【0007】更に、緻密質窒化珪素セラミックスは熱膨
張係数が小さく、一方、耐熱金属製の外筒の熱膨張係数
が大きいため、スリーブ全体が高温となると、内筒と外
筒との熱膨張量の差がスリーブの軸方向、径方向とも大
きくなり、内筒を外筒内に正確に拘束することができな
くなり、内筒と外筒との相対的な位置精度、姿勢精度が
悪化する。このため、プランジャーの往復運動する軸と
内筒の軸との相対的な位置精度、姿勢精度が悪化し、ス
リーブ内面とプランジャーチップとの摺動状態が悪化
し、摩耗が多くなったり或いは偏摩耗したりするため、
スリーブの耐用期間が短くなる。
Furthermore, since the dense silicon nitride ceramics have a small coefficient of thermal expansion, while the outer cylinder made of heat-resistant metal has a large coefficient of thermal expansion, the thermal expansion amount between the inner cylinder and the outer cylinder becomes high when the entire sleeve has a high temperature. Difference becomes large in both the axial direction and the radial direction of the sleeve, and the inner cylinder cannot be accurately restrained in the outer cylinder, so that the relative positional accuracy and attitude accuracy of the inner cylinder and the outer cylinder deteriorate. For this reason, the relative positional accuracy and posture accuracy of the reciprocating shaft of the plunger and the shaft of the inner cylinder are deteriorated, the sliding state between the inner surface of the sleeve and the plunger tip is deteriorated, and wear is increased, or Because of uneven wear,
The life of the sleeve is shortened.

【0008】これを回避するため、内筒と外筒の間に断
熱性に優れた特性を有する材料からなる中間筒を組み込
んだ三重構造の射出成形用スリーブが提案されている。
例えば、緻密質窒化珪素セラミックスを用いた内筒、多
孔質窒化珪素セラミックスを用いた中間筒及び耐熱金属
製の外筒とからなる三重構造の射出成形用スリーブが提
案されている(特開平2−104459号公報参照)。この三
重構造の射出成形用スリーブは、二重構造の射出成形用
スリーブと同様、耐摩耗性、耐食性、耐熱性、耐熱衝撃
性及び濡れ性に優れており、さらに断熱性もある程度向
上するため、スリーブ内の溶湯温度の低下が小さく、ま
た、外筒の温度を比較的低くすることができる利点を有
している。
In order to avoid this, a triple-structured injection molding sleeve has been proposed in which an intermediate cylinder made of a material having excellent heat insulating properties is incorporated between an inner cylinder and an outer cylinder.
For example, there has been proposed an injection molding sleeve having a triple structure including an inner cylinder made of dense silicon nitride ceramics, an intermediate cylinder made of porous silicon nitride ceramics, and an outer cylinder made of heat-resistant metal (Japanese Patent Laid-Open No. 2- (See Japanese Patent No. 104459). This triple-structured injection molding sleeve has excellent wear resistance, corrosion resistance, heat resistance, thermal shock resistance and wettability, as well as the double structure injection molding sleeve. It has the advantages that the temperature of the molten metal in the sleeve is small and that the temperature of the outer cylinder can be made relatively low.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記三
重構造の射出成形用スリーブにおいて、中間筒として用
いた多孔質窒化珪素セラミッスでは、断熱効果がまだ十
分とはいえず、内筒を十分に高温に保つことができない
ため、スリーブ内において溶湯の温度が低下し、鋳物の
品質面で不利である。また、この多孔質窒化珪素セラミ
ッスの熱膨張係数は、緻密質窒化珪素セラミックスのそ
れと同程度であって小さく、一方、耐熱金属製の外筒の
熱膨張係数が大きいため、鋳造時の高温状態では、多孔
質窒化珪素セラミッス製の中間筒と耐熱金属製の外筒と
の熱膨張量の差がスリーブの軸方向、径方向とも大きく
なり、中間筒を外筒内に正確に拘束することができなく
なる等の欠点が生じる。
However, in the above-mentioned triple-structured injection molding sleeve, the porous silicon nitride ceramics used as the intermediate cylinder does not have a sufficient heat insulating effect, and the inner cylinder is heated to a sufficiently high temperature. Since it cannot be maintained, the temperature of the molten metal in the sleeve decreases, which is disadvantageous in terms of the quality of the casting. Further, the coefficient of thermal expansion of this porous silicon nitride ceramics is as small as that of the dense silicon nitride ceramics, while the coefficient of thermal expansion of the outer cylinder made of heat-resistant metal is large, so that it cannot be used at high temperature during casting. The difference in the amount of thermal expansion between the intermediate cylinder made of porous silicon nitride ceramics and the outer cylinder made of heat-resistant metal becomes large in both the axial direction and the radial direction of the sleeve, and the intermediate cylinder can be accurately restrained in the outer cylinder. Defects such as disappearance occur.

【0010】更に、多孔質窒化珪素セラミッスは強度が
弱く、焼嵌め等による締め代を大きくすることができな
いため、中間筒及び内筒を外筒内に正確に拘束するため
の十分な力を得ることができ難く、中間筒及び内筒と外
筒との相対的な位置精度、姿勢精度を維持することが困
難である。このため、プランジャーの往復運動する軸と
内筒の軸との相対的な位置精度、姿勢精度が悪化し、ス
リーブ内面とプランジャーチップとの摺動状態が悪化し
て摩耗が多くなったり、偏摩耗したりするため、スリー
ブの耐用期間が短くなる問題点を有している。
Further, since the porous silicon nitride ceramics is weak in strength and the tightening margin due to shrink fitting cannot be increased, a sufficient force for accurately restraining the intermediate cylinder and the inner cylinder in the outer cylinder is obtained. It is difficult to do so, and it is difficult to maintain the relative positional accuracy and attitude accuracy of the intermediate cylinder and the inner cylinder and the outer cylinder. For this reason, the relative positional accuracy and attitude accuracy between the shaft of the plunger and the shaft of the inner cylinder deteriorates, the sliding state between the inner surface of the sleeve and the plunger tip deteriorates, and wear increases, Due to uneven wear, the service life of the sleeve is shortened.

【0011】このような問題点を解決するため、内筒と
中間筒とを予め接合しておき、つぎに外筒と焼嵌め等で
接合する方法が採用されている。しかしながら、このよ
うな方法では、中間筒と外筒との熱膨張係数の差が大き
いため、中間筒と外筒との焼嵌め代を大きくしなければ
ならず、この場合中間筒の強度不足が問題となる。ま
た、焼嵌めに際し外筒の温度を比較的高温としなければ
ならないため、設計・製造上明らかに不利である。
In order to solve such a problem, a method has been adopted in which the inner cylinder and the intermediate cylinder are previously joined and then the outer cylinder is joined by shrink fitting or the like. However, in such a method, since the difference in the coefficient of thermal expansion between the intermediate cylinder and the outer cylinder is large, it is necessary to increase the shrink fitting allowance between the intermediate cylinder and the outer cylinder. It becomes a problem. Also, the temperature of the outer cylinder must be set to a relatively high temperature during shrink fitting, which is clearly disadvantageous in design and manufacturing.

【0012】更に、上記従来の三重構造の射出成形用ス
リーブにおいて(前記した従来の二重構造の射出成形用
スリーブにおいても同様であるが)、スリーブ内部の温
度分布は、射出孔内での溶湯の分布状態の影響を強く受
ける。特に横型のダイカストマシーンに用いられるスリ
ーブでは、鋳造過程において給湯された溶湯がスリーブ
の射出孔内の底部に沿って鋳型に射出されるため、スリ
ーブ内部の温度分布は下部の温度が上部の温度よりも高
くなり、下部の熱膨張量が上部の熱膨張量よりも大き
く、このためスリーブ全体に反りが生じる。
Further, in the above conventional triple-structured injection molding sleeve (similarly to the above-mentioned conventional double-structured injection molding sleeve), the temperature distribution inside the sleeve is such that the molten metal in the injection hole is Strongly affected by the distribution state of. Particularly in a sleeve used for a horizontal die-casting machine, the molten metal supplied in the casting process is injected into the mold along the bottom of the injection hole of the sleeve, so the temperature distribution inside the sleeve is lower than the upper temperature. The amount of thermal expansion of the lower part is larger than that of the upper part, so that the entire sleeve is warped.

【0013】このような反りは、温度分布の不均一さに
よるものであるため、断熱効果の小さな二重構造の射出
成形用スリーブの方が断熱効果の大きな三重構造の射出
成形用スリーブよりも顕著に現れる。さらに当然のこと
ながら、鋳造する金属材料の融点が高い程溶湯の温度も
高くなり、スリーブ内部の温度も高くなるため、上記の
ような問題点が顕著に現れる。従って、より融点の高い
金属材料の鋳造に前記した従来の技術による射出成形用
スリーブを適用することは非常に困難である。
Since such a warp is caused by uneven temperature distribution, the double structure injection molding sleeve having a small heat insulating effect is more remarkable than the triple structure injection molding sleeve having a large heat insulating effect. Appear in. Furthermore, as a matter of course, the higher the melting point of the metal material to be cast, the higher the temperature of the molten metal and the higher the temperature inside the sleeve, so that the above-mentioned problems become conspicuous. Therefore, it is very difficult to apply the above-mentioned conventional injection molding sleeve to the casting of a metal material having a higher melting point.

【0014】本発明の目的は、前記した従来の技術によ
る射出成形用スリーブの欠点、問題点を解消する溶湯射
出成形用スリーブを提供するにある。詳細には、本発明
の目的の一は、(1) 高温溶融金属材料に対して耐摩耗
性、耐食性、濡れ性、耐熱性、耐熱衝撃性、断熱性に優
れており、かつ、(2) 鋳造時のスリーブが高温となる状
態においても、プランジャーの運動する軸とスリーブ内
面の軸との位置精度、姿勢精度が十分に良好であり、
(3) また、プランジャーチップとスリーブ内面との摺動
に対する耐摩耗性に優れており、(4) このため耐用期間
が長く、しかも、(5) 高い断熱性と保温性により溶湯の
温度低下を防止し、省エネルギーの観点からも有利であ
り、かつ、(6) 鋳造製品の品質を向上させることがで
き、さらに、(7) 高融点の金属材料に適用できる、ダイ
カスト用射出成形用スリーブを提供するにある。
An object of the present invention is to provide a molten metal injection molding sleeve which solves the above-mentioned drawbacks and problems of the conventional injection molding sleeve. In detail, one of the objects of the present invention is (1) excellent in wear resistance, corrosion resistance, wettability, heat resistance, thermal shock resistance, and heat insulating property with respect to high-temperature molten metal materials, and (2) Even when the sleeve is hot during casting, the positional accuracy and posture accuracy between the axis of the plunger movement and the axis of the sleeve inner surface are sufficiently good.
(3) In addition, it has excellent wear resistance against sliding between the plunger tip and the inner surface of the sleeve. (4) Therefore, the service life is long, and (5) High temperature insulation and heat retention keeps the temperature of the molten metal low. Which is advantageous from the viewpoint of energy saving, and (6) can improve the quality of cast products, and (7) can be applied to a metal material with a high melting point. To provide.

【0015】また、本発明の目的の二は、上記(1)〜(5)
に加えて、さらに、(8) スリーブ内を強制的に比較的高
い温度域において制御することができ、これによって、
(9) より一層組織的及び強度的に安定した信頼性の高い
鋳物を得ることができ、(10) より高融点の金属材料に
も適用可能である、ダイカスト用加熱式射出成形用スリ
ーブを提供するにある。
The second object of the present invention is to provide the above (1) to (5).
In addition to (8), it is possible to forcibly control the inside of the sleeve in a relatively high temperature range.
(9) A heat-injection molding sleeve for die casting, which can obtain a highly reliable cast metal that is more structurally and strength stable, and (10) can be applied to a metal material having a higher melting point. There is.

【0016】[0016]

【課題を解決するための手段】本発明は、“本発明の目
的の一”である上記(1)〜(7)の課題を解決する発明(以
下、第1発明という。)と“本発明の目的の二”である
上記(1)〜(5)及び(8)〜(10)の課題を解決する発明(以
下、第2発明という。)とからなる。
The present invention is an invention (hereinafter referred to as a first invention) that solves the problems (1) to (7), which are "one of the objects of the present invention", and the "present invention. The invention (hereinafter, referred to as a second invention) for solving the above-mentioned problems (1) to (5) and (8) to (10), which is the second object of the invention.

【0017】第1発明は、内筒、中間筒、外筒の三重構
造からなり、 (A) 内筒として、高温においても耐摩耗性、耐食性、耐
熱性、耐熱衝撃性、断熱性、強度及び濡れ性に優れた特
性を持つセラミックス材料を用いる点、 (B) 中間筒として、断熱性、強度に優れ、しかも、熱膨
張係数が内筒よりも大きな値であり、かつ、外筒よりも
小さい値である特性を有するセラミックス材料を用いる
点、 (C) 外筒として、構造設計及び製造が容易であり、安価
な金属材料を用いる点 を特徴とし、これにより前記(1)〜(7)の課題を解決した
ものである。
The first invention has a triple structure of an inner cylinder, an intermediate cylinder and an outer cylinder. (A) The inner cylinder has wear resistance, corrosion resistance, heat resistance, thermal shock resistance, heat insulation, strength and strength even at high temperatures. A ceramic material with excellent wettability is used. (B) The intermediate cylinder has excellent heat insulation and strength, and has a coefficient of thermal expansion larger than that of the inner cylinder and smaller than that of the outer cylinder. It is characterized by the use of a ceramics material having the characteristics that are the values, and (C) the use of an inexpensive metal material that is easy to structurally design and manufacture as the outer cylinder, which results in the above (1) to (7). It is a solution to the problem.

【0018】即ち、第1発明は、「サイアロンセラミッ
クス製又は緻密質窒化珪素セラミックス製内筒、ジルコ
ニア質セラミックス製中間筒及び耐熱金属製外筒の三重
構造からなることを特徴とする溶湯射出成形用スリー
ブ。」を要旨とする。
That is, the first invention is for molten metal injection molding characterized by having a triple structure of an inner cylinder made of sialon ceramics or a dense silicon nitride ceramics, an intermediate cylinder made of zirconia ceramics and an outer cylinder made of heat-resistant metal. Sleeve. "

【0019】また、第2発明は、第1発明と同様、前記
(A)の内筒、(B)の中間筒及び(C)の外筒の三重構造から
なり、更に、 (D) スリーブ内を強制的に比較的高い温度域において温
度制御するため、内筒の内部もしくは外周部又は中間筒
の内部、内周部もしくは外周部に加熱ヒーターを装着す
る点、 を特徴とし、これにより前記(1)〜(5)及び(8)〜(10)の
課題を解決したものである。
The second invention is the same as the first invention.
The inner cylinder of (A), the intermediate cylinder of (B) and the outer cylinder of (C) have a triple structure.In addition, (D) the inner cylinder is forcibly temperature controlled in a relatively high temperature range. Is characterized in that a heating heater is attached to the inside or the outer peripheral portion or the inside of the intermediate cylinder, or the inner peripheral portion or the outer peripheral portion, and thereby, the problems (1) to (5) and (8) to (10) are solved. It has been resolved.

【0020】即ち、第2発明は、「サイアロンセラミッ
クス製又は緻密質窒化珪素セラミックス製内筒、ジルコ
ニア質セラミックス製中間筒及び耐熱金属製外筒の三重
構造からなり、内筒の内部もしくは外周部又は中間筒の
内部、内周部もしくは外周部に加熱ヒーターを装着して
なることを特徴とする溶湯射出成形用スリーブ。」を要
旨とする。
That is, the second aspect of the present invention is "a triple structure of an inner cylinder made of sialon ceramics or a dense silicon nitride ceramics, an intermediate cylinder made of zirconia ceramics, and an outer cylinder made of heat-resistant metal. A sleeve for molten metal injection molding, characterized in that a heater is attached to the inside, the inner peripheral portion, or the outer peripheral portion of the intermediate cylinder. "

【0021】以下、本発明を材料面、構造面から図、表
に基づいて詳細に説明する。なお、以下の説明におい
て、特に断らない限り、「本発明」との表現は、第1発
明及び第2発明の両者を包含するものとして使用する。
The present invention will be described in detail below in terms of materials and structures based on drawings and tables. In the following description, the expression “present invention” is used to include both the first invention and the second invention, unless otherwise specified.

【0022】図1は、第1発明の一実施例であるダイカ
スト用射出成形スリーブの一体型の構造を示す模式的断
面図であって、内筒1、中間筒2及び外筒3の三重構造
からなる。なお、図1中、4はプランジャーチップ、5
は取付け板(内筒1と中間筒2とを軸方向に固定するた
めの取付け板)、6は給湯口である。また、図2は、第
2発明の一実施例であるダイカスト用加熱式射出成形ス
リーブの一体型の構造を示す模式図であって、このうち
(A)は(B)のB-B線断面図、(B)は(A)のA-A線断面図であ
る。これは、上記第1発明と同様、内筒1、中間筒2及
び外筒3の三重構造からなるが、さらに加熱ヒ−タ−7
を装着した点で異なる。
FIG. 1 is a schematic cross-sectional view showing an integrated structure of an injection molding sleeve for die casting which is an embodiment of the first invention, and has a triple structure of an inner cylinder 1, an intermediate cylinder 2 and an outer cylinder 3. Consists of. In FIG. 1, 4 is a plunger tip, 5 is
Is a mounting plate (a mounting plate for axially fixing the inner cylinder 1 and the intermediate cylinder 2), and 6 is a hot water supply port. Further, FIG. 2 is a schematic view showing an integrated structure of a heating type injection molding sleeve for die casting which is an embodiment of the second invention.
(A) is a sectional view taken along line BB of (B), and (B) is a sectional view taken along line AA of (A). This has a triple structure of an inner cylinder 1, an intermediate cylinder 2 and an outer cylinder 3 as in the first invention, but further includes a heating heater-7.
It is different in that it is attached.

【0023】まず、本発明における各筒の材料面の作用
について説明する。内筒1は、鋳造時にその内面が高温
の溶融金属と接し(図2中の内筒1では、さらに加熱ヒ
ーター7により加熱されるため、高温な状態となり)、
しかも、プランジャーチップ4とその内面が摺動する。
このため、内筒1は、高温においても耐摩耗性、耐食
性、耐熱性、耐熱衝撃性、断熱性、強度及び濡れ性に優
れた特性を持つ材料であることが要求される。この要求
に対して、サイアロンセラミックス及び緻密質窒化珪素
セラミックスがよく適合する。以下、該セラミックスの
適合性について、各特性毎に説明する。
First, the function of the material surface of each cylinder in the present invention will be described. The inner surface of the inner cylinder 1 is in contact with the high temperature molten metal during casting (the inner cylinder 1 in FIG. 2 is further heated by the heater 7 and is in a high temperature state),
Moreover, the plunger tip 4 and its inner surface slide.
For this reason, the inner cylinder 1 is required to be a material having excellent properties in wear resistance, corrosion resistance, heat resistance, thermal shock resistance, heat insulation, strength, and wettability even at high temperatures. Sialon ceramics and dense silicon nitride ceramics are well suited to this requirement. The suitability of the ceramic will be described below for each characteristic.

【0024】(耐摩耗性について)サイアロンセラミッ
クス及び緻密質窒化珪素セラミックスの高温下での耐摩
耗性は、硬度(ビッカース硬度)が室温で1500〜1650H
v程度であり、1000℃においても800〜1300Hv程度に
までしか低下しない。これに対して、SKD−61の場合室
温で520Hv程度であり、高温になるにつれて著しく低
下し、800℃においては30Hv程度にまでも低下する。
(Abrasion resistance) The abrasion resistance of sialon ceramics and dense silicon nitride ceramics at high temperature is 1500-1650H at room temperature (Vickers hardness).
It is about v, and even at 1000 ° C., it drops only to about 800 to 1300 Hv. On the other hand, in the case of SKD-61, the temperature is about 520 Hv at room temperature, and it drops remarkably as the temperature rises.

【0025】図5は、この一例を示すものであって、サ
イアロンセラミックス、緻密質窒化珪素セラミックス及
びSKD−61の温度変化に伴うビッカース硬度の変化を示
す特性図である。図中の曲線はサイアロンセラミック
スの場合、曲線は緻密質窒化珪素セラミックスの場
合、曲線はSKD−61の場合である。
FIG. 5 shows an example of this, and is a characteristic diagram showing changes in Vickers hardness with temperature changes of sialon ceramics, dense silicon nitride ceramics, and SKD-61. The curves in the figure are for Sialon ceramics, the curves are for dense silicon nitride ceramics, and the curves are for SKD-61.

【0026】また、縦弾性係数についても、サイアロン
セラミックス及び緻密質窒化珪素セラミックスは、室温
で280〜300GPa程度である。そして、高温になるにつれ
て低下するものの、800℃程度まではほとんど低下せ
ず、1000℃においても220〜260GPa程度であり、耐熱金
属の室温での値と同等以上の優れた特性を持つ。
The longitudinal elastic modulus of sialon ceramics and dense silicon nitride ceramics is about 280 to 300 GPa at room temperature. Although it decreases as the temperature rises, it hardly decreases up to about 800 ° C, and it is about 220 to 260 GPa even at 1000 ° C, which has excellent characteristics equal to or higher than the value of the refractory metal at room temperature.

【0027】図6は、この一例を示すものであって、サ
イアロンセラミックス及び緻密質窒化珪素セラミックス
の温度変化に伴う縦弾性係数の変化を示す特性図であ
る。図中の曲線はサイアロンセラミックスの場合、曲
線は緻密質窒化珪素セラミックスの場合である。
FIG. 6 shows an example of this, and is a characteristic diagram showing changes in longitudinal elastic modulus of sialon ceramics and dense silicon nitride ceramics with temperature changes. The curve in the figure is for sialon ceramics, and the curve is for dense silicon nitride ceramics.

【0028】また、本発明者等は、サイアロンセラミッ
クス及び緻密質窒化珪素セラミックスと耐熱金属との
“摺動による摩耗特性”について、比較を行うため、サ
イアロンセラミックス、緻密質窒化珪素セラミックス、
熱間ダイス鋼について、ラップ盤上で同一寸法の円板形
状の試料に10kgの荷重を負荷した状態で、研磨剤とし
てSiC砥粒のスラリーを供給し、摺動させ、摺動時間
に伴う厚み方向の摩耗損量を測定した。
In order to compare the "wear characteristics due to sliding" between the sialon ceramics and the dense silicon nitride ceramics and the refractory metal, the inventors of the present invention compare them with the sialon ceramics, the dense silicon nitride ceramics,
Regarding hot die steel, a slurry of SiC abrasive grains was supplied as a polishing agent and slid on a disk-shaped sample of the same size on a lapping machine with a load of 10 kg applied, and the thickness with sliding time The amount of wear loss in the direction was measured.

【0029】図7は、この試験結果を示すものであっ
て、サイアロンセラミックス、緻密質窒化珪素セラミッ
クス及び熱間ダイス鋼の摺動時間に伴う試料の厚み損量
の変化を示す特性図である。図中の曲線はサイアロン
セラミックスの場合、曲線は緻密質窒化珪素セラミッ
クスの場合、曲線はSKD−61の場合である。
FIG. 7 shows the results of this test and is a characteristic diagram showing changes in the thickness loss of the sample with sliding time of the sialon ceramics, the dense silicon nitride ceramics and the hot die steel. The curves in the figure are for Sialon ceramics, the curves are for dense silicon nitride ceramics, and the curves are for SKD-61.

【0030】この試験結果においても、サイアロンセラ
ミックス及び緻密質窒化珪素セラミックスは優れた特性
を示した。上記のことから、サイアロンセラミックス及
び緻密質窒化珪素セラミックスは、高温下においても熱
間ダイス鋼よりも耐摩耗性に優れた特性を示し、本発明
の内筒の材料に適していることを確認した。
Also in this test result, the sialon ceramics and the dense silicon nitride ceramics showed excellent characteristics. From the above, it was confirmed that the sialon ceramics and the dense silicon nitride ceramics exhibited the characteristics of being superior in wear resistance to the hot die steel even at high temperatures, and were suitable for the material of the inner cylinder of the present invention. .

【0031】(耐食性について)サイアロンセラミック
ス及び緻密質窒化珪素セラミックスの高温溶融金属に対
する耐食性について説明する。サイアロンセラミックス
及び緻密質窒化珪素セラミックスの高温溶融金属に対す
る耐食試験の一例として表1を示す。表1は、純アルミ
ニウム及び4種類のアルミニウム合金の溶湯にサイアロ
ンセラミックスの試料を浸漬し、該試料を水酸化ナトリ
ウム水溶液で洗浄し、浸漬前・後での乾燥重量を測定
し、重量の変化を調べた浸漬試験の結果を表示したもの
である。
(Corrosion Resistance) Corrosion resistance of sialon ceramics and dense silicon nitride ceramics to high temperature molten metal will be described. Table 1 is shown as an example of the corrosion resistance test of sialon ceramics and dense silicon nitride ceramics against high temperature molten metal. Table 1 shows that a sample of sialon ceramics was dipped in a molten metal of pure aluminum and four kinds of aluminum alloys, the sample was washed with an aqueous solution of sodium hydroxide, and the dry weight before and after the immersion was measured to determine the change in weight. The results of the immersion test examined are displayed.

【0032】[0032]

【表1】 [Table 1]

【0033】また、本発明者等は、亜鉛合金、マグネシ
ウム合金等他の溶融金属に対する場合についても同様の
試験を行い、“浸漬前後での重量変化は殆どない”とい
う結果を得ている。表1及びこれらの試験結果から、サ
イアロンセラミックス及び緻密質窒化珪素セラミックス
は、高温の溶融金属による浸食は殆どなく、本発明の内
筒の材料に適することを確認した。
The inventors of the present invention also conducted the same test for other molten metals such as zinc alloy and magnesium alloy, and obtained the result that "the weight change before and after the immersion is almost zero". From Table 1 and these test results, it was confirmed that the sialon ceramics and the dense silicon nitride ceramics are hardly corroded by the molten metal at high temperature and are suitable for the material of the inner cylinder of the present invention.

【0034】(漏れ性について)サイアロンセラミック
ス及び緻密質窒化珪素セラミックスの高温溶融金属に対
する漏れ性について説明する。本発明者等は、サイアロ
ンセラミックス及び緻密質窒化珪素セラミックスにおけ
る高温のアルミニウム合金、亜鉛合金、マグネシウム合
金等の溶融金属に対する漏れ性についての試験を多数行
ったところ、サイアロンセラミックス及び緻密質窒化珪
素セラミックスは、溶湯に漏れにくく、極めて良好な特
性を示し、本発明の内筒の材料に適することを確認し
た。
(Leakage) Leakage of sialon ceramics and dense silicon nitride ceramics with respect to high-temperature molten metal will be described. The inventors of the present invention have conducted a number of tests on leak resistance of sialon ceramics and dense silicon nitride ceramics to molten metals such as high-temperature aluminum alloys, zinc alloys and magnesium alloys, and found that sialon ceramics and dense silicon nitride ceramics It was confirmed that the material is suitable for the material of the inner cylinder of the present invention, because it hardly leaks to the molten metal and exhibits extremely good characteristics.

【0035】(耐熱衝撃性について)次に、耐熱衝撃性
について説明する。本発明者等は、サイアロンセラミッ
クス及び緻密質窒化珪素セラミックスの耐熱衝撃性につ
いて、以下の2つの方法で試験した。
(Regarding Thermal Shock Resistance) Next, the thermal shock resistance will be described. The present inventors tested the thermal shock resistance of sialon ceramics and dense silicon nitride ceramics by the following two methods.

【0036】第一の方法として、試料全体を均一な温度
とした状態での急冷に対する耐熱衝撃特性の試験を行っ
た。この試験方法は、次のとおりである。まずサイアロ
ンセラミックス及び緻密質窒化珪素セラミックス試料を
大気雰囲気炉内で試験温度に加熱保温し、試料全体を均
一な温度とした。次に、炉内から取り出した直後に水冷
し、その抗折強度をJIS R1601に基づき測定し、熱衝撃
によるクラック発生により強度低下が生じているか否か
について調査し、強度低下した場合の試験温度と水冷に
用いる水の温度との差を耐熱衝撃値(△T)とする方法
である。この試験の結果によれば、サイアロンセラミッ
クス及び緻密質窒化珪素セラミックスの耐熱衝撃値(△
T)は600〜650℃程度であった。
As a first method, a thermal shock resistance test against quenching was conducted under the condition that the whole sample was kept at a uniform temperature. The test method is as follows. First, the sialon ceramics and the dense silicon nitride ceramics samples were heated and kept at the test temperature in an air atmosphere furnace, and the entire sample was kept at a uniform temperature. Next, immediately after taking out from the furnace, it is water-cooled, its flexural strength is measured based on JIS R1601, and it is investigated whether or not the strength is reduced due to the occurrence of cracks due to thermal shock, and the test temperature when the strength is reduced In this method, the difference between the temperature of water used for water cooling and the temperature of water used for water cooling is used as the thermal shock resistance (ΔT). According to the result of this test, the thermal shock resistance value (Δ) of sialon ceramics and dense silicon nitride ceramics
T) was about 600 to 650 ° C.

【0037】第二の方法として、試料の一部分を急加熱
する場合及び急冷する場合の耐熱衝撃特性の試験を行っ
た。この試験方法は、次のとおりである。急熱中及び急
冷中にAE波を測定することによって、試料にクラック
が発生した場合に生じる異常波の有無を調査し、さら
に、急冷後の試料温度が室温にまで下がってから探傷剤
を用いて試料表面でのクラック発生の有無を調べる試験
を行った。
As a second method, a thermal shock resistance test was carried out when a part of the sample was rapidly heated and rapidly cooled. The test method is as follows. By measuring the AE wave during rapid heating and quenching, investigate whether there is an abnormal wave that occurs when a crack occurs in the sample, and then use a flaw detector after the sample temperature after quenching has dropped to room temperature. A test was conducted to check whether or not cracks were generated on the sample surface.

【0038】この試験の内容は、寸法φ70×40tの円柱
形状のサイアロンセラミックス及び緻密質窒化珪素セラ
ミックスの試料を用いて、(1) まず、急熱による耐熱衝
撃性を調べるため、740〜900℃程度の高温のアルミニウ
ム溶湯に試料の端面から2mmまでの部分をAE波を測
定しながら30秒間浸漬し、(2) 次に、急冷による耐熱衝
撃性を調べるため、上記の方法により急熱された部分を
AE波を測定しながら水に浸漬させ30秒間急冷し、その
後試料の温度が室温に下がった後に試料の表面部でのク
ラック発生の有無を探傷剤により調べるものである。
The contents of this test are as follows: (1) First, in order to examine the thermal shock resistance due to rapid heating, 740 to 900 ° C., using cylindrical sialon ceramics and dense silicon nitride ceramics samples with dimensions of φ70 × 40t. A part of the sample up to 2 mm from the end face was immersed for 30 seconds in the molten aluminum at a high temperature while measuring the AE wave. (2) Next, in order to examine the thermal shock resistance by rapid cooling, it was rapidly heated by the above method. The portion is immersed in water while measuring the AE wave, rapidly cooled for 30 seconds, and then, after the temperature of the sample has dropped to room temperature, the presence or absence of cracks on the surface portion of the sample is examined by a flaw detection agent.

【0039】この第二の試験方法は、AE波の測定によ
り試料にクラックが発生した場合に生じる異常波を確認
する方法であり、また、探傷剤による目視検査によりク
ラックが確認された場合の水冷前の試験部の温度と水温
との温度差を耐熱衝撃値(△T)とする方法である。こ
の試験の結果によれば、急熱による耐熱衝撃性について
は、急熱中に異常なAE波は認められず、サイアロンセ
ラミックス及び緻密質窒化珪素セラミックスは、740〜9
00℃程度のアルミニウム溶湯による急熱によってクラッ
クが発生することはなかった。
The second test method is a method of confirming an abnormal wave generated when a crack is generated in a sample by measuring an AE wave, and water cooling when a crack is confirmed by a visual inspection with a flaw detection agent. In this method, the temperature difference between the temperature of the previous test part and the water temperature is used as the thermal shock resistance value (ΔT). According to the results of this test, regarding the thermal shock resistance due to rapid heating, no abnormal AE wave was observed during rapid heating, and sialon ceramics and dense silicon nitride ceramics showed 740-9.
No cracks were generated by the rapid heat generated by the molten aluminum at about 00 ° C.

【0040】更に、急熱のみの試験において、急熱後試
料を徐冷した後の探傷検査を行ったが、クラックの発生
はみられなかった。また、急冷による耐熱衝撃値(△
T)は370〜420℃程度であった。上記の試験結果より、
サイアロンセラミックス及び緻密質窒化珪素セラミック
スは、本発明の内筒の材料に要求される高温の溶融金属
による局所的な急熱に対する耐熱衝撃性に優れた特性を
示し、また、実際の使用条件における急冷にも十分に耐
えられる特性を有しており、本発明の内筒の材料に適し
ていることを確認した。
Further, in the test of only rapid heating, a crack inspection was not observed when a flaw inspection was conducted after the sample was gradually cooled after rapid heating. Also, thermal shock resistance value (△
T) was about 370 to 420 ° C. From the above test results,
Sialon ceramics and dense silicon nitride ceramics exhibit excellent thermal shock resistance against local rapid heat due to the high-temperature molten metal required for the material of the inner cylinder of the present invention, and are also rapidly cooled under actual use conditions. It has been confirmed that it is suitable for the material of the inner cylinder of the present invention.

【0041】(断熱性について)次に、断熱性について
説明する。表2は、室温でのダイカスト用射出成形スリ
−ブに用いる各種セラミックス材料及び耐熱金属材料の
各種特性を表示したものである。表2に示すように、サ
イアロンセラミックス及び緻密質窒化珪素セラミックス
の熱伝導率は14〜18 kcal/m・h・℃程度であり、SKD−61
の熱伝導率は26kcal/m・h・℃程度であるので、サイアロ
ンセラミックス及び緻密質窒化珪素セラミックスは、SK
D−61に比べて断熱性に優れた特性を示しており、本発
明の内筒の材料に適している。
(Adiabatic Property) Next, the adiabatic property will be described. Table 2 shows various characteristics of various ceramic materials and heat-resistant metal materials used for injection molding sleeves for die casting at room temperature. As shown in Table 2, the thermal conductivity of sialon ceramics and dense silicon nitride ceramics is about 14 to 18 kcal / m · h · ° C, and SKD-61
Has a thermal conductivity of about 26 kcal / m ・ h ・ ° C. Therefore, sialon ceramics and dense silicon nitride ceramics are
It has excellent heat insulating properties as compared with D-61 and is suitable for the material of the inner cylinder of the present invention.

【0042】[0042]

【表2】 [Table 2]

【0043】(強度について)次に、強度について説明
する。サイアロンセラミックス及び緻密質窒化珪素セラ
ミックスの抗折強度は、室温で800〜1000MPa程度であ
り、高温になるにつれて低下するものの800℃程度まで
はほとんど低下せず、1000℃においても700〜900MPa程
度である。また、前記したとおり、縦弾性係数も室温で
比較的高い値であり、高温になるにつれて低下するもの
の800℃程度までは殆ど低下しないため(前記図6参
照)、高温の溶湯から受ける熱及び圧力に対する強度は
十分であり、変形も比較的小さい。
(Strength) Next, strength will be described. The bending strength of sialon ceramics and dense silicon nitride ceramics is about 800 to 1000MPa at room temperature, which decreases with increasing temperature, but does not decrease to about 800 ° C and is about 700 to 900MPa even at 1000 ° C. . Further, as described above, the longitudinal elastic modulus is also a relatively high value at room temperature, and it decreases with increasing temperature, but hardly decreases up to about 800 ° C (see Fig. 6). Strength is sufficient and deformation is relatively small.

【0044】この一例として、図8を示す。図8は、サ
イアロンセラミックス、緻密質窒化珪素セラミックス、
MgO安定化ジルコニアセラミックス、Y23安定化ジ
ルコニアセラミックス及び多孔質窒化珪素セラミックス
の温度変化に伴う抗折強度の変化を示す特性図である。
図6中の曲線はサイアロンセラミックス、曲線は緻
密質窒化珪素セラミックス、曲線はMgO安定化ジル
コニアセラミックス、曲線はY23安定化ジルコニア
セラミックス、曲線は多孔質窒化珪素セラミックスの
場合である。サイアロンセラミックス及び緻密質窒化珪
素セラミックスは、図8からみて高温下での強度に優れ
ており、本発明の内筒の材料に適している。
As an example of this, FIG. 8 is shown. FIG. 8 shows sialon ceramics, dense silicon nitride ceramics,
FIG. 4 is a characteristic diagram showing changes in flexural strength of MgO-stabilized zirconia ceramics, Y 2 O 3 -stabilized zirconia ceramics, and porous silicon nitride ceramics with temperature changes.
The curve in FIG. 6 is for sialon ceramics, the curve is for dense silicon nitride ceramics, the curve is for MgO-stabilized zirconia ceramics, the curve is for Y 2 O 3 -stabilized zirconia ceramics, and the curve is for porous silicon nitride ceramics. Sialon ceramics and dense silicon nitride ceramics are excellent in strength at high temperatures as seen from FIG. 8, and are suitable for the material of the inner cylinder of the present invention.

【0045】上記の諸特性を有するサイアロンセラミッ
クス及び緻密質窒化珪素セラミックスは、第1発明のダ
イカスト用射出成形スリ−ブ及び第2発明のダイカスト
用加熱式射出成形スリ−ブにおける内筒の材質として、
非常によく適合していることが理解できる。
The sialon ceramics and the dense silicon nitride ceramics having the above characteristics are used as the material of the inner cylinder of the injection molding sleeve for die casting and the heating injection molding sleeve for die casting of the second invention. ,
It can be seen that it fits very well.

【0046】次に、本発明における中間筒の材質につい
て説明する。前記図1中の中間筒2(第1発明における
中間筒2)を設ける目的は、内筒1を高温に維持し、同
時に外筒3を比較的低温に維持することによって、スリ
−ブ内での溶湯の熱的損失を少なくし、かつ、鋳造時に
おいても内筒1と外筒3との相対的な位置精度、姿勢精
度を維持するにある。
Next, the material of the intermediate cylinder in the present invention will be described. The purpose of providing the intermediate cylinder 2 in FIG. 1 (the intermediate cylinder 2 in the first aspect of the invention) is to keep the inner cylinder 1 at a high temperature and at the same time the outer cylinder 3 at a relatively low temperature so that the inside of the sleeve can be maintained. This is to reduce the thermal loss of the molten metal and maintain the relative positional accuracy and attitude accuracy of the inner cylinder 1 and the outer cylinder 3 even during casting.

【0047】また、前記図2中の中間筒2(第2発明に
おける中間筒2)を設ける目的も、加熱ヒ−タ−7によ
る加熱と中間筒2の断熱効果との併用によって内筒1を
比較的低ランニングコストで高温に維持し、同時に内筒
1が高温となる状態においても、外筒3を比較的低温に
維持することにより、上記と同様、スリ−ブ内での溶湯
の熱的損失を少なくし、かつ、鋳造時においても内筒1
と外筒3との相対的な位置精度、姿勢精度を維持するに
ある。従って、本発明における中間筒2としては、断熱
性に優れた特性を有する材料でなければならない。
Further, for the purpose of providing the intermediate cylinder 2 (intermediate cylinder 2 in the second aspect of the invention) in FIG. 2, the inner cylinder 1 is formed by the combined use of the heating by the heating heater 7 and the heat insulating effect of the intermediate cylinder 2. By maintaining the outer cylinder 3 at a relatively low temperature while maintaining a high temperature at a relatively low running cost and at the same time the inner cylinder 1 becomes a high temperature, the thermal conductivity of the molten metal in the sleeve is the same as above. Inner cylinder 1 with less loss and during casting
This is to maintain the relative positional accuracy and attitude accuracy between the outer cylinder 3 and the outer cylinder 3. Therefore, the intermediate cylinder 2 in the present invention must be a material having excellent heat insulating properties.

【0048】更に、本発明の三重構造の射出成形用スリ
−ブにおける鋳造時の各筒の温度分布は、内筒1が最も
高温であり、中間筒2、外筒3の順に低温となるため、
上記の相対的な位置精度、姿勢精度を維持するために
は、各筒間のはめあい部の熱膨張量の差がスリ−ブ内面
とプランジャ−チップとの摺動状態に悪影響を及ぼさな
い程度に小さくなければならない。そのため、中間筒2
の熱膨張係数は、内筒1の熱膨張係数よりも大きな値で
あり、外筒3の熱膨張係数よりも小さな値であることが
必要であり、かつ、焼嵌め等の接合による接触応力に耐
え得る強度を有する材料であることが望ましい。これら
の諸条件にジルコニア質セラミックスの諸特性がよく適
合する。以下このセラミックスの適合性について、各特
性毎に説明する。
Further, in the temperature distribution of each cylinder during casting in the triple structure injection molding sleeve of the present invention, the inner cylinder 1 has the highest temperature, and the intermediate cylinder 2 and the outer cylinder 3 have lower temperatures in this order. ,
In order to maintain the relative position accuracy and attitude accuracy described above, the difference in the amount of thermal expansion of the fitting portion between the cylinders should not be adversely affected by the sliding state between the sleeve inner surface and the plunger tip. Must be small. Therefore, the intermediate cylinder 2
Coefficient of thermal expansion is larger than the coefficient of thermal expansion of the inner cylinder 1 and smaller than the coefficient of thermal expansion of the outer cylinder 3, and the contact stress due to joining such as shrinkage fitting is required. It is desirable that the material has a strength capable of withstanding. The various properties of zirconia-based ceramics are well suited to these conditions. The suitability of this ceramic will be described below for each characteristic.

【0049】(断熱性について)まず、断熱性について
説明する。ジルコニア質セラミックスの熱伝導率は、1.
8〜3.3kcal/m・h・℃程度であり、耐熱鋼、窒化珪素、サ
イアロンはもちろん多孔質窒化珪素セラミックスと比較
しても低い値であり(前記表2参照)、断熱性に優れた
特性を示しており、本発明の中間筒の材料に適してい
る。
(Adiabatic Property) First, the adiabatic property will be described. The thermal conductivity of zirconia-based ceramics is 1.
8 to 3.3 kcal / m · h · ° C, which is a low value compared with heat-resistant steel, silicon nitride, sialon, and of course, porous silicon nitride ceramics (see Table 2 above), and has excellent heat insulation properties. Is suitable for the material of the intermediate cylinder of the present invention.

【0050】(熱膨張係数について)次に、熱膨張係数
について説明する。ジルコニア質セラミックスの熱膨張
係数は7.0〜10.5×10-6/℃程度であり、これに対し
て、内筒の材質であるサイアロンセラミックス及び緻密
質窒化珪素セラミックスの熱膨張係数は3.0〜3.4×10-6
/℃程度であり、一方、外筒の材質である耐熱金属の熱
膨張係数は11〜12×10-6/℃程度である(前記表2参
照)。従って、ジルコニア質セラミックスは、前記した
中間筒の熱膨張係数についての条件を満足する特性を有
する。
(Regarding Thermal Expansion Coefficient) Next, the thermal expansion coefficient will be described. The thermal expansion coefficient of zirconia-based ceramics is about 7.0 to 10.5 × 10 -6 / ° C, whereas the thermal expansion coefficient of sialon ceramics and dense silicon nitride ceramics, which are the materials of the inner cylinder, is 3.0 to 3.4 × 10. -6
On the other hand, the thermal expansion coefficient of the refractory metal that is the material of the outer cylinder is about 11 to 12 × 10 −6 / ° C. (see Table 2 above). Therefore, the zirconia-based ceramics have the characteristics that satisfy the above-mentioned conditions for the coefficient of thermal expansion of the intermediate cylinder.

【0051】(強度について)次に、強度について説明
する。ジルコニア質セラミックスの抗折強度は、例えば
MgO安定化ジルコニアセラミックスの場合室温で400M
Pa程度であり、高温になるにつれて低下するものの300
℃程度までは殆ど低下せず、1000℃においても250MPa程
度である(前記図8参照)。また、Y23安定化ジルコ
ニアセラミックスでは室温で1200MPa程度であり、高温
になるにつれて低下するものの300℃程度までは殆ど低
下せず、1200℃においても350MPa程度である(前記図8
参照)。
(Regarding Strength) Next, strength will be described. The bending strength of zirconia-based ceramics is, for example, 400M at room temperature in the case of MgO-stabilized zirconia ceramics.
It is about Pa, and it decreases as the temperature rises, but 300
Almost no decrease up to about 0 ° C. and about 250 MPa even at 1000 ° C. (see FIG. 8). With Y 2 O 3 -stabilized zirconia ceramics, the temperature is about 1200 MPa at room temperature, which decreases as the temperature rises, but does not decrease to about 300 ° C., and even at 1200 ° C. is about 350 MPa (see FIG. 8).
reference).

【0052】これに対して、多孔質窒化珪素セラミック
スでは、温度変化に伴う抗折強度の変化は殆どないけれ
ども200MPa程度と低い(前記図8参照)。こうしたこと
から、多孔質窒化珪素セラミックスを中間筒に用いる場
合には断熱性が十分でなく、かつ、強度不足のため外筒
との焼嵌め等の接合が困難であるが、ジルコニア質セラ
ミックスを中間筒に用いる場合には、断熱特性が優れて
おり、鋳造時における中間筒と外筒との境界面の温度を
低くすることができるため、焼嵌め等の締め代が小さく
てよい。このため焼嵌め等の接合による接触応力が小さ
く、更に強度が比較的強いので接合に関する強度上の問
題もなく、外筒との焼嵌め等の接合が容易である。
On the other hand, in the case of porous silicon nitride ceramics, the bending strength hardly changes with temperature, but it is as low as about 200 MPa (see FIG. 8). For this reason, when porous silicon nitride ceramics is used for the intermediate cylinder, the heat insulation is not sufficient, and due to insufficient strength, it is difficult to join the outer cylinder by shrink fitting or the like. When it is used for a cylinder, it has excellent heat insulation properties and can lower the temperature of the boundary surface between the intermediate cylinder and the outer cylinder during casting, so that the interference such as shrinkage fitting may be small. Therefore, the contact stress due to joining such as shrink fitting is small, and the strength is relatively strong, so there is no strength problem regarding joining, and joining such as shrink fitting with the outer cylinder is easy.

【0053】上記のことから、ジルコニア質セラミック
スは、本発明の中間筒の材質として適した特性を有す
る。特にMgO安定化ジルコニアセラミックスは、断熱
性に優れており、さらに熱膨張係数が内筒のサイアロン
セラミックス及び緻密質窒化珪素セラミックスと外筒の
耐熱金属とのほぼ中間の値であるので(前記表2参
照)、中間筒の材質として非常に適している。
From the above, zirconia-based ceramics have characteristics suitable as the material of the intermediate cylinder of the present invention. In particular, MgO-stabilized zirconia ceramics has excellent heat insulating properties, and the coefficient of thermal expansion is approximately intermediate between that of the sialon ceramics and dense silicon nitride ceramics of the inner cylinder and the refractory metal of the outer cylinder (see Table 2 above). ), It is very suitable as a material for the intermediate cylinder.

【0054】次に、本発明における外筒の材質について
説明する。本発明のダイカスト用射出成形スリ−ブは、
前記図1及び図2中の外筒3によってダイカストマシ−
ン本体へ取り付けられる。このため、外筒3としては、
ダイカストマシ−ンのプランジャ−の運動する軸とスリ
−ブ内面の軸との位置精度、姿勢精度を良好な状態に維
持でき、かつ、鋳造作業上の取扱が容易でなければなら
ない。
Next, the material of the outer cylinder of the present invention will be described. The injection molding sleeve for die casting of the present invention,
A die casting machine is used by the outer cylinder 3 in FIGS. 1 and 2.
It is attached to the main body. Therefore, as the outer cylinder 3,
It is required that the position accuracy and the attitude accuracy of the moving shaft of the plunger of the die-casting machine and the shaft of the inner surface of the sleeve can be maintained in a good state, and the handling in the casting work is easy.

【0055】また、中間筒2の断熱効果によりスリ−ブ
内面からの熱はかなり断熱されてはいるが、鋳型、ダイ
カストマシ−ンからも熱を受けるため、耐熱性にも優れ
ていなければならない。従って、外筒3としては、高強
度であって、ある程度の耐熱性を備え、かつ、鋳造作業
上取扱が容易であり、ダイカストマシ−ン本体への取付
け及び調整が容易な材料であることが要求される。以上
のことから、外筒3の材質としては、例えばSKD−61の
ような耐熱金属が適する。
Further, although the heat from the inner surface of the sleeve is considerably insulated by the heat insulating effect of the intermediate cylinder 2, it must be excellent in heat resistance because it is also received from the mold and the die casting machine. . Therefore, the outer cylinder 3 is a material that has high strength, has a certain degree of heat resistance, is easy to handle in casting work, and is easy to mount and adjust on the die-cast machine body. Required. From the above, a heat resistant metal such as SKD-61 is suitable as the material of the outer cylinder 3.

【0056】次に、本発明におけるダイカスト用射出成
形スリ−ブの構造面の作用について説明する。ダイカス
ト用射出成形スリ−ブにおいては、構造面で鋳造時のス
リ−ブが高温となる状態においても、各筒間のクリアラ
ンスは、プランジャ−の運動する軸とスリ−ブ内面の軸
との位置精度、姿勢精度が十分に良好であり、プランジ
ャ−チップとスリ−ブ内面との摺動状態に悪影響を及ぼ
さない程度にすることが要求される。そのためには、ス
リ−ブの内部においては、どのような接合方法を用いる
にせよ各筒間のはめあい部の熱膨張量の差を小さくする
ことが有効な手段である。
Next, the function of the structural surface of the injection molding sleeve for die casting according to the present invention will be described. In injection-molded sleeves for die-casting, the clearance between the cylinders is determined by the position between the axis of movement of the plunger and the axis of the inner surface of the sleeve even when the sleeve during casting has a high temperature during casting. It is required that the accuracy and the posture accuracy are sufficiently good and that the sliding state between the plunger tip and the inner surface of the sleeve is not adversely affected. For that purpose, it is an effective means to reduce the difference in the thermal expansion amount of the fitting portion between the respective cylinders inside the sleeve, whichever joining method is used.

【0057】前述したとおり、本発明のダイカスト用射
出成形スリ−ブは、内筒1がサイアロンセラミックス製
又は緻密質窒化珪素セラミックス製であり、中間筒2が
ジルコニア質セラミックス製であり、外筒3が耐熱金属
製である。スリ−ブ内の温度分布は、内筒1が最も高温
であり、中間筒2、外筒3の順に低く、さらに内筒1及
び中間筒2は、熱伝導率の低い材質を用いるので、外筒
3の温度は低い。
As described above, in the injection molding sleeve for die casting of the present invention, the inner cylinder 1 is made of sialon ceramics or dense silicon nitride ceramics, the intermediate cylinder 2 is made of zirconia ceramics, and the outer cylinder 3 Is made of heat-resistant metal. The temperature distribution inside the sleeve is highest in the inner cylinder 1 and lower in the order of the intermediate cylinder 2 and the outer cylinder 3. Further, since the inner cylinder 1 and the intermediate cylinder 2 are made of a material having a low thermal conductivity, The temperature of the cylinder 3 is low.

【0058】また、熱膨張係数については、内筒1が最
も小さく、中間筒2、外筒3の順に大きい。更に、当然
のことながら、本発明において、各筒の肉厚を調整する
ことにより(第2発明においては、各筒の肉厚の調整に
加えて、さらに加熱ヒ−タ−7の装着位置及びその発熱
量を調整することにより)、各筒の温度及び各筒間の境
界部の温度を調整することができる。この特徴を利用
し、本発明では各筒間のはめあい部の熱膨張量の差を小
さくすることができる。
Regarding the coefficient of thermal expansion, the inner cylinder 1 is the smallest and the intermediate cylinder 2 and the outer cylinder 3 are larger in this order. Further, as a matter of course, in the present invention, by adjusting the wall thickness of each cylinder (in the second invention, in addition to the adjustment of the wall thickness of each cylinder, the mounting position of the heating heater 7 and The temperature of each cylinder and the temperature of the boundary between the cylinders can be adjusted by adjusting the amount of heat generation. Utilizing this feature, the present invention can reduce the difference in the thermal expansion amount of the fitting portion between the cylinders.

【0059】従って、本発明では、各筒間を焼嵌めはも
とより圧入やスキマばめ或いは鋳ぐるみにより接合する
ことも可能である。また、焼嵌め接合する場合において
も、鋳造時に外筒3が比較的低温であるので焼嵌め代が
小さくても鋳造時に十分な精度が得られる。更に、中間
筒2がジルコニア質セラミックス製であるので、外筒3
との焼嵌め接合に関して強度上の問題はない。
Therefore, in the present invention, it is possible to join the cylinders not only by shrink fitting, but also by press fitting, clearance fitting, or cast molding. Further, even in the case of shrink fitting, since the outer cylinder 3 is at a relatively low temperature during casting, sufficient accuracy can be obtained during casting even if the shrink fitting margin is small. Further, since the intermediate cylinder 2 is made of zirconia ceramics, the outer cylinder 3
There is no problem in strength regarding shrink-fitting joint with.

【0060】特に第2発明のダイカスト用加熱式射出成
形スリ−ブにおいては、スリ−ブ内に装着された加熱ヒ
−タ−7(図2参照)により、スリ−ブ内の温度分布を
強制的に比較的高い温度域において制御することが可能
であるので、スリ−ブ内の温度分布は、射出孔内での溶
湯の分布状態の影響を考慮して各点の温度をほぼ均一に
制御することができ、鋳造時に熱膨張量のバランスをと
ることができ、反りが極めて少ない状態になる利点を有
する。
Particularly, in the heating type injection molding sleeve for die casting of the second invention, the heating heater 7 (see FIG. 2) mounted in the sleeve forces the temperature distribution in the sleeve. Since it is possible to control the temperature in a relatively high temperature range, the temperature distribution in the sleeve is controlled to be almost uniform by considering the influence of the molten metal distribution in the injection holes. The advantage is that the amount of thermal expansion can be balanced during casting, and the warpage is extremely small.

【0061】以上詳記したとおり、本発明(第1発明の
ダイカスト用射出成形スリ−ブ及び第2発明のダイカス
ト用加熱式射出成形スリ−ブ)は、サイアロンセラミッ
クス又は緻密質窒化珪素セラミックス(内筒)、ジルコ
ニア質セラミックス(中間筒)及び耐熱金属(外筒)の
組み合わせにより、各筒の材料面からみて優れており、
また、構造面、製作面でも優れているものである。
As described above in detail, the present invention (the injection molding sleeve for die casting of the first invention and the heating injection molding sleeve for die casting of the second invention) is made of sialon ceramic or dense silicon nitride ceramic (internal (Cylinder), zirconia-based ceramics (intermediate cylinder), and heat-resistant metal (outer cylinder) are combined, and are excellent from the material side of each cylinder,
It is also excellent in terms of structure and manufacturing.

【0062】[0062]

【実施例】次に、本発明の実施例を挙げ、本発明をより
詳細に説明する。以下の実施例1〜3は第1発明の実施
例であり、実施例4〜6は第2発明の実施例である。
EXAMPLES Next, the present invention will be described in more detail with reference to examples of the present invention. Examples 1 to 3 below are examples of the first invention, and Examples 4 to 6 are examples of the second invention.

【0063】(実施例1−第1発明)第1発明の実施例
1を前記した図1を参照して説明する。この実施例1
は、図1に示すように、内筒1、中間筒2、外筒3から
なり、内筒1は一体型のサイアロンセラミックス製であ
り、中間筒2は同じく一体型のMgO安定化ジルコニア
セラミックス製であり、外筒3はSKD-61製である。各筒
の主要部の寸法は、表3に示す値である。
(Embodiment 1-First Invention) The first embodiment of the first invention will be described with reference to FIG. This Example 1
As shown in FIG. 1, consists of an inner cylinder 1, an intermediate cylinder 2 and an outer cylinder 3. The inner cylinder 1 is made of integral sialon ceramics, and the intermediate cylinder 2 is also made of integral MgO-stabilized zirconia ceramics. The outer cylinder 3 is made of SKD-61. The dimensions of the main part of each cylinder are the values shown in Table 3.

【0064】[0064]

【表3】 [Table 3]

【0065】内筒1と中間筒2とはスキマばめで、ま
た、中間筒2と外筒3とは焼嵌めで接合し、図1に示す
構造の射出成形用スリ−ブを作製し、ダイカストマシ−
ンに取付け、表4に示す鋳造条件で100,000ショットの
実使用試験を行った。
The inner cylinder 1 and the intermediate cylinder 2 are joined with a clearance fit, and the intermediate cylinder 2 and the outer cylinder 3 are joined with each other by shrink fitting to produce an injection molding sleeve having the structure shown in FIG. Machine
It was mounted on the test piece and subjected to a practical use test of 100,000 shots under the casting conditions shown in Table 4.

【0066】[0066]

【表4】 [Table 4]

【0067】使用後のスリ−ブ内面の観察と摩耗損量の
測定及び鋳造時の内筒の内部温度並びに各筒間の境界部
の温度測定を行った。図1中の〜は、測温箇所であ
る。 ……内筒1内部の測温箇所 ……内筒1と中間筒2との境界部の測温箇所 ……中間筒2と外筒3との境界部の測温箇所
After the use, the inner surface of the sleeve was observed, the amount of wear loss was measured, the internal temperature of the inner cylinder during casting, and the temperature of the boundary between the cylinders were measured. In FIG. 1, (1) to (3) are temperature measurement points. ...... Temperature measurement point inside the inner cylinder ...... Temperature measurement point at the boundary between the inner cylinder 1 and the intermediate cylinder ...... Temperature measurement point at the boundary between the intermediate cylinder 2 and the outer cylinder 3

【0068】更に、測温結果を用いて鋳造時の各筒間の
クリアランス及び焼嵌め代を簡易的に計算し、また、断
熱効果の確認をした。この試験を行っている間、プラン
ジャ−の動作は常に安定しており、また、試験後のスリ
−ブ内筒の内周面の観察では、偏摩耗及び浸食の形跡は
確認されなかった。更に、試験前・後の内筒1の内径寸
法を比較したところ、100,000ショット鋳造による摩耗
量、つまり内径の増加量は、僅かに0.014mmであっ
た。
Further, using the temperature measurement results, the clearance between each cylinder and the shrink fitting margin during casting were simply calculated, and the heat insulating effect was confirmed. During this test, the operation of the plunger was always stable, and the observation of the inner peripheral surface of the sleeve inner cylinder after the test showed no evidence of uneven wear and erosion. Further, when the inner diameters of the inner cylinder 1 before and after the test were compared, the wear amount due to 100,000 shot casting, that is, the increase amount of the inner diameter was only 0.014 mm.

【0069】上記観察及び測定結果より、プランジャ−
チップ5とスリ−ブ内面との摺動状態は極めて良好であ
り、溶湯による浸食も殆どなかったものと考えられる。
また、鋳造定常時の測温結果を表5に示し、鋳造定常時
の各筒間のクリアランスの簡易計算結果を表6に示す。
From the above observation and measurement results, the plunger
It is considered that the sliding condition between the tip 5 and the inner surface of the sleeve was extremely good and there was almost no erosion by the molten metal.
Table 5 shows the temperature measurement results during steady casting, and Table 6 shows the simplified calculation results of the clearance between the cylinders during steady casting.

【0070】[0070]

【表5】 [Table 5]

【0071】[0071]

【表6】 [Table 6]

【0072】この測温結果より、鋳造時においても内筒
1は耐摩耗性、耐食性、濡れ性、強度を十分に満足し、
また、中間筒2は強度を十分に満足する温度の範囲にあ
り、断熱効果は十分であることが確認された。この断熱
効果によりSKD-61製の外筒3は溶湯の温度による影響が
少なく、また、比較的小さい過熱度でも鋳造が可能であ
ることが確認された。
From this temperature measurement result, the inner cylinder 1 sufficiently satisfied wear resistance, corrosion resistance, wettability and strength even during casting,
Further, it was confirmed that the intermediate cylinder 2 was in a temperature range where the strength was sufficiently satisfied, and the heat insulating effect was sufficient. It was confirmed that due to this heat insulating effect, the outer cylinder 3 made of SKD-61 is less affected by the temperature of the molten metal and can be cast even at a relatively low superheat degree.

【0073】図9に構造及び各材質の違いによる内筒の
温度変化状況を示す。図中のはSKD-61製金属スリ−ブ
を内筒に使用した場合、はサイアロンセラミックス製
スリ−ブを内筒に使用した場合であり、いずれも図1の
位置で示される内筒1の下部内部における温度変化状
況を示した図である。(なお、図9中のは、後記する
第2発明の実施例に相当する「加熱式サイアロンセラミ
ックス製スリ−ブを内筒に使用した場合」の温度変化状
況を示したものである。)図9からみて、第1発明のサ
イアロンスリ−ブの場合、放熱の著しい金属スリ−ブに
比べ100℃以上高温の予熱が可能になることが確認され
た。
FIG. 9 shows the temperature change of the inner cylinder due to the difference in structure and each material. In the figure, the SKD-61 metal sleeve is used for the inner cylinder, and the SIARON ceramic sleeve is used for the inner cylinder, both of which are shown in the position of FIG. It is a figure showing the temperature change situation inside the lower part. (Note that FIG. 9 shows the temperature change situation in the case where the heating type Sialon ceramic sleeve is used for the inner cylinder, which corresponds to the example of the second invention described later.) From the viewpoint of 9, it was confirmed that in the case of the sialon sleeve of the first invention, preheating at a temperature of 100 ° C. or higher is possible as compared with the metal sleeve that remarkably radiates heat.

【0074】更に、鋳造開始後スリ−ブの温度が定常に
到達するまでの時間は、約2分の1の時間に短縮でき、定
常温度も100℃高い。また、射出サイクルでの温度変化
も金属スリーブの50℃に比べ5〜8℃と著しく小さくなっ
ていることが確認された。従って、第1発明のサイアロ
ンスリ−ブは、安定した鋳造条件を得るための有効な手
段である。
Furthermore, the time required for the temperature of the sleeve to reach a steady state after the start of casting can be shortened to about one-half time, and the steady temperature is 100 ° C. higher. It was also confirmed that the temperature change in the injection cycle was 5-8 ° C, which was significantly smaller than that of the metal sleeve at 50 ° C. Therefore, the sialon sleeve of the first invention is an effective means for obtaining stable casting conditions.

【0075】また、鋳造定常時における各筒間のクリア
ランス及び焼嵌め代の計算結果よりの熱膨張量の差(前
記表6参照)からみて、ダイカストマシ−ンのプランジ
ャ−の運動する軸とスリ−ブ内面の軸との位置精度、姿
勢精度は、良好な状態に維持できる範囲であった。この
ため、内筒内周の偏摩耗がなかったと考えられる。
Further, in view of the difference in the amount of thermal expansion from the calculation results of the clearances between the cylinders and the shrinkage fitting allowance during steady casting (see Table 6 above), the axis of movement of the plunger of the die casting machine and the sleeve -Position accuracy and posture accuracy with respect to the axis of the inner surface of the sleeve were within a range that could be maintained in a good state. Therefore, it is considered that there was no uneven wear on the inner circumference of the inner cylinder.

【0076】鋳物の内部組織を観察した。その顕微鏡写
真を図10(A)−写真1に示す。この実施例1における
セラミックススリ−ブの保温効果が優れていることによ
り、図10(A)−写真1でみられるように、微細な初晶
アルミニウムと共晶組織が均一に分散した安定な組織を
有し、ハ−ドスポツトの原因となるセラミックスの剥離
片やスリ−ブ内における溶湯の温度低下により生じたと
考えられる粗大な初晶アルミニウムあるいは破断チル層
の混入が少なく、良好な鋳造が可能であることを確認し
た。なお、図10(B)−写真2及び同(C)−写真3は、後
記比較例1(従来のダイカスト用射出成形スリーブ)に
より鋳造した製品の内部組織であり、初晶Alと共晶S
iの晶出面積割合が不連続に変化した二層組織(写真
2)及び粗大な初晶アルミニウムデンドライト組織(写
真3)を示す。
The internal structure of the casting was observed. The micrograph is shown in FIG. 10 (A) -Photo 1. Due to the excellent heat retaining effect of the ceramic sleeve in Example 1, as shown in FIG. 10 (A) -Photo 1, a stable structure in which fine primary crystal aluminum and eutectic structure are uniformly dispersed. In addition, there is little mixing of coarse primary aluminum or fractured chill layer, which is considered to have been caused by the temperature drop of the molten metal in the ceramic strips or sleeves that cause hard spots, and good casting is possible. I confirmed that there is. 10 (B) -Photo 2 and FIG. 10 (C) -Photo 3 show the internal structure of a product cast by Comparative Example 1 (conventional injection-molding sleeve for die-casting) described below.
The two-layer structure in which the crystallized area ratio of i is discontinuously changed (Photo 2) and the coarse primary crystal aluminum dendrite structure (Photo 3) are shown.

【0077】(実施例2−第1発明)各筒の主要部寸
法、構造等については実施例1と同一であるが、この実
施例2では、内筒1の材料として、サイアロンセラミッ
クスにかえて緻密質窒化珪素セラミックスを用いる点で
前記実施例1と相違する。実施例1と同様、内筒1が一
体型の緻密質窒化珪素セラミックス製、中間筒2が一体
型のMgO安定化ジルコニアセラミックス製、外筒3が
SKD-61製からなる射出成形用スリ−ブを作成し、実施例
1と同じダイカストマシ−ンに取付け、同一鋳造条件で
100,000ショットの実使用試験を行い、使用後のスリ−
ブ内面の観察と摩耗損量を測定し、また、鋳物の内部組
織を観察した。
(Embodiment 2-First Invention) The dimensions, structure, etc. of the main parts of each cylinder are the same as in Embodiment 1, but in this Embodiment 2, the material of the inner cylinder 1 is changed to Sialon ceramics. This is different from Example 1 in that a dense silicon nitride ceramics is used. As in Example 1, the inner cylinder 1 is made of one-piece dense silicon nitride ceramics, the intermediate cylinder 2 is made of one-piece MgO-stabilized zirconia ceramics, and the outer cylinder 3 is
An injection molding sleeve made of SKD-61 was prepared and mounted on the same die casting machine as in Example 1, under the same casting conditions.
After 100,000 shots of actual use test, after use,
The inner surface of the cast was observed and the wear loss was measured, and the internal structure of the casting was observed.

【0078】この試験の結果、スリ−ブ内筒の内周面の
観察では、偏摩耗及び浸食の形跡は確認されず、スリ−
ブ内面の摩耗損量は0.015mmであり、実施例1と同様
に鋳物の内部組織にハ−ドスポットの原因となるセラミ
ックスの剥離片やスリ−ブ内で生じたと思われるような
破断チル層の混入は認められなかった。これらのことか
ら、鋳造時における各筒間のクリアランスは、実施例1
と同様にダイカストマシーンのプランジャーの運動する
軸とスリーブ内面の軸との位置精度、姿勢精度は良好な
状態に維持でき、プランジャーチップとスリーブ内面と
の摺動状態は極めて良好であったと考えられる。
As a result of this test, in the observation of the inner peripheral surface of the sleeve inner cylinder, no evidence of uneven wear or erosion was confirmed, and the sleeve was
The amount of wear loss on the inner surface of the sleeve was 0.015 mm, and like the first embodiment, a peeling piece of ceramics that causes a hard spot in the internal structure of the casting or a fractured chill layer that seems to have occurred in the sleeve. No contamination was observed. From these things, the clearance between the cylinders at the time of casting is
Similar to the above, the position accuracy and posture accuracy between the moving shaft of the plunger of the die casting machine and the shaft of the inner surface of the sleeve can be maintained in a good state, and the sliding state between the plunger tip and the inner surface of the sleeve was considered to be extremely good. To be

【0079】また、断熱・保温効果によりスリーブの射
出孔内の溶湯の熱的損失が少ないため、溶湯の融点に比
べて比較的小さい過熱度でも鋳造が可能であることが確
認された。以上のことより、緻密質窒化珪素セラミック
スにおいても、実施例1のサイアロンセラミックスの場
合と同等の作用が得られることが確認された。
Further, it has been confirmed that the heat loss of the molten metal in the injection hole of the sleeve is small due to the heat insulating / heat retaining effect, so that casting can be performed even at a superheat degree relatively lower than the melting point of the molten metal. From the above, it was confirmed that the same effect as in the case of the sialon ceramic of Example 1 can be obtained also in the dense silicon nitride ceramics.

【0080】(実施例3−第1発明)図3は、第1発明
の他の実施例(実施例3)を説明するための図であっ
て、ダイカスト用射出成形スリ−ブの分割型の構造を示
す模式的断面図である。各筒の材質及び主要部寸法等に
ついては実施例1と同じであるが、内筒及び中間筒は各
々5分割の構造からなる図3に示す構造の射出成形用ス
リーブを作製し、実施例1と同じダイカストマシーンに
取付け、同一鋳造条件で100,000ショットの実使用試験
を行い、使用後のスリーブ内面の観察と摩耗損量の測定
をし、鋳物の内部組織を観察した。
(Embodiment 3-First Invention) FIG. 3 is a view for explaining another embodiment (third embodiment) of the first invention, which is a split mold of an injection molding sleeve for die casting. It is a typical sectional view showing a structure. The material and the size of the main part of each cylinder are the same as in Example 1, but the inner cylinder and the intermediate cylinder are each divided into five parts, and an injection molding sleeve having the structure shown in FIG. It was mounted on the same die-casting machine as above, and under the same casting conditions, 100,000 shots of the actual use test were conducted, the inner surface of the sleeve after use was observed and the wear loss amount was measured, and the internal structure of the casting was observed.

【0081】この試験の結果、スリーブ内筒の内周面の
観察では、偏摩耗及び浸食の形跡は確認されず、スリー
ブ内面の摩耗損量は0.015mmであり、実施例1と同様
に鋳物の内部組織にハードスポットの原因となるセラミ
ックスの剥離片やスリーブ内で生じたと思われるような
破断チル層の混入は認められなかった。これらのことか
ら、鋳造時における各筒間のクリアランスは、実施例1
と同様にダイカストマシーンのプランジャーの運動する
軸とスリーブ内面の軸との位置精度、姿勢精度は良好な
状態に維持でき、プランジャーチップとスリーブ内面と
の摺動状態は、極めて良好であったと考えられる。
As a result of this test, in the observation of the inner peripheral surface of the sleeve inner cylinder, no evidence of uneven wear and erosion was confirmed, and the wear loss amount of the inner surface of the sleeve was 0.015 mm, which was the same as in Example 1. It was not observed that the peeled pieces of ceramics causing the hard spots in the internal structure or the inclusion of the fractured chill layer which seems to have occurred in the sleeve were observed. From these things, the clearance between the cylinders at the time of casting is
Similarly, the position accuracy and attitude accuracy of the moving shaft of the plunger of the die casting machine and the shaft of the inner surface of the sleeve can be maintained in a good state, and the sliding state between the plunger tip and the inner surface of the sleeve was extremely good. Conceivable.

【0082】また、断熱・保温効果によりスリーブの射
出孔内の溶湯の熱的損失が少ないため、溶湯の融点に比
べて比較的小さい過熱度でも鋳造が可能であることが確
認された。以上のことから分割型構造においても、実施
例1の一体型構造と同等の作用が得られることが確認さ
れた。
Further, it has been confirmed that the heat loss of the molten metal in the injection hole of the sleeve is small due to the heat insulating / heat retaining effect, so that casting can be performed even at a superheat degree relatively lower than the melting point of the molten metal. From the above, it was confirmed that even in the split type structure, an action equivalent to that of the integrated type structure of Example 1 was obtained.

【0083】(実施例4−第2発明)第2発明の実施例
(実施例4)を前記した図2を参照して説明する。この
実施例4は、図2に示すように、内筒1、中間筒2、外
筒3及び加熱ヒ−タ−7で構成したものである。内筒1
は一体型のサイアロンセラミックス製であり、中間筒2
は、その内周面に6本のヒ−タ−装着用の溝を設けた一
体型のMgO安定化ジルコニアセラミックス製であり、
外筒3はSKD−61製である。各筒の主要部の寸法は、表
7に示す値である。
(Fourth Embodiment) A second embodiment of the second invention (Embodiment 4) will be described with reference to FIG. As shown in FIG. 2, this Embodiment 4 is composed of an inner cylinder 1, an intermediate cylinder 2, an outer cylinder 3 and a heating heater 7. Inner cylinder 1
Is made of one-piece Sialon ceramics and has an intermediate cylinder 2
Is made of integral MgO-stabilized zirconia ceramics having six heater mounting grooves on its inner peripheral surface,
The outer cylinder 3 is made of SKD-61. The dimensions of the main part of each cylinder are the values shown in Table 7.

【0084】[0084]

【表7】 [Table 7]

【0085】内筒1と中間筒2とはスキマばめで、ま
た、中間筒2と外筒3とが焼嵌めで接合し、中間筒2に
設けたヒ−タ−装着用の6本の溝に各1本の寸法がφ8
×260Lで発熱量がヒ−タ−1本当り最大1KWの加熱ヒ−
タ−7を装着し、図2に示す構造の加熱式射出成形スリ
−ブを作製し、ダイカストマシ−ンに取付け、表8に示
す鋳造条件で100,000ショットの実使用試験を行った。
The inner cylinder 1 and the intermediate cylinder 2 are fitted with a clearance fit, and the intermediate cylinder 2 and the outer cylinder 3 are joined by shrink fitting, so that six grooves for mounting a heater are provided in the intermediate cylinder 2. The size of each one is φ8
Heater with a heating value of 1L max.
The heating type injection molding sleeve having the structure shown in FIG. 2 was prepared, mounted on a die casting machine, and subjected to a practical use test of 100,000 shots under the casting conditions shown in Table 8.

【0086】[0086]

【表8】 [Table 8]

【0087】使用後のスリ−ブ内面の観察と摩耗損量の
測定を行い、また、鋳造定常時の内筒の内部の温度及び
各筒間の境界部の温度測定を行った。図2(A)中の〜
は、測温箇所である。 スリ−ブ下部における内筒1の内部の測温箇所 スリ−ブ下部における内筒1と中間筒2との境界部で
の測温箇所 スリ−ブ下部における中間筒2と外筒3との境界部で
の測温箇所 スリ−ブ上部における内筒1の内部の測温箇所 スリ−ブ上部における内筒1と中間筒2との境界部で
の測温箇所 スリ−ブ上部における中間筒2と外筒3との境界部で
の測温箇所
The inner surface of the sleeve after use was observed and the amount of wear loss was measured, and the temperature inside the inner cylinder and the temperature at the boundary between the cylinders were measured during steady casting. In Fig. 2 (A)
Is the temperature measurement point. Temperature measurement location inside the inner cylinder 1 at the lower part of the sleeve Temperature measurement location at the boundary between the inner cylinder 1 and the intermediate cylinder 2 at the lower part of the sleeve Boundary between the intermediate cylinder 2 and the outer cylinder 3 at the lower part of the sleeve Temperature measurement point in the section Temperature measurement point inside the inner cylinder 1 at the top of the sleeve Temperature measurement point at the boundary between the inner cylinder 1 and the intermediate tube 2 at the top of the sleeve Intermediate tube 2 at the top of the sleeve Temperature measurement point at the boundary with the outer cylinder 3

【0088】更に、測温結果を用いて鋳造定常時の各筒
間のクリアランス及び焼嵌め代を簡易的に計算し、ま
た、加熱ヒ−タ−による加熱の効果及び内筒1と中間筒
2とによる断熱効果の確認をした。この試験を行ってい
る間、プランジャ−の動作は常に安定しており、また、
試験後のスリ−ブ内筒の内周面の観察では、偏摩耗及び
浸食の形跡は確認されなかった。更に、試験前・後の内
筒1の内径寸法を比較したところ、100,000ショット鋳
造による摩耗量、つまり内径の増加量は、僅かに0.013
mmであった。
Further, the temperature measurement result is used to simply calculate the clearance between the cylinders and the shrink fitting allowance during steady casting, and the heating effect by the heating heater and the inner cylinder 1 and the intermediate cylinder 2 are used. The heat insulation effect was confirmed by. During this test, the plunger movement is always stable, and
Observation of the inner peripheral surface of the sleeve inner cylinder after the test showed no evidence of uneven wear and erosion. Furthermore, comparing the inner diameter of the inner cylinder 1 before and after the test, the wear amount due to 100,000 shot casting, that is, the increase amount of the inner diameter was only 0.013
It was mm.

【0089】上記観察及び測定の結果より、プランジャ
−チップ5とスリ−ブ内面との摺動状態は極めて良好で
あり、溶湯による浸食も殆どなかったものと考えられ
る。次に、鋳造定常時の測温結果を表9に示し、測温結
果を用いた鋳造定常時の各筒間のクリアランスの簡易計
算結果を表10に示す。
From the results of the above observation and measurement, it is considered that the sliding condition between the plunger tip 5 and the inner surface of the sleeve was extremely good, and the erosion by the molten metal was hardly caused. Next, Table 9 shows the temperature measurement results at the time of steady casting, and Table 10 shows the simple calculation result of the clearance between the cylinders at the time of steady casting using the temperature measurement results.

【0090】[0090]

【表9】 [Table 9]

【0091】[0091]

【表10】 [Table 10]

【0092】この測温結果より鋳造時においても、内筒
1は耐摩耗性、耐食性、濡れ性、強度を十分に満足し、
また中間筒2は強度を十分に満足する温度の範囲にあ
り、射出孔内の高温の溶湯から受ける熱と加熱ヒ−タ−
7から受ける熱に対する断熱効果は、十分であることが
確認された。この断熱効果によりSKD−61製の外筒3は
溶湯の温度による影響が少なく、また、加熱ヒ−タ−7
による加熱並びに内筒1と中間筒2との断熱効果による
射出孔内の保温作用により溶湯の熱的損失が少ないた
め、溶湯の融点と比べて比較的小さい加熱度でも鋳造が
可能であることが確認された。
From this temperature measurement result, the inner cylinder 1 was sufficiently satisfied with wear resistance, corrosion resistance, wettability and strength even during casting,
Further, the intermediate cylinder 2 is in a temperature range that sufficiently satisfies the strength, and the heat received from the high-temperature molten metal in the injection hole and the heating heater.
It was confirmed that the heat insulating effect against the heat received from No. 7 is sufficient. Due to this heat insulation effect, the outer cylinder 3 made of SKD-61 is less affected by the temperature of the molten metal, and the heating heater-7
Since the heat loss of the molten metal is small due to the heat-retaining effect in the injection hole due to the heating by the inner cylinder 1 and the heat insulation effect of the inner cylinder 1 and the intermediate cylinder 2, it may be possible to cast at a heating degree relatively lower than the melting point of the molten metal. confirmed.

【0093】また、スリ−ブ内の温度は、加熱ヒ−タ−
の出力を制御することにより、スリ−ブの中心軸につい
て上下方向に軸対称な位置関係にある点の温度がほぼ同
じであり、熱膨張の差によるスリ−ブ全体としての反り
が極めて少なくなる理想的な温度分布であった。図9に
各材質及び加熱方法の違いによる内筒1の温度変化の状
況を示す。図中のはSKD−61製スリ−ブ、はサイア
ロンセラミックス製スリ−ブ、は加熱式サイアロン製
スリ−ブの場合であり、いずれも図2(A)のの位置で
示される内筒1の下部内部の温度変化状況を示してい
る。(なお、図9中の及びは、前記第1発明の実施
例1の場合と同一の状況を示した。)図9によりこの実
施例4の加熱式サイアロンスリ−ブの場合、目標設定温
度に対する充分な予熱が可能になることが確認された。
The temperature inside the sleeve is controlled by the heating heater.
By controlling the output of the sleeve, the temperatures at the points axially symmetrical with respect to the central axis of the sleeve are almost the same, and the warpage of the sleeve as a whole due to the difference in thermal expansion is extremely reduced. The temperature distribution was ideal. FIG. 9 shows the situation of the temperature change of the inner cylinder 1 due to the difference in each material and heating method. In the figure, SKD-61 sleeves, Sialon ceramic sleeves, and heating type Sialon sleeves are shown, all of which are shown in FIG. 2 (A) at the inner cylinder 1. The temperature change inside the lower part is shown. (Note that and in FIG. 9 show the same situation as in the case of the first embodiment of the first invention.) With reference to FIG. 9, in the case of the heating type sialon sleeve of the fourth embodiment, with respect to the target set temperature. It was confirmed that sufficient preheating was possible.

【0094】また、予熱後急速に150〜200℃温度まで降
下し、回復時間が必要となる加熱なしの場合に比べて、
加熱式スリ−ブは、予熱後温度降下することなく、連続
して鋳造作業が可能になるため、短時間で定常温度に到
達できる利点がある。更に、その定常温度は、加熱式サ
イアロンスリ−ブの場合、金属スリ−ブの定常温度に比
べ200℃以上、加熱なしの場合に比べても130℃以上高温
に保持することが可能となる。
Further, as compared with the case without heating, which requires a recovery time, the temperature rapidly drops to 150 to 200 ° C. after preheating.
The heating type sleeve has an advantage that a steady temperature can be reached in a short time because the casting operation can be continuously performed without a temperature drop after preheating. Furthermore, in the case of the heating type sialon sleeve, the steady temperature can be kept at 200 ° C. or higher as compared with the steady temperature of the metal sleeve, and 130 ° C. or higher as compared with the case without heating.

【0095】また、射出サイクルでの温度差は、金属ス
リ−ブの50℃に比べサイアロンスリ−ブは、加熱可否に
拘らず5〜8℃と著しく小さくなることが確認できる。即
ち、この実施例4の加熱式サイアロンスリ−ブは、溶湯
の保温降下だけではなく高温域での湯温制御が可能とな
り、安定した鋳造作業等に有効であり、また、リードタ
イムの短縮により作業効率向上にも有効であることが確
認できた。
Further, it can be confirmed that the temperature difference in the injection cycle is 5 to 8 ° C., which is significantly smaller in the sialon sleeve than in the metal sleeve at 50 ° C., regardless of whether or not heating is possible. That is, the heating type sialon sleeve of Example 4 is not only effective for lowering the heat retention of the molten metal but also for controlling the temperature of the molten metal in a high temperature range, which is effective for stable casting work and the like, and also shortens the lead time. It was confirmed that it was also effective in improving work efficiency.

【0096】更に、鋳造定常時における各筒間のクリア
ランス及び焼嵌め代の計算結果からの熱膨張量の差から
みて、各筒間のクリアランスは、ダイカストマシ−ンの
プランジャ−の運動する軸とスリ−ブ内面の軸との位置
精度、姿勢精度は、良好な状態に維持できる範囲であっ
たと考えられる。また、鋳物の内部組織を観察したとこ
ろ、微細な初晶アルミニウムと共晶組織が均一に分散し
た安定した組織を有している。
Furthermore, in view of the difference in the amount of thermal expansion from the clearance between the cylinders and the shrinkage fitting calculation result during steady casting, the clearance between the cylinders is the same as the axis of movement of the plunger of the die casting machine. It is considered that the position accuracy and attitude accuracy with respect to the axis of the sleeve inner surface were within a range in which it could be maintained in a good state. Further, when the internal structure of the casting was observed, it had a stable structure in which fine primary crystal aluminum and eutectic structure were uniformly dispersed.

【0097】図11(A)−写真1は、内部組織の観察写
真を示す。この写真1は、この実施例4によるダイカス
ト用加熱式射出成形スリーブにより鋳造した製品の内部
組織であり、初晶Alが微細に均一分散した良好な組織
を示す。特にヒ−タ−加熱によりスリ−ブ内が高温に保
持され、溶湯が鋳型内に完全に充填された後凝固が開始
するため、粗大な初晶Alは全く見られず、初晶アルミ
ニウムのデンドライトア−ムスペ−シングは、微細に均
一分散した極めて良好な組織をなし(写真1参照)、品
質面でも強度、硬度、表面性状の特性が飛躍的に向上し
た鋳物を得ることが可能であった。
FIG. 11A-Photo 1 shows an observation photograph of the internal structure. Photo 1 shows the internal structure of a product cast by the heat-type injection molding sleeve for die casting according to Example 4, and shows a good structure in which primary crystal Al is finely and uniformly dispersed. In particular, since the inside of the sleeve is kept at a high temperature by heating with a heater and solidification starts after the molten metal is completely filled in the mold, coarse primary crystal Al is not seen at all, and primary aluminum dendrites are not observed. The arm spacing has a very fine structure in which it is finely and uniformly dispersed (see Photo 1), and it was possible to obtain a casting with dramatically improved characteristics of strength, hardness, and surface properties in terms of quality. .

【0098】(実施例5−第2発明)各筒の主要部寸
法、構造等については実施例4と同じであるが、この実
施例5では、内筒1の材料として、サイアロンセラミッ
クスにかえて緻密質窒化珪素セラミックスを用いる点で
のみ実施例4と相違する。実施例4と同様、内筒1が一
体型の緻密質窒化珪素セラミックス製、中間筒2が内周
面に6本のヒ−タ−装着用の溝を設けた一体型のMgO
安定化ジルコニアセラミックス製、外筒3がSKD−61製
からなる加熱式射出成形スリ−ブを作製し、実施例4と
同一鋳造条件で100,000ショットの実使用試験を行い、
使用後の内面の観察と摩耗損量を測定し、鋳物の内部組
織を観察した。
(Embodiment 5 to Second Invention) The dimensions and structure of the main parts of each cylinder are the same as those of Embodiment 4, but in this Embodiment 5, the material of the inner cylinder 1 is changed to Sialon ceramics. It differs from Example 4 only in using the dense silicon nitride ceramics. As in Example 4, the inner cylinder 1 was made of an integral type dense silicon nitride ceramics, and the intermediate cylinder 2 was an integral type MgO having six heater mounting grooves on its inner peripheral surface.
A heating injection molding sleeve made of stabilized zirconia ceramics and an outer cylinder 3 made of SKD-61 was prepared, and 100,000 shots of actual use were tested under the same casting conditions as in Example 4,
After the use, the inner surface was observed and the amount of wear loss was measured to observe the internal structure of the casting.

【0099】この試験の結果、実施例4と同様、スリ−
ブ内筒の内面の観察では偏摩耗及び浸食の形跡が認めら
れず、摩耗損量も0.016mmであり、鋳物の内部組織も
極めて良好であり、品質面でも優れた鋳物が可能であっ
た。これらのことから、鋳造時における各筒間の熱膨張
量の差は、ダイカストマシ−ンのプランジャ−の運動す
る軸とスリ−ブ内面の軸との位置精度、姿勢精度は、ス
リ−ブの中心軸について上下方向に軸対称な位置関係に
ある点の温度がほぼ同じであり、熱膨張量の差によるス
リ−ブ全体としての反りが極めて少なくなる理想的な温
度分布であったと考えられる。
As a result of this test, the same as Example 4 was used.
Observation of the inner surface of the inner cylinder showed no evidence of uneven wear and erosion, the amount of wear loss was 0.016 mm, the internal structure of the casting was extremely good, and it was possible to produce a casting with excellent quality. From these facts, the difference in the amount of thermal expansion between the cylinders during casting depends on the position accuracy and attitude accuracy of the sleeve between the axis of the die casting machine plunger and the axis of the inner surface of the sleeve. It is considered that the temperatures at points having an axially symmetric positional relationship with respect to the central axis were almost the same, and it was considered that the ideal temperature distribution was such that the warpage of the sleeve as a whole due to the difference in thermal expansion was extremely small.

【0100】更に、加熱ヒ−タ−7による加熱及び内筒
1と中間筒2との断熱効果による射出孔内の保温作用に
より溶湯の熱的損失が少ないため、溶湯の融点と比べて
比較的小さい過熱度でも鋳造が可能であることが確認さ
れた。以上のことより、緻密質窒化珪素セラミックスを
内筒1に使用した場合においても、実施例4のサイアロ
ンセラミックス製内筒と同等の作用が得られることが確
認された。
Further, the heat loss of the molten metal is small due to the heat-retaining effect in the injection hole due to the heating by the heating heater 7 and the adiabatic effect of the inner cylinder 1 and the intermediate cylinder 2. It was confirmed that casting is possible even with a small degree of superheat. From the above, it was confirmed that even when the dense silicon nitride ceramics was used for the inner cylinder 1, the same effect as the inner cylinder made of sialon ceramics of Example 4 was obtained.

【0101】(実施例6−第2発明)図4は、第2発明
の他の実施例(実施例6)を説明するための図であり、
ダイカスト用加熱式射出成形スリ−ブの分割型の構造を
示す模式的断面図である。各筒の材質及び主要部寸法に
ついては、実施例4と同じであるが、内筒1及び中間筒
2は各々5分割の構造からなる図4に示す構造の加熱式
射出成形スリ−ブを作製し、実施例4と同じ鋳造条件で
100,000ショットの実使用試験を行い、使用後の内面の
観察と摩耗損量を測定し、鋳物の内部組織を観察した。
(Embodiment 6-Second Invention) FIG. 4 is a diagram for explaining another embodiment (Embodiment 6) of the second invention.
It is a typical sectional view showing the structure of the division type of the heating type injection molding sleeve for die casting. The material of each cylinder and the size of the main part are the same as in Example 4, but the inner cylinder 1 and the intermediate cylinder 2 are each divided into five parts to produce a heating injection molding sleeve having the structure shown in FIG. Under the same casting conditions as in Example 4,
An actual use test of 100,000 shots was performed, the inner surface after use was observed, the wear loss amount was measured, and the internal structure of the casting was observed.

【0102】この試験の結果、実施例4と同様、スリ−
ブ内筒の内面の観察では、偏摩耗及び浸食の形跡が認め
られず、摩耗損量も0.016mmであり、鋳物の内部組織
も極めて良好であり、品質面でも優れた鋳物が可能であ
った。これらのことから、鋳造時における各筒間の熱膨
張量の差からみて、ダイカストマシ−ンのプランジャ−
の運動する軸とスリ−ブ内面の軸との位置精度、姿勢精
度は、良好な状態に維持できる範囲であったと考えら
れ、また、スリ−ブ内の温度は、スリ−ブの中心軸につ
いて上下方向に軸対称な位置関係にある点の温度がほぼ
同じであり、熱膨張量の差によるスリ−ブ全体としての
反りが極めて少なくなる理想的な温度分布であったと考
えられる。
As a result of this test, the same as Example 4 was used.
Observation of the inner surface of the inner cylinder showed no evidence of uneven wear and erosion, the amount of wear loss was 0.016 mm, the internal structure of the casting was extremely good, and it was possible to produce castings with excellent quality. . From the above, from the viewpoint of the difference in the thermal expansion amount between the cylinders during casting, the plunger of the die casting machine is
It is considered that the positional accuracy and attitude accuracy between the moving axis of the robot and the axis of the sleeve inner surface were within the range in which the sleeve could be maintained in a good state, and the temperature inside the sleeve was about the center axis of the sleeve. It is considered that the temperatures at points having an axially symmetric positional relationship in the vertical direction are almost the same, and the warp of the sleeve as a whole due to the difference in the amount of thermal expansion is extremely small, which is an ideal temperature distribution.

【0103】更に、加熱ヒ−タ−7による加熱及び内筒
1と中間筒2との断熱効果による射出孔内の保温作用に
より溶湯の熱的損失が少ないため、溶湯の融点と比べて
比較的小さい過熱度でも鋳造が可能であることが確認さ
れた。以上のことにより、分割型構造においても実施例
4の一体型構造と同等の作用が得られることが確認され
た。
Further, the heat loss of the molten metal is small due to the heating by the heating heater 7 and the heat retaining effect in the injection hole due to the heat insulating effect of the inner cylinder 1 and the intermediate cylinder 2, so that it is relatively higher than the melting point of the molten metal. It was confirmed that casting is possible even with a small degree of superheat. From the above, it was confirmed that the same effect as that of the integrated structure of Example 4 was obtained even in the divided structure.

【0104】(比較例1−前記第1発明の実施例1に対
応する比較例)第1発明との比較のため、内筒及び外筒
からなり、各筒がSKD-61製である二重構造の射出成形用
スリーブの例を挙げる。内径が30mm、外径が70mmの
SKD-61製の内筒と、内径が70mm、外径が156mmのSKD
-61製の外筒とからなる二重構造の射出成形用スリーブ
を前記実施例1と同じダイカストマシーンに取付け、実
施例1と同一鋳造条件(前記表4参照)で20,000ショッ
トの実使用試験を行い、使用後のスリーブ内面の観察と
摩耗損量を測定し、鋳物の内部組織を観察した。
Comparative Example 1-Comparative Example Corresponding to Example 1 of the First Invention For comparison with the first invention, a double cylinder consisting of an inner cylinder and an outer cylinder, each cylinder made of SKD-61. An example of an injection molding sleeve having a structure will be given. 30 mm inner diameter and 70 mm outer diameter
Inner cylinder made of SKD-61 and SKD with inner diameter of 70 mm and outer diameter of 156 mm
A double-structured injection molding sleeve consisting of a -61 outer cylinder was attached to the same die-casting machine as in Example 1 above, and an actual use test of 20,000 shots was performed under the same casting conditions as Example 1 (see Table 4 above). After the operation, the inner surface of the sleeve was observed, the wear loss amount was measured, and the internal structure of the casting was observed.

【0105】この試験の結果、スリーブ内筒の内周面の
観察によれば、スリーブ内面に軸方向の傷跡が確認され
た。これは、スリーブ内における溶湯の温度低下で生じ
た高硬度のチル層がプランジャー駆動によりスリーブと
プランジャーの間ですり合わされたことに起因し、それ
によりスリーブ内面を傷つけたために生じたと考えられ
る。
As a result of this test, by observing the inner peripheral surface of the sleeve inner cylinder, a scar in the axial direction was confirmed on the inner surface of the sleeve. This is because the chill layer of high hardness generated by the temperature drop of the molten metal in the sleeve was rubbed between the sleeve and the plunger by the plunger drive, and it is thought that it was caused by the inner surface of the sleeve being damaged. .

【0106】また、スリーブ内面の摩耗損量は0.066m
mと大きかった。更に、鋳物の内部組織の観察によれ
ば、鋳肌付近において図10(B)−写真2に示す粗大初
晶Alと共晶Siの晶出面積割合が不連続に変化した二
層組織が認められ、さらに図10(C)−写真3に示す粗
大な初晶アルミニウムデンドライトアームスペーシング
からデンドライトの晶出時期を推定すると、微細な初晶
アルミニウムのデンドライト相とは全く異なり、溶湯が
鋳型に充填される以前にスリーブ内で晶出したものと考
えられる。
The wear loss on the inner surface of the sleeve is 0.066 m.
It was as large as m. Further, according to the observation of the internal structure of the casting, a two-layer structure in which the crystallized area ratio of coarse primary crystal Al and eutectic Si shown in FIG. Further, when the crystallization time of dendrite was estimated from the coarse primary crystal aluminum dendrite arm spacing shown in Fig. 10 (C) -Photo 3, the molten metal was filled into the mold, which was completely different from the fine primary crystal dendrite phase. It is thought that it crystallized in the sleeve before it started.

【0107】SKD-61製スリーブの場合、これら粗大な初
晶アルミニウムや破断チル層あるいは二層組織の混入に
より、強度低下等の鋳物の品質低下に影響を及ぼすこと
が確認された。更に、溶湯温度が615℃における鋳造の
場合、溶湯の溶着によるプランジャーの動作不良が起こ
った。
In the case of the SKD-61 sleeve, it was confirmed that the inclusion of these coarse primary crystal aluminum, the fractured chill layer or the two-layer structure has an influence on the quality deterioration of the casting such as the strength deterioration. Further, in the case of casting at a molten metal temperature of 615 ° C., a malfunction of the plunger occurred due to the welding of the molten metal.

【0108】これらの試験結果より、SKD-61製の二重構
造の射出成形スリーブでは、溶湯の温度を高くしないと
鋳造できないため、溶湯による浸食が大きかった。ま
た、プランジャーチップとスリーブ内面との摺動による
摩耗が大きく、その上断熱性が悪いため、鋳物の品質に
悪影響を及ぼす結果となった。
From these test results, the SKD-61 double-structured injection-molded sleeve could not be cast unless the temperature of the molten metal was raised, so that the corrosion by the molten metal was large. Further, the sliding of the plunger tip and the inner surface of the sleeve causes a large amount of wear and, in addition, the heat insulating property is poor, so that the quality of the casting is adversely affected.

【0109】[0109]

【発明の効果】本発明は、以上詳記したとおり、内筒、
中間筒、外筒の三重構造の溶湯射出成形用スリーブにお
いて、(A) 内筒として、高温においても耐摩耗性、耐食
性、耐熱性、耐熱衝撃性、断熱性、強度及び濡れ性に優
れた材料である「サイアロンセラミックス又は緻密質窒
化珪素セラミックス」を選定し、(B) 中間筒として、断
熱性、強度に優れ、しかも、熱膨張係数が内筒よりも大
きく、外筒よりも小さい値の材料「ジルコニア質セラミ
ックス」を選定し、(C) 外筒として、構造設計及び製造
が容易である材料「耐熱金属」を選定し、この(A)〜(C)
を組合わた点を特徴とする。
INDUSTRIAL APPLICABILITY As described in detail above, the present invention provides an inner cylinder,
(A) A material with excellent wear resistance, corrosion resistance, heat resistance, thermal shock resistance, heat insulation, strength, and wettability even at high temperatures as the (A) inner cylinder in the triple-structure melt injection molding sleeve of the middle cylinder and outer cylinder. "Sialon ceramics or dense silicon nitride ceramics" is selected, and (B) a material with excellent heat insulation and strength as an intermediate cylinder, and a coefficient of thermal expansion larger than that of the inner cylinder and smaller than that of the outer cylinder. "Zirconia-based ceramics" is selected, (C) As the outer cylinder, a material "heat-resistant metal" that is easy to design and manufacture is selected.
It is characterized by the combination of.

【0110】本発明は、上記(A)〜(C)の構成により、
(1) 高温溶融金属材料に対し耐食性、耐熱性、耐熱衝撃
性及び濡れ性に優れ、(2) 鋳造時のスリ−ブが高温状態
においても、構造強度に優れており、(3) プランジャ−
の運動軸とスリ−ブ内面の軸との位置精度、姿勢精度が
極めて良好な状態であり、(4) プランチャ−チップとス
リ−ブ内面との摺動に対する耐摩耗性にも優れ、(5) 耐
用期間が長く、しかも、(6) スリ−ブ射出孔内の断熱・
保温性に優れており、(7) 鋳造する金属材料の融点に比
べ比較的小さな過熱度でも鋳造でき、(8) 省エネルギ−
の観点からも有利であり、(9) 組織的、強度的に安定し
た鋳物を得ることができる、という優れた効果が生じ
る。
The present invention has the following constitutions (A) to (C).
(1) Excellent corrosion resistance, heat resistance, thermal shock resistance, and wettability with respect to high-temperature molten metal materials, (2) excellent structural strength even when the sleeve during casting is in a high temperature state, and (3) plunger
The position accuracy and attitude accuracy between the movement axis of the and the inner surface of the sleeve are extremely good, and (4) Excellent wear resistance against sliding between the planer tip and the inner surface of the sleeve. 5) Long service life, and (6) Insulation inside the sleeve injection hole
It has excellent heat retention, and (7) it can be cast even with a relatively low superheat compared to the melting point of the metal material to be cast, (8) energy saving
This is also advantageous from the viewpoint of, and (9) the excellent effect of being able to obtain a casting that is structurally and strength stable is produced.

【0111】また、中間筒が断熱性、強度に優れ、か
つ、適当な熱膨張係数である材料からなるため、(10)
各筒間の接合に関し、焼嵌め接合はもとより圧入、スキ
マばめ、鋳ぐるみ等が可能であり、焼嵌め接合する場合
においても焼嵌め代が小さくてよく、焼嵌めによる接触
応力に対する強度面でも問題なく、(11) 内筒及び中間
筒が一体型の場合でも分割型でも同等の効果が生じ、こ
の構造面での特徴は、スリ−ブを設計、製造する上で非
常に有利であり、(12) 汎用ダイカスト合金であるADC12
等だけでなく、アルミ・ハイシリコン材料や展伸材等の
ようなより高融点金属材料の鋳造にも適用が可能であ
り、(13) スリ−ブ孔内の保温性がよく、溶湯の高温安
定供給性に優れているため、低速充填法が可能であり、
溶湯中へのガスの巻込みを防ぐなどの効果を発揮させる
ことができ、(14) 2段加圧法や溶湯鍛造法向けの射出
スリーブ或いはシリンダーとしての適応にも保温法を生
かして利用することが十分可能である、などの効果が生
じる。
Further, since the intermediate cylinder is made of a material having excellent heat insulating properties and strength and an appropriate coefficient of thermal expansion, (10)
Regarding joints between cylinders, press-fitting, clearance fitting, cast gurney, etc. are possible as well as shrink-fitting, and even when shrink-fitting, the shrink-fitting margin may be small, and in terms of strength against contact stress due to shrink-fitting. (11) Even if the inner cylinder and the intermediate cylinder are integrated type or divided type, the same effect occurs, and this structural feature is very advantageous in designing and manufacturing the sleeve, (12) ADC12, which is a general-purpose die casting alloy
In addition to the above, it can be applied to casting of higher melting point metal materials such as aluminum / high silicon materials and wrought materials, etc. (13) Good heat retention in sleeve holes, high temperature of molten metal Since it has excellent stability, low-speed filling method is possible,
It is possible to exert effects such as preventing gas from being entrained in the molten metal, and (14) Utilizing the heat retaining method for the application as an injection sleeve or cylinder for the two-stage pressurizing method and the molten metal forging method. Is sufficiently possible, and other effects occur.

【0112】その上、第2発明では、前記(A)〜(C)の構
成に加えて、さらに(D) 内筒の内部もしくは外周部又は
中間筒の内部、内周部もしくは外周部に加熱ヒーターを
装着する点、を特徴とし、これにより前記(1)〜(14)の
効果に加え、さらに(15) 加熱ヒ−タ−による加熱によ
って強制的にスリ−ブを理想的な温度分布にすることが
可能であり、このため、(16) 熱膨張量の差によるスリ
−ブの反りが極めて少なく、(17) 鋳造する金属材料の
融点に比べて、より小さな過熱度でも鋳造することがで
き、省エネルギ−の観点からより一層有利であり、(18)
より高融点金属材料の鋳造にも適用可能であり、(19)
従って、溶湯輸送用構造システムとしても利用可能であ
る、という顕著な効果が生じる。
Moreover, in the second invention, in addition to the constitutions of (A) to (C) described above, (D) heating the inside or the outer peripheral portion of the inner cylinder or the inside, the inner peripheral portion or the outer peripheral portion of the intermediate cylinder. This is characterized by the fact that a heater is attached, which allows the sleeve to be forced into an ideal temperature distribution by (15) heating with a heating heater in addition to the effects of (1) to (14) above. Therefore, (16) the warp of the sleeve due to the difference in the amount of thermal expansion is extremely small, and (17) it can be cast with a smaller superheat than the melting point of the metal material to be cast. It is possible and more advantageous from the viewpoint of energy saving, (18)
It is also applicable to casting of higher melting point metal materials, (19)
Therefore, there is a remarkable effect that it can be used as a structural system for transporting molten metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1発明の一実施例であるダイカスト用射出成
形スリ−ブの一体型の構造を示す模式的断面図
FIG. 1 is a schematic cross-sectional view showing an integrated structure of an injection molding sleeve for die casting which is an embodiment of the first invention.

【図2】第2発明の一実施例であるダイカスト用加熱式
射出成形スリ−ブの一体型の構造を示す模式的断面図で
あり、(A)は(B)のB−B線断面図、(B)は
(A)のA−A線断面図
FIG. 2 is a schematic cross-sectional view showing a structure of an integral type of a heating type injection molding sleeve for die casting which is an embodiment of the second invention, wherein (A) is a cross-sectional view taken along line BB of (B). , (B) is a sectional view taken along line AA of (A).

【図3】第1発明の他の実施例であるダイカスト用射出
成形スリ−ブの分割型の構造を示す模式的断面図
FIG. 3 is a schematic sectional view showing the structure of a split mold of an injection molding sleeve for die casting which is another embodiment of the first invention.

【図4】第2発明の他の実施例であるダイカスト用加熱
式射出成形スリ−ブの分割型の構造を示す模式的断面図
FIG. 4 is a schematic cross-sectional view showing the structure of a split mold of a heating type injection molding sleeve for die casting which is another embodiment of the second invention.

【図5】内筒に用いる各種材料の温度と硬度の関係を示
す特性図
FIG. 5 is a characteristic diagram showing the relationship between temperature and hardness of various materials used for the inner cylinder.

【図6】内筒に用いる各種材料の温度と縦弾性係数の関
係を示す特性図
FIG. 6 is a characteristic diagram showing the relationship between temperature and longitudinal elastic modulus of various materials used for the inner cylinder.

【図7】内筒に用いる各種材料のラップ時間と摩耗量と
の関係を示す摩耗比較試験図
FIG. 7 is a wear comparison test diagram showing the relationship between the lap time and wear amount of various materials used for the inner cylinder.

【図8】各種材料の温度と抗折強度の関係を示す特性図FIG. 8 is a characteristic diagram showing the relationship between temperature and bending strength of various materials.

【図9】各種材料に対する内筒の温度変化状況を示す図FIG. 9 is a diagram showing a temperature change state of the inner cylinder with respect to various materials.

【図10】第1発明の実施例1及び従来例による鋳物製
品の内部組織を示す顕微鏡写真
FIG. 10 is a micrograph showing the internal structure of a cast product according to Example 1 of the first invention and a conventional example.

【図11】第2発明の実施例4による鋳物製品の内部組
織を示す顕微鏡写真
FIG. 11 is a micrograph showing the internal structure of a cast product according to Example 4 of the second invention.

【符号の説明】[Explanation of symbols]

1 内筒 2 中間筒 3 外筒 4 プランジャ−チップ 5 取付け板 6 給湯口 7 加熱ヒ−タ− 1 Inner Cylinder 2 Intermediate Cylinder 3 Outer Cylinder 4 Plunger Tip 5 Mounting Plate 6 Hot Water Supply Port 7 Heating Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永塩 久翁 岡山県備前市東片上390 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hisashi Nagashio 390 Higashikatagami, Bizen City, Okayama Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 サイアロンセラミックス製又は緻密質窒
化珪素セラミックス製内筒、ジルコニア質セラミックス
製中間筒及び耐熱金属製外筒の三重構造からなることを
特徴とする溶湯射出成形用スリーブ。
1. A molten metal injection molding sleeve having a triple structure of an inner cylinder made of sialon ceramics or dense silicon nitride ceramics, an intermediate cylinder made of zirconia ceramics, and an outer cylinder made of heat-resistant metal.
【請求項2】 サイアロンセラミックス製又は緻密質窒
化珪素セラミックス製内筒、ジルコニア質セラミックス
製中間筒及び耐熱金属製外筒の三重構造からなり、内筒
の内部もしくは外周部又は中間筒の内部、内周部もしく
は外周部に加熱ヒーターを装着してなることを特徴とす
る溶湯射出成形用スリーブ。
2. A triple structure of an inner cylinder made of sialon ceramics or dense silicon nitride ceramics, an intermediate cylinder made of zirconia ceramics and an outer cylinder made of heat-resistant metal. A molten metal injection molding sleeve, characterized in that a heater is attached to a peripheral portion or an outer peripheral portion.
【請求項3】 内筒及び中間筒が各々一体型であること
を特徴とする請求項1又は2記載の溶湯射出成形用スリ
ーブ。
3. The melt injection molding sleeve according to claim 1 or 2, wherein the inner cylinder and the intermediate cylinder are integrally formed.
【請求項4】 内筒及び中間筒が各々軸方向に対し垂直
方向あるいは平行に分割された型であることを特徴とす
る請求項1又は2記載の溶湯射出成形用スリーブ。
4. The molten metal injection molding sleeve according to claim 1 or 2, wherein the inner cylinder and the intermediate cylinder are molds which are divided in a direction perpendicular to or parallel to the axial direction.
【請求項5】 内筒及び中間筒のうちどちらか一方が一
体型であり、他方が軸方向に対し垂直方向あるいは平行
に分割された型であることを特徴とする請求項1又は2
記載の溶湯射出成形用スリーブ。
5. The one of the inner cylinder and the intermediate cylinder is an integral type, and the other is a type divided into a direction perpendicular to the axial direction or parallel to the axial direction.
The molten metal injection molding sleeve described.
【請求項6】 加熱ヒーターが軸方向に対し平行又は直
角あるいは螺旋方向に装着してなることを特徴とする請
求項2記載の溶湯射出成形用スリーブ。
6. The molten metal injection molding sleeve according to claim 2, wherein the heater is mounted in parallel, at a right angle, or in a spiral direction with respect to the axial direction.
【請求項7】 加熱ヒーターにより単独あるいは分割ゾ
ーン別に湯温制御する特徴とする請求項2記載の溶湯射
出成形用スリーブ。
7. The melt injection molding sleeve according to claim 2, wherein the heating temperature is controlled by a heating heater alone or in each divided zone.
JP4259049A 1992-09-02 1992-09-02 Sleeve for injection molding of molten metal Pending JPH0679426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259049A JPH0679426A (en) 1992-09-02 1992-09-02 Sleeve for injection molding of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4259049A JPH0679426A (en) 1992-09-02 1992-09-02 Sleeve for injection molding of molten metal

Publications (1)

Publication Number Publication Date
JPH0679426A true JPH0679426A (en) 1994-03-22

Family

ID=17328626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259049A Pending JPH0679426A (en) 1992-09-02 1992-09-02 Sleeve for injection molding of molten metal

Country Status (1)

Country Link
JP (1) JPH0679426A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315037A (en) * 2005-05-12 2006-11-24 Kyocera Corp Sleeve for die-casting
JP2010120072A (en) * 2008-11-21 2010-06-03 Hitachi Metals Tool Steel Ltd Die casting device
US9069338B2 (en) 2009-06-22 2015-06-30 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US9066643B2 (en) 2006-12-12 2015-06-30 G.B.D. Corp. Surface cleaning apparatus
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9301666B2 (en) 2006-12-12 2016-04-05 Omachron Intellectual Property Inc. Surface cleaning apparatus
US9348392B2 (en) 2009-06-22 2016-05-24 Johnson Controls Technology Corporation Systems and methods for measuring and verifying energy savings in buildings
US9429927B2 (en) 2009-06-22 2016-08-30 Johnson Controls Technology Company Smart building manager
US9568910B2 (en) 2009-06-22 2017-02-14 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US9591952B2 (en) 2009-03-11 2017-03-14 Omachron Intellectual Property Inc. Hand vacuum cleaner with removable dirt chamber
US9639413B2 (en) 2009-06-22 2017-05-02 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US9753455B2 (en) 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
CN107159866A (en) * 2016-03-08 2017-09-15 东芝机械株式会社 Feed pipe, feed pipe assembly and the non-ferrous metal foundries system of non-ferrous alloy liquation
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
US9826868B2 (en) 2009-03-13 2017-11-28 Omachron Intellectual Property Inc. Portable surface cleaning apparatus
US10325331B2 (en) 2012-05-31 2019-06-18 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US11751733B2 (en) 2007-08-29 2023-09-12 Omachron Intellectual Property Inc. Portable surface cleaning apparatus

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315037A (en) * 2005-05-12 2006-11-24 Kyocera Corp Sleeve for die-casting
US9301666B2 (en) 2006-12-12 2016-04-05 Omachron Intellectual Property Inc. Surface cleaning apparatus
US9066643B2 (en) 2006-12-12 2015-06-30 G.B.D. Corp. Surface cleaning apparatus
US9078549B2 (en) 2006-12-12 2015-07-14 G.B.D. Corp. Surface cleaning apparatus
US9084522B2 (en) 2006-12-12 2015-07-21 G.B.D. Corp. Surface cleaning apparatus
US9084524B2 (en) 2006-12-12 2015-07-21 G.B.D. Corp. Surface cleaning apparatus
US9084523B2 (en) 2006-12-12 2015-07-21 G.B.D. Corp. Surface cleaning apparatus
US9095245B2 (en) 2006-12-12 2015-08-04 G.B.D. Corp. Surface cleaning apparatus
US9119514B2 (en) 2006-12-12 2015-09-01 G.B.D. Corp. Surface cleaning apparatus
US11751733B2 (en) 2007-08-29 2023-09-12 Omachron Intellectual Property Inc. Portable surface cleaning apparatus
JP2010120072A (en) * 2008-11-21 2010-06-03 Hitachi Metals Tool Steel Ltd Die casting device
US10105023B2 (en) 2009-03-11 2018-10-23 Omachron Intellectual Property Inc. Hand vacuum cleaner
US9591952B2 (en) 2009-03-11 2017-03-14 Omachron Intellectual Property Inc. Hand vacuum cleaner with removable dirt chamber
US9826868B2 (en) 2009-03-13 2017-11-28 Omachron Intellectual Property Inc. Portable surface cleaning apparatus
US10080473B2 (en) 2009-03-13 2018-09-25 Omachron Intellectual Property Inc. Hand vacuum cleaner
US11416017B2 (en) 2009-06-22 2022-08-16 Johnson Controls Technology Company Smart building manager
US9348392B2 (en) 2009-06-22 2016-05-24 Johnson Controls Technology Corporation Systems and methods for measuring and verifying energy savings in buildings
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US10261485B2 (en) 2009-06-22 2019-04-16 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9753455B2 (en) 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
US9568910B2 (en) 2009-06-22 2017-02-14 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US11927977B2 (en) 2009-06-22 2024-03-12 Johnson Controls Technology Company Smart building manager
US9429927B2 (en) 2009-06-22 2016-08-30 Johnson Controls Technology Company Smart building manager
US9069338B2 (en) 2009-06-22 2015-06-30 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US9575475B2 (en) 2009-06-22 2017-02-21 Johnson Controls Technology Company Systems and methods for generating an energy usage model for a building
US9639413B2 (en) 2009-06-22 2017-05-02 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US10901446B2 (en) 2009-06-22 2021-01-26 Johnson Controls Technology Company Smart building manager
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US10325331B2 (en) 2012-05-31 2019-06-18 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
CN107159866A (en) * 2016-03-08 2017-09-15 东芝机械株式会社 Feed pipe, feed pipe assembly and the non-ferrous metal foundries system of non-ferrous alloy liquation

Similar Documents

Publication Publication Date Title
JPH0679426A (en) Sleeve for injection molding of molten metal
JP6281672B2 (en) Die-casting sleeve and manufacturing method thereof
JPH05261507A (en) Sleeve for die casting machine
US20060213634A1 (en) Heat insulation plunger sleeve for die casting machine
WO2021176849A1 (en) Installation structure for die casting sleeve, and die casting sleeve
US5010946A (en) Die casting cylinder
Birol Ni-based superalloy as a potential tool material for thixoforming of steels
JP2019177416A (en) Sleeve for die-casting
JP2002283029A (en) Sleeve for die casting
JPS61103658A (en) Injection cylinder for die casting machine
JP7141366B2 (en) sleeve for die casting
JPH01104453A (en) Cylinder for die casting
JP2005088017A (en) Composite sleeve for die casting machine
JP2005088016A (en) Composite sleeve for die casting machine
JPH07232255A (en) Sleeve for die casting machine having long service life
JPH0671406A (en) Injection sleeve for die casting and method for casting aluminum or aluminum alloy member
JPH0747169Y2 (en) Die casting sleeve
JP2017024020A (en) Sleeve for die casting
KR960015802B1 (en) Jointing method for different kind metal of cylinder
JP2001207247A (en) Immersion member for hot-dip metal coating bath
JP2000317602A (en) Sleeve for die casting
JPH077010Y2 (en) Die casting sleeve
JP2002248556A (en) Melting tank for metal casting machine
JPH04224066A (en) Sleeve for die-casting machine
JP2020019055A (en) Sleeve for die casting