JPH0679421A - Horizontal continuous casting method for high alloy steel utilizing solidified analysis - Google Patents

Horizontal continuous casting method for high alloy steel utilizing solidified analysis

Info

Publication number
JPH0679421A
JPH0679421A JP23547592A JP23547592A JPH0679421A JP H0679421 A JPH0679421 A JP H0679421A JP 23547592 A JP23547592 A JP 23547592A JP 23547592 A JP23547592 A JP 23547592A JP H0679421 A JPH0679421 A JP H0679421A
Authority
JP
Japan
Prior art keywords
mold
shape
tundish
molten steel
shape model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23547592A
Other languages
Japanese (ja)
Inventor
Kimio Kubo
公雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23547592A priority Critical patent/JPH0679421A/en
Publication of JPH0679421A publication Critical patent/JPH0679421A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high alloy steel having high quality by executing highly precise solidification analysis in consideration of the solidified process of a cast billet draw out from a mold and stably casting the good cast billet having little generation of macro-segregation zone. CONSTITUTION:The molten steel 2 stored in a tundish 1 is drawn out as the cast billet by a drawing device through a mold 6 having a brake ring 4 and a water-cooled part 5 arranged in the opening at the lower part of the tundish 1. The molten steel temp., mold shape, tundish shape, brake ring shape and drawing speed are inputted as the conditions. By executing the highly precise solidification analysis in the consideration of the solidified process of the cast billet drawn from the mold, the surface shell forming process and the macro- segregation zone are estimated and the good cast billet having little development of the macro-segregation zone is stably cast. By this method, the optimum cast condition can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水平連続鋳造方法に関
し、特に鋳型から引き出される鋳片の凝固過程を考慮し
て精度のよい凝固解析を行い、マクロ偏析帯発生の少な
い良好な鋳片を安定して鋳造するための、凝固解析を利
用した高合金鋼の水平連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal continuous casting method, and in particular, an accurate solidification analysis is performed in consideration of the solidification process of a slab drawn out from a mold to stabilize a good slab with few macrosegregation zones. The present invention relates to a horizontal continuous casting method for high alloy steel utilizing solidification analysis for continuous casting.

【0002】[0002]

【従来の技術】近年連続鋳造分野において、従来の垂直
または湾曲型の連続鋳造方法に代り、図3に示す、タン
ディッシュ(溶鋼だめ)1下部開口部3から溶融金属
(溶鋼2)をブレークリング4を通して鋳型6に供給
し、ここで冷却して少なくとも外周部を凝固させた鋳片
8にし、鋳型の下流側に設けた引き抜き装置7で連続的
に鋳片8を引き抜く、水平連続鋳造方法が普及してきて
いる。
2. Description of the Related Art In recent years, in the field of continuous casting, instead of the conventional vertical or curved type continuous casting method, a molten metal (molten steel 2) is broken from a tundish (molten steel reservoir) 1 lower opening 3 shown in FIG. 4 is supplied to the mold 6 and cooled here to form a slab 8 which is solidified at least in the outer peripheral portion, and the slab 8 is continuously drawn by a drawing device 7 provided on the downstream side of the mold. It is becoming popular.

【0003】この水平連続鋳造方法に用いる鋳型6は、
熱伝導性に優れた材料を用いて必要とする鋳片8の断面
形状・寸法にした筒状体に形成し、その外周壁に冷却部
5を設けて冷却し、筒状体の中空部に供給される溶鋼2
の熱量を冷却水に奪わせて冷却、凝固させて鋳片8とし
ている。
The mold 6 used in this horizontal continuous casting method is
The slab 8 is formed into a tubular body having the required cross-sectional shape and dimensions using a material having excellent thermal conductivity, and a cooling unit 5 is provided on the outer peripheral wall of the tubular body to cool the slab 8 in the hollow portion of the tubular body. Molten steel supplied 2
The amount of heat is taken by the cooling water to be cooled and solidified to form the slab 8.

【0004】この水平連続鋳造方法は、垂直または湾曲
型の連続鋳造方法に比較して、装置の小型化が図れるこ
と、およびより製品に近い形状の鋳片が得られるので鋳
造工程以降の加工コストが安価で済む等、生産性が高い
ため、かなりの鉄および非鉄合金の製造に広く使用され
ている。
This horizontal continuous casting method can reduce the size of the apparatus and can obtain a slab having a shape closer to that of a product, as compared with the vertical or curved continuous casting method, so that the processing cost after the casting step can be reduced. It is widely used for the production of considerable ferrous and non-ferrous alloys due to its high productivity such as low cost.

【0005】水平連続鋳造によるシミュレート方法とし
て、特開昭62−282752号公報には、鋳鉄の鋳造
断面形状に応じた同一寸法の試験片鋳型を用いて、鋳型
に鋳鉄容器を鋳込んだ後ブレークアウトしない試験鋳型
の離型時間を求め、この条件下で[Si(珪素)/C
(炭素)]と鋳片のコーナーアールを変化させて鋳型を
離型し、複数の試験データからモデル表を作り、そのモ
デル表に基づいて実操業時の目標成分値およびチルの発
生しないコーナーアール値を推定して鋳鉄の最適設計値
を求める開示がある。
As a method of simulating horizontal continuous casting, Japanese Patent Laid-Open No. 62-282752 discloses a test piece mold having the same size according to the casting cross-sectional shape of cast iron, and after casting a cast iron container into the mold. The release time of the test mold that does not break out is determined, and under this condition, [Si (silicon) / C
(Carbon)] and the corner radius of the slab are changed, the mold is released, a model table is created from multiple test data, and the target component value in actual operation and the corner radius where chill does not occur based on the model table. There is a disclosure that estimates the value and obtains the optimum design value of cast iron.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記特
開昭62−282752号公報は、鋳鉄の目標成分値お
よびチルの発生しないコーナーアール値を推定して鋳鉄
の最適設計値を求めるものであり、高合金鋼には、その
まま適用することはできない。
However, Japanese Patent Laid-Open No. 62-282752 discloses the optimum design value of cast iron by estimating the target component value of cast iron and the corner radius value where chill does not occur. It cannot be directly applied to high alloy steel.

【0007】このほか、通常の凝固解析については多く
の報告、開示がある(例えば、大中逸雄著「コンピュー
タ伝熱・凝固解析入門(1985年刊)」、および特開
平3−285737号公報)。しかしながら、水平連続
鋳造方法においては、溶鋼を引き抜くことによって、溶
鋼の部分の座標位置が時間とともに引き抜き方向に移動
していくので、上記一般の凝固解析は適用することがで
きない。
In addition to this, there are many reports and disclosures about ordinary solidification analysis (for example, "Introduction to Computer Heat Transfer / Solidification Analysis (1985)" by Itsuo Ohnaka, and Japanese Patent Laid-Open No. 3-285737). However, in the horizontal continuous casting method, when the molten steel is drawn, the coordinate position of the molten steel portion moves in the drawing direction with time, and therefore the above general solidification analysis cannot be applied.

【0008】高合金鋼の水平連続鋳造方法において、凝
固時の固液共存範囲が広いためにマッシイ凝固形態をと
り、濃化液相のデンドライト間流動によって、溶鋼が鋳
片に凝固する際、鋳片の表面にマクロ偏析帯が発生す
る。そして、このマクロ偏析帯を起点にしてブレークア
ウトが発生しやすく、安定した操業が困難であった。ま
た、マクロ偏析帯を鋳造後に除去するために、鋳片の表
面あるいは鋳片を圧延加工した後の素材の表面を一定量
面削りしなければならず、歩留まり低下の一因となって
いた。
In a horizontal continuous casting method for high alloy steel, a massey solidification morphology is adopted due to a wide solid-liquid coexistence range during solidification, and when molten steel solidifies into a slab due to interdendritic flow of a concentrated liquid phase, A macrosegregation zone occurs on the surface of one piece. Then, a breakout easily occurs from this macrosegregation zone as a starting point, and stable operation is difficult. Further, in order to remove the macrosegregation zone after casting, the surface of the slab or the surface of the raw material after the slab has been rolled must be chamfered by a certain amount, which has been a cause of a decrease in yield.

【0009】本発明は、水平連続鋳造方法において、溶
鋼温度、鋳型形状、タンディッシュ形状、ブレークリン
グ形状、引き抜き速度を条件として入力し、鋳型から引
き出される鋳片の凝固過程を考慮した精度のよい凝固解
析を行って表皮形成過程とマクロ偏析帯を予測し、マク
ロ偏析帯の発生を少ない良好な鋳片を安定して鋳造する
高合金鋼の水平連続鋳造方法を提供することを目的とす
る。
According to the present invention, in the horizontal continuous casting method, the molten steel temperature, the mold shape, the tundish shape, the break ring shape and the drawing speed are input as conditions, and the solidification process of the slab drawn from the mold is taken into consideration with good accuracy. It is an object of the present invention to provide a horizontal continuous casting method for high alloy steel, in which a solidification analysis is performed to predict a skin formation process and a macrosegregation zone, and a good slab with less generation of the macrosegregation zone is stably cast.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
本発明の、凝固解析を利用した高合金鋼の水平連続鋳造
方法は、タンディッシュ内に貯留する溶鋼を、該タンデ
ィッシュの下部開口部に設けたブレークリングおよび水
冷部を持つ鋳型を通し、引き抜き装置により鋳片を引き
抜くようにしてなる水平連続鋳造方法において、(1)
前記溶鋼、タンディッシュ、ブレークリング、鋳型、
水冷部および鋳片を要素に分割した形状モデルとして表
し、(2) 前記形状モデルに前記要素の物性タイプを
入力し、(3) 前記形状モデルの境界条件を入力し、
(4) 前記形状モデルについて、まず温度場の計算を
行い、次に凝固量を計算し、(5) 前記形状モデルを
引き抜く際の熱移動と物質移動を計算し、(6) ブレ
ークリングと鋳型間のわき出し領域内への合金元素の移
動計算を行い、(7) 前記形状モデルの温度分布およ
び凝固層の発生が定常状態になるまで上記(4)から
(6)まで計算を繰り返し、(8) 鋳物部分のマクロ
偏析帯が最小になるまで計算を行い、マクロ偏析帯の発
生が少ない溶鋼温度、鋳型形状、タンディッシュ形状、
ブレークリング形状および引き抜き速度の鋳造条件を得
ることを特徴とする。
In order to solve the above-mentioned problems, a horizontal continuous casting method for high alloy steel utilizing solidification analysis of the present invention is a method for melting molten steel stored in a tundish to a lower opening of the tundish. (1) in a horizontal continuous casting method in which a mold having a break ring and a water-cooling part provided in
The molten steel, tundish, break ring, mold,
The water-cooled portion and the slab are expressed as a shape model divided into elements, (2) the physical property type of the element is input to the shape model, (3) the boundary condition of the shape model is input,
(4) With respect to the shape model, first the temperature field is calculated, then the solidification amount is calculated, and (5) the heat transfer and the mass transfer when the shape model is extracted are calculated, and (6) the break ring and the mold. The calculation of the movement of the alloying element into the void area is performed, and (7) the calculation is repeated from the above (4) to (6) until the temperature distribution of the shape model and the generation of the solidified layer reach a steady state, 8) The calculation is performed until the macrosegregation zone of the casting is minimized, and the molten steel temperature, the mold shape, the tundish shape, in which the macrosegregation zone is less generated,
It is characterized in that casting conditions such as break ring shape and drawing speed are obtained.

【0011】更に、本発明を図1、図2、図3および図
4に基づき詳細に説明する。図1は、本発明の凝固解析
を利用した高合金鋼の水平連続鋳造方法のステップを示
し、図2は、わき出し領域についての溶質および熱移動
計算のフローチャートを示し、図3は前述の通り、水平
連続鋳造方法の概略図であり、そして、図4は、鋳型6
まわりの拡大図を示す。
Further, the present invention will be described in detail with reference to FIGS. 1, 2, 3 and 4. FIG. 1 shows steps of a horizontal continuous casting method for high alloy steel utilizing solidification analysis of the present invention, FIG. 2 shows a flow chart of solute and heat transfer calculation for a bare region, and FIG. FIG. 4 is a schematic view of a horizontal continuous casting method, and FIG.
An enlarged view of the surroundings is shown.

【0012】図3、図4において、タンディッシュ1内
に貯留する溶鋼2を、このタンディッシュ1の下部開口
部3に設けたブレークリング4および水冷部5を持つ鋳
型6を通し、引き抜き装置7により鋳片8を引き抜くよ
うにしてなる水平連続鋳造に基づき、各凝固解析のステ
ップを詳細に説明する。
In FIGS. 3 and 4, the molten steel 2 stored in the tundish 1 is passed through a mold 6 having a break ring 4 and a water cooling part 5 provided in a lower opening 3 of the tundish 1, and a drawing device 7 is provided. Each solidification analysis step will be described in detail based on horizontal continuous casting in which the slab 8 is pulled out by.

【0013】(1)形状モデルの入力 まず前記、溶鋼2、タンディッシュ1、ブレークリング
4、鋳型6、水冷部5および鋳片8を要素に分割した形
状モデルとして表す。
(1) Input of Shape Model First, the molten steel 2, the tundish 1, the break ring 4, the mold 6, the water cooling section 5 and the cast piece 8 are expressed as a shape model divided into elements.

【0014】(2)要素物性タイプの入力 次に、前記形状モデルについて、前記要素の物性タイプ
を入力する。
(2) Input of physical property type of element Next, the physical property type of the element is input for the shape model.

【0015】(3)境界条件の入力 次に、前記形状モデルについて、前記要素の境界条件を
入力する。
(3) Input of Boundary Conditions Next, the boundary conditions of the elements of the shape model are input.

【0016】(4)温度場・凝固潜熱計算 次に、前記形状モデルについて、温度場の計算を行う。
次に、凝固潜熱量を計算する。
(4) Calculation of temperature field / solidification latent heat Next, the temperature field of the shape model is calculated.
Next, the latent heat of solidification is calculated.

【0017】(5)引き抜きによる移動計算 次に、前記形状モデルを引き抜く際の熱移動と物質移動
を計算する。
(5) Calculation of Movement by Extraction Next, heat transfer and mass transfer when extracting the shape model will be calculated.

【0018】(6)わき出し領域内への溶質および熱移
動計算 図4において、鋳片8の引き抜きに伴い、ブレークリン
グ4と鋳片6間に、わき出し領域9が発生する。ここ
で、このわき出し領域9への溶質および熱移動計算を行
う。わき出し領域9内にある要素については以下の式1
及至式3によって液相組成と温度を計算する。そして、
溶鋼の凝固過程を解析し、凝固層生成とマクロ偏析帯の
生成を予測する。
(6) Calculation of solute and heat transfer into the bare area In FIG. 4, a bare area 9 is generated between the break ring 4 and the bill 6 as the cast piece 8 is pulled out. Here, the solute and heat transfer calculation to this bare region 9 are performed. For the elements in the exposed area 9, the following equation 1 is used.
The liquid phase composition and the temperature are calculated according to Equation 3. And
Analyzing the solidification process of molten steel and predicting the formation of solidification layer and macrosegregation zone.

【0019】[0019]

【数1】fl(i)=fl(i)B+fl(m) ここで、 fl :液相率 fl(i)B :i要素の前回の液相率 i :計算中の要素No m :周囲の要素で液相率が最も大きい要素 なお、式1中の変数の右側に付けた括弧内の記号はその
要素Noを表し、例えば、fl(i)は、i要素のfl
値を示す。
F l (i) = f l (i) B + f l (m) where f l : liquid phase ratio f l (i) B : previous liquid phase ratio of i element i: in calculation Element No m: Element having the largest liquid phase ratio among the surrounding elements The symbol in parentheses on the right side of the variable in Formula 1 represents the element No., for example, f l (i) is the i element The value of f l is shown.

【0020】[0020]

【数2】 Cl(i)= {Cl(i)B×fl(i)B +Cl(m)×fl(m)}/fl(i) ここで、 Cl:合金組成 fl(i)B :i要素の前回の液相率 Cl(i)B:i要素の前回の合金組成## EQU2 ## C l (i) = {C l (i) B × f l (i) B + C l (m) × f l (m)} / f l (i) where C l : alloy composition f l (i) B : previous liquid phase ratio of i element C l (i) B : previous alloy composition of i element

【0021】[0021]

【数3】 Tl(i)= {Tl(i)×fl(i)B +Tl(m)×fl(m)}/fl(i) ここで、 Cl:合金組成 fl(i)B :i要素の前回の温度T l (i) = {T l (i) × f l (i) B + T l (m) × f l (m)} / f l (i) where C l : alloy composition f l (i) B : previous temperature of i element

【0022】図2の、わき出し領域についての溶質およ
び熱移動計算のフローチャートに示すように、要素の液
相率が1になるまで繰り返し計算を行う。
As shown in the flow chart of solute and heat transfer calculation for the bare region in FIG. 2, the calculation is repeated until the liquid phase ratio of the element becomes 1.

【0023】次に、ブレークリング4と鋳型6間のわき
出し領域9内への合金元素の移動計算を行う。
Next, the movement calculation of the alloy element into the exposed region 9 between the break ring 4 and the mold 6 is performed.

【0024】(7)定常状態の計算 次に、前記形状モデルの温度分布および凝固層の発生が
定常状態になるまで上記(4)から(6)まで計算を繰
り返す。
(7) Calculation of Steady State Next, the above calculations (4) to (6) are repeated until the temperature distribution of the shape model and the generation of the solidified layer reach the steady state.

【0025】(8)鋳物部分のマクロ偏析帯が最小にな
るまで計算 以上、鋳物部分のマクロ偏析帯が最小になるまで計算を
繰り返し、マクロ偏析帯の発生が少ない溶鋼温度、鋳型
形状、タンディッシュ形状、ブレークリング形状および
引き抜き速度の鋳造条件を得る。
(8) Calculation until the macro segregation zone of the casting is minimized The above calculation is repeated until the macro segregation zone of the casting is minimized, and the molten steel temperature, mold shape, and tundish in which the macro segregation zone is less likely to occur Obtain casting conditions of shape, break ring shape and drawing speed.

【0026】以上(1)から(8)のステップにより、
溶鋼温度、鋳型形状、タンディッシュ形状、ブレークリ
ング形状、引き抜き速度を変化させて凝固解析を行い表
皮形成過程とマクロ偏析を予測して最適条件を決定す
る。
By the steps (1) to (8) above,
The optimum conditions are determined by predicting the skin formation process and macrosegregation by performing solidification analysis by changing the molten steel temperature, mold shape, tundish shape, break ring shape, and drawing speed.

【0027】[0027]

【実施例】以下、本発明の凝固解析を利用した高合金鋼
の水平連続鋳造方法を説明する。図1に示す水平連続鋳
造方法で、図5に示す(a)、(b)、(c)3種類の
形状のブレークリング4を用いた。実験に使用した高合
金鋼はSKH3相当合金で、その化学成分を表1に示
す。
EXAMPLES A horizontal continuous casting method for high alloy steel utilizing the solidification analysis of the present invention will be described below. In the horizontal continuous casting method shown in FIG. 1, the break ring 4 having three types of shapes (a), (b) and (c) shown in FIG. 5 was used. The high alloy steel used in the experiment is an alloy corresponding to SKH3, and its chemical composition is shown in Table 1.

【0028】[0028]

【表1】 化学成分(重量%) Si Mn Cr Co Fe 0.82 0.30 0.30 0.01 0.01 4.0 5.0 18.2 1.05 残部 [Table 1] Chemical composition (% by weight) C Si Mn P S Cr Co W V Fe 0.82 0.30 0.30 0.01 0.01 4.0 5.0 18.2 1.05 Remainder

【0029】次に、解析に用いた要素について、その材
料の熱物性タイプを表2に示す。
Next, with respect to the elements used in the analysis, Table 2 shows the thermophysical property types of the materials.

【表2】 要素の材料の熱物性タイプ 熱伝導率 比熱 密度 要素 材料 (W/m・K) (J/kg・K) (g/cm3) 溶鋼および鋳片 SKH3 42 590 7.7 鋳型 銅金型 340 420 8.5 フ゛レークリンク゛ 窒化ほう素 20 840 1.7 タンテ゛ィッシュ 耐火材 3 840 2.8 TABLE 2 Thermal Properties type thermal conductivity of the elements of the material specific heat density element material (W / m · K) ( J / kg · K) (g / cm 3) of molten steel and the cast slab SKH3 42 590 7.7 template copper mold 340 420 8.5 Break Link Boron Nitride 20 840 1.7 Tundish Refractory 3 840 2.8

【0030】そして、解析に用いた各材料間の熱伝達率
を表3に示す。
Table 3 shows the heat transfer coefficient between the materials used in the analysis.

【表3】 要素間 熱伝達される材料 熱伝達率(W/m2・K) 鋳片〜鋳型 SKH3〜銅金型 20000 溶鋼〜フ゛レークリンク゛ SKH3〜フ゛レークリンク゛ 20000 溶鋼〜タンテ゛ィッシュ SKH3〜耐火材 20000 水冷部〜鋳型 水 〜銅金型 40000 タンテ゛ィッシュ〜雰囲気 耐火材〜大気 10 TABLE 3 Element between materials heat transfer coefficient that is heat transfer (W / m 2 · K) slab-mold SKH3~ copper mold 20000 molten steel-break link Bu SKH3~ break links Bu 20000 molten steel-Thante Bu Isshu SKH3~ refractories 20000 Water cooling part ~ Mold water ~ Copper mold 40,000 Tundish ~ Atmosphere Refractory ~ Atmosphere 10

【0031】そして、解析に用いたその他の計算条件を
表4に示す。
Table 4 shows other calculation conditions used in the analysis.

【表4】 計算項目 計算条件 引き抜き速度 3m/min 鋳片の寸法・形状 直径100mm、円柱 タンディッシュ内の溶鋼温度 1500℃ 液相線温度 1450℃ 固相線温度 1300℃ 凝固潜熱 272000J/kg [Table 4] Calculation items Calculation conditions Drawing speed 3 m / min Size and shape of slab 100 mm diameter, cylinder Temperature of molten steel in tundish 1500 ° C Liquidus temperature 1450 ° C Solidus temperature 1300 ° C Latent heat of solidification 272000J / kg

【0032】図5〜図7は、ブレークリング4の形状を
3種類変えて鋳造した場合の凝固層の形成を示す。図5
のブレークリング4aの場合は凝固層9の厚さが大き
く、図6のブレークリング4b、図7のブレークリング
4c使用の順に凝固層9の厚さが減少する。
5 to 7 show formation of a solidified layer when the break ring 4 is cast with three different shapes. Figure 5
In the case of the break ring 4a, the thickness of the solidified layer 9 is large, and the thickness of the solidified layer 9 decreases in the order of using the break ring 4b in FIG. 6 and the break ring 4c in FIG.

【0033】図8〜図10は、図5〜図7の3種類のブ
レークリング4を使用した場合のマクロ偏析帯10の形
成状態を示す。マクロ偏析帯10はC(炭素)濃度が初
期組成(表1でのC:0.82%)より50%以上増加
した領域として表した。図8のブレークリング4aの場
合がマクロ偏析帯10の長さが大きく、図9の4b、図
10の4cのブレークリング使用の順にマクロ偏析帯が
減少する。
8 to 10 show the state of formation of the macrosegregation zone 10 when the three types of break rings 4 of FIGS. 5 to 7 are used. The macrosegregation zone 10 is represented as a region in which the C (carbon) concentration is increased by 50% or more from the initial composition (C: 0.82% in Table 1). In the case of the break ring 4a of FIG. 8, the length of the macro segregation zone 10 is large, and the macro segregation zone decreases in the order of using the break ring of 4b of FIG. 9 and 4c of FIG.

【0034】以上の実施例はブレークリングの形状を変
更して、鋳片の凝固層の生成、およびマクロ偏析帯を予
測したが、同様に、ブレークリングの形状に限らず、そ
の他の要素を変更して、鋳片の凝固層、マクロ偏析帯を
予測することも可能である。
In the above examples, the shape of the break ring was changed to predict the formation of the solidified layer of the slab and the macrosegregation zone. Similarly, the shape of the break ring is not limited, and other elements are changed. Then, it is also possible to predict the solidification layer and macrosegregation zone of the slab.

【0035】[0035]

【発明の効果】上記説明の通り、高合金鋼の水平連続鋳
造方法において、(1) 前記溶鋼、タンディッシュ、
ブレークリング、鋳型、水冷部および鋳片を要素に分割
した形状モデルとして表し、(2) 前記形状モデルに
前記要素の物性タイプを入力し、(3) 前記形状モデ
ルの境界条件を入力し、(4) 前記形状モデルについ
て、まず温度場の計算を行い、次に凝固量を計算し、
(5) 前記形状モデルを引き抜く際の熱移動と物質移
動を計算し、(6) ブレークリングと鋳型間のわき出
し領域内への合金元素の移動計算を行い、(7) 前記
形状モデルの温度分布および凝固層の発生が定常状態に
なるまで上記(4)から(6)まで計算を繰り返し、
(8) 鋳物部分のマクロ偏析帯が最小になるまで計算
を行い、マクロ偏析帯の発生が少ない溶鋼温度、鋳型形
状、タンディッシュ形状、ブレークリング形状および引
き抜き速度の最適な鋳造条件を得ることができるので、
従来できなかった鋳片の凝固過程の解析を行うことがで
き、表皮形成過程とマクロ偏析帯を予測して、マクロ偏
析帯の発生の少ない良好な鋳片を安定して鋳造するの
で、高品質な高合金鋼を低コストで製造することができ
る。
As described above, in the horizontal continuous casting method for high alloy steel, (1) the molten steel, the tundish,
The break ring, the mold, the water-cooled portion and the slab are expressed as a shape model divided into elements, (2) the physical property type of the element is input to the shape model, (3) the boundary condition of the shape model is input, and 4) For the shape model, first calculate the temperature field, then calculate the solidification amount,
(5) Calculation of heat transfer and mass transfer at the time of drawing out the shape model, (6) Calculation of transfer of alloying elements into the exposed region between the break ring and the mold, (7) Temperature of the shape model Repeat the above calculation from (4) to (6) until the distribution and the generation of solidified layer reach a steady state.
(8) Calculation is performed until the macrosegregation zone of the casting is minimized, and optimum casting conditions such as molten steel temperature, mold shape, tundish shape, break ring shape, and drawing speed with less generation of macrosegregation zone can be obtained. Because you can
It is possible to analyze the solidification process of slabs that could not be done conventionally, predict the skin formation process and macro segregation zone, and stably cast good slabs with few macro segregation zones, so high quality High alloy steel can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の凝固解析を利用した高合金鋼の水平連
続鋳造方法のステップを示す図である。
FIG. 1 is a diagram showing steps of a horizontal continuous casting method for high alloy steel utilizing solidification analysis of the present invention.

【図2】わき出し領域についての溶質および熱移動計算
のフローチャートを示す図である。
FIG. 2 is a diagram showing a flow chart of solute and heat transfer calculation for an exposed region.

【図3】水平連続鋳造方法の要部団面図である。FIG. 3 is a sectional view of a main part of a horizontal continuous casting method.

【図4】鋳型まわりの拡大図を示す図である。FIG. 4 is a diagram showing an enlarged view around a mold.

【図5】ブレークリング4aの形状で鋳造した鋳片の凝
固層の形成状態を示す図である。
FIG. 5 is a diagram showing a formation state of a solidified layer of a slab cast in the shape of a break ring 4a.

【図6】ブレークリング4bの形状で鋳造した鋳片の凝
固層の形成状態を示す図である。
FIG. 6 is a diagram showing a formation state of a solidified layer of a slab cast in the shape of a break ring 4b.

【図7】ブレークリング4cの形状で鋳造した鋳片の凝
固層の形成状態を示す図である。
FIG. 7 is a diagram showing a formation state of a solidified layer of a slab cast in the shape of a break ring 4c.

【図8】ブレークリング4aの形状で鋳造したマクロ偏
析帯の凝固層の形成状態を示す図である。
FIG. 8 is a diagram showing a formation state of a solidified layer of a macro segregation zone cast in the shape of a break ring 4a.

【図9】ブレークリング4bの形状で鋳造したマクロ偏
析帯の凝固層の形成状態を示す図である。
FIG. 9 is a view showing a formation state of a solidified layer of a macro segregation zone cast in the shape of a break ring 4b.

【図10】ブレークリング4cの形状で鋳造したマクロ
偏析帯の凝固層の形成状態を示す図である。
FIG. 10 is a view showing a formation state of a solidified layer of a macro segregation zone cast in the shape of a break ring 4c.

【符号の説明】[Explanation of symbols]

1:タンディッシュ、 2:溶鋼、 3:開口部、
4:ブレークリング、5:水冷部、 6:鋳型、 7:
引き抜き装置、 8:鋳片、 9:凝固層、10:マク
ロ偏析帯
1: Tundish, 2: Molten steel, 3: Opening,
4: Break ring, 5: Water cooling part, 6: Mold, 7:
Drawing device, 8: slab, 9: solidified layer, 10: macrosegregation zone

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュ内に貯留する溶鋼を、該
タンディッシュの下部開口部に設けたブレークリングお
よび水冷部を持つ鋳型を通し、引き抜き装置により鋳片
を引き抜くようにしてなる水平連続鋳造方法において、 (1) 前記溶鋼、タンディッシュ、ブレークリング、
鋳型、水冷部および鋳片を要素に分割した形状モデルと
して表し、 (2) 前記形状モデルに前記要素の物性タイプを入力
し、 (3) 前記形状モデルの境界条件を入力し、 (4) 前記形状モデルについて、まず温度場の計算を
行い、次に凝固量を計算し、 (5) 前記形状モデルを引き抜く際の熱移動と物質移
動を計算し、 (6) ブレークリングと鋳型間のわき出し領域内への
合金元素の移動計算を行い、 (7) 前記形状モデルの温度分布および凝固層の発生
が定常状態になるまで上記(4)から(6)まで計算を
繰り返し、 (8) 鋳物部分のマクロ偏析帯が最小になるまで計算
を行い、 マクロ偏析帯の発生が少ない溶鋼温度、鋳型形状、タン
ディッシュ形状、ブレークリング形状および引き抜き速
度の鋳造条件を得ることを特徴とする凝固解析を利用し
た高合金鋼の水平連続鋳造方法。
1. A horizontal continuous casting method in which molten steel stored in a tundish is passed through a mold having a break ring and a water cooling part provided in a lower opening of the tundish, and a slab is drawn out by a drawing device. (1) The molten steel, the tundish, the break ring,
The mold, the water-cooled portion, and the slab are expressed as a shape model divided into elements, (2) the physical property type of the element is input to the shape model, (3) the boundary condition of the shape model is input, (4) the For the shape model, first calculate the temperature field, then calculate the solidification amount, (5) calculate the heat transfer and mass transfer when the shape model is pulled out, and (6) pull out between the break ring and the mold. The calculation of the movement of alloying elements into the region is performed. (7) The calculation is repeated from the above (4) to (6) until the temperature distribution of the shape model and the generation of the solidified layer are in a steady state. (8) Cast part The calculation is performed until the macro segregation zone is minimized, and the casting conditions such as molten steel temperature, mold shape, tundish shape, break ring shape, and drawing speed with less generation of macro segregation zone are obtained. Horizontal continuous casting method of high alloy steel by using coagulation analysis.
JP23547592A 1992-09-03 1992-09-03 Horizontal continuous casting method for high alloy steel utilizing solidified analysis Pending JPH0679421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23547592A JPH0679421A (en) 1992-09-03 1992-09-03 Horizontal continuous casting method for high alloy steel utilizing solidified analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23547592A JPH0679421A (en) 1992-09-03 1992-09-03 Horizontal continuous casting method for high alloy steel utilizing solidified analysis

Publications (1)

Publication Number Publication Date
JPH0679421A true JPH0679421A (en) 1994-03-22

Family

ID=16986624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23547592A Pending JPH0679421A (en) 1992-09-03 1992-09-03 Horizontal continuous casting method for high alloy steel utilizing solidified analysis

Country Status (1)

Country Link
JP (1) JPH0679421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104384469A (en) * 2014-12-16 2015-03-04 东北大学 Prediction system and method for thickness of initially solidified shell in continuous steel casting crystallizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104384469A (en) * 2014-12-16 2015-03-04 东北大学 Prediction system and method for thickness of initially solidified shell in continuous steel casting crystallizer

Similar Documents

Publication Publication Date Title
JP4907248B2 (en) Continuous casting method of Al-Si aluminum alloy
Zhong et al. Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
Lewis et al. The principles of continuous casting of metals
US3344840A (en) Methods and apparatus for producing metal ingots
JPH0671389A (en) Horizontal continuous casting method
AU633154B2 (en) Method of controlling the rate of heat extraction in mould casting
JPH0679421A (en) Horizontal continuous casting method for high alloy steel utilizing solidified analysis
US2257713A (en) Metal treating
Hurtuk Steel ingot casting
Thomas Continuous casting (metallurgy)
JP3370649B2 (en) Horizontal continuous casting of hypoeutectic cast iron
Dutta et al. Continuous casting (concast)
JPH04178247A (en) Continuous casting method of steel by casting mold having electromagnetic field
JP2727886B2 (en) Horizontal continuous casting method
JP4076155B2 (en) Manufacturing method of iron alloy-based thixocasting material
Hechu Assessment of solidification behaviour of peritectic steels
JPS60234740A (en) Continuous casting method of copper ingot having mirror finished surface
JPH11277199A (en) Method for continuously casting steel
JPS58157552A (en) Continuous casting method of metallic material
TW202319142A (en) Aluminum alloy continuous casting apparatus accelerates cooling effect for aluminum casting blank through direct cooling device to improve crack phenomenon
JP2000126846A (en) Ingot-making process
JPS61245949A (en) Continuous casting method
JPH11179492A (en) Mold for continuous casting
SU954155A1 (en) Method of continuous horisontal casting of iron tube blanks