JPH0678985B2 - Electrode for detecting electrochemical optical property and method for detecting electrochemical optical property - Google Patents

Electrode for detecting electrochemical optical property and method for detecting electrochemical optical property

Info

Publication number
JPH0678985B2
JPH0678985B2 JP62051803A JP5180387A JPH0678985B2 JP H0678985 B2 JPH0678985 B2 JP H0678985B2 JP 62051803 A JP62051803 A JP 62051803A JP 5180387 A JP5180387 A JP 5180387A JP H0678985 B2 JPH0678985 B2 JP H0678985B2
Authority
JP
Japan
Prior art keywords
electrode
working electrode
optical fiber
electrochemical
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62051803A
Other languages
Japanese (ja)
Other versions
JPS63218846A (en
Inventor
益男 相澤
俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62051803A priority Critical patent/JPH0678985B2/en
Publication of JPS63218846A publication Critical patent/JPS63218846A/en
Publication of JPH0678985B2 publication Critical patent/JPH0678985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Description

【発明の詳細な説明】 I 発明の背景 技術分野 本発明は、電気化学的光学特性を検出するための電気化
学的光学特性検出用電極、特に、溶液系での電気化学的
発光等を検出するための電気化学的光学特性検出用電極
とその電極を用いた電気化学的光学特性検出方法に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for detecting an electrochemical optical characteristic for detecting an electrochemical optical characteristic, particularly, an electrochemical chemiluminescence in a solution system. The present invention relates to an electrode for detecting an electrochemical optical characteristic and a method for detecting an electrochemical optical characteristic using the electrode.

先行技術とその問題点 近年、電気化学的発光等の電気化学的光学特性の測定
が、種々の分野で行われている。例えば抗原・抗体反応
の定量的測定において、抗原に予めルミノール、ピレン
等の電気化学的発光をするような物質を固定し、この抗
体と抗原とを反応させ、抗体との反応後に抗原に固定さ
れた電気化学的発光物質の発光が抑制されることを利用
して、このときの電気化学的発光量を測定することによ
り抗体の定量を行なうことに用いられる(BIOCHEMICAL
AND BIOPHYSICALRESEARCH COMMUNICATION Vol.12
8,No.2,1985April 30,1985、「ELECTROCHEMICAL LUMI
NE-SCENCE-BASED HOMOGENEOUS IMMUNOASSAY」Yoshihi
to Ikariyama,Hideyuki Kunoh and Masuo Aizaw
a)。
2. Description of the Related Art In recent years, electrochemical optical properties such as electrochemical luminescence have been measured in various fields. For example, in the quantitative measurement of an antigen-antibody reaction, a substance such as luminol and pyrene that emits electrochemiluminescence is immobilized in advance on the antigen, the antibody is reacted with the antigen, and the substance is immobilized on the antigen after the reaction with the antibody. It is used to quantify antibodies by measuring the amount of electrochemiluminescence at this time by utilizing the fact that the emission of electrochemiluminescent substances is suppressed (BIOCHEMICAL
AND BIOPHYSICAL RESEARCH COMMUNICATION Vol.12
8, No.2,1985 April 30,1985, `` ELECTRO CHEMICAL LUMI
NE-SCENCE-BASED HOMOGENEOUS IMMUNOASSAY '' Yoshihi
to Ikariyama, Hideyuki Kunoh and Masuo Aizaw
a).

従来、このような溶液系においてルミノール等の電気化
学的発光を検出するには、電極を溶液中に浸し、印加し
た電圧によって生じた電気化学的発光を溶液の容器の外
側に設置した光検出装置により測定している。
Conventionally, in order to detect the electrochemiluminescence of luminol or the like in such a solution system, a photodetector in which the electrode is immersed in the solution and the electrochemiluminescence generated by the applied voltage is placed outside the solution container. It is measured by.

しかし、このように電極と光検出装置が独立であると、
測定値の再現性の点から、作用電極と対電極との位置関
係を一定にする必要がある他、電極、光検出装置および
容器の位置関係を一定にしなければならず、操作上煩雑
であったり装置が複雑化・大型化する等の問題がある。
However, when the electrode and the photodetector are independent in this way,
From the viewpoint of reproducibility of measured values, the positional relationship between the working electrode and the counter electrode needs to be constant, and the positional relationship between the electrode, the photodetector, and the container must be constant, which is complicated in operation. There is a problem that the device becomes complicated and large in size.

また、電極から光検出装置までの距離が必然的に長くな
るため、電気化学的発光の検出感度が低下する。
In addition, since the distance from the electrode to the photodetector is inevitably long, the detection sensitivity of electrochemiluminescence decreases.

II 発明の目的 本発明の目的は、電気化学的発光等の電気化学的光学特
性の検出感度が高く、測定値に再現性があり、しかも取
り扱いが容易で小型の電気化学的光学特性検出用電極お
よび電気化学的光学特性検出方法を提供することにあ
る。
II Object of the Invention The object of the present invention is a small electrode for detecting electrochemical optical characteristics such as high sensitivity of detection of electrochemical optical characteristics such as electrochemical luminescence, reproducibility of measured values, and easy handling. Another object of the present invention is to provide an electrochemical optical property detection method.

III 発明の開示 このような目的は、下記の本発明によって達成される。III DISCLOSURE OF THE INVENTION Such an object is achieved by the present invention described below.

すなわち、第1の発明は、光透過性の作用電極と対電極
と光ファイバとを一体的に有し、前記作用電極が前記光
ファイバの光入射面に一体的に形成されていることを特
徴とする電気化学的光学特性検出用電極である。
That is, the first invention has a light-transmissive working electrode, a counter electrode, and an optical fiber integrally, and the working electrode is integrally formed on a light incident surface of the optical fiber. And an electrode for detecting electrochemical optical characteristics.

また第2の発明は、光透過性の作用電極と対電極と光フ
ァイバとを一体的に有し、前記作用電極が前記光ファイ
バの光入射面に一体的に形成されている電極を用い、こ
の電極を被検溶液に浸漬し、前記作用電極と対電極との
間に電圧を印加し、電気化学的光学特性を検出すること
を特徴とする電気化学的光学特性検出方法である。
A second aspect of the invention uses an electrode that integrally has a light-transmissive working electrode, a counter electrode, and an optical fiber, and the working electrode is integrally formed on a light incident surface of the optical fiber, The electrochemical optical property detection method is characterized by immersing this electrode in a test solution and applying a voltage between the working electrode and the counter electrode to detect the electrochemical optical property.

IV 発明の具体的構成 以下、本発明の具体的構成を詳細に説明する。IV Specific Structure of the Invention Hereinafter, the specific structure of the present invention will be described in detail.

本発明の電気化学的光学特性検出用電極の好適実施例
を、第1図に示す。
A preferred embodiment of the electrode for detecting an electrochemical optical characteristic of the present invention is shown in FIG.

本発明の電気化学的光学特性検出用電極1は、光透過性
の作用電極2と対電極3と光ファイバ4とを一体的に有
し、作用電極2は、光ファイバ4の光入射面に一体的に
形成される。
The electrochemical optical characteristic detection electrode 1 of the present invention integrally has a light-transmissive working electrode 2, a counter electrode 3 and an optical fiber 4, and the working electrode 2 is provided on the light incident surface of the optical fiber 4. It is integrally formed.

光ファイバ4の作用電極2が形成されている側と反対
側、すなわち光ファイバ4の光出射面側は、図示しない
光検出部と接続される。また、作用電極2および対電極
3は、リード線5と導電性の接合部6を介して接続さ
れ、リード線5の作用電極2および対電極3の反対側
は、電圧パルス発生装置、例えばポテンシオスタットお
よびファンクションジェネレータ等から構成される電圧
パルス発生器に接続される。
The side of the optical fiber 4 opposite to the side on which the working electrode 2 is formed, that is, the light emitting surface side of the optical fiber 4 is connected to a photodetector (not shown). The working electrode 2 and the counter electrode 3 are connected to the lead wire 5 via a conductive joint portion 6, and the opposite side of the working wire 2 and the counter electrode 3 of the lead wire 5 is a voltage pulse generator, for example, a potentiometer. It is connected to a voltage pulse generator consisting of an ostat and a function generator.

作用電極2は、光ファイバ4の光入射面に形成されるた
め、検出すべき電気化学的発光光に対し透過性を有する
ことが必要とされる。この場合の透過率は50%以上が望
ましい。
Since the working electrode 2 is formed on the light incident surface of the optical fiber 4, it needs to be transparent to the electrochemiluminescent light to be detected. In this case, the transmittance is preferably 50% or more.

このような作用電極2は、光ファイバ4の光入射面の全
面に形成されていてもよく、部分的に形成されていても
よい。部分的に形成される場合、その形状は、ドーナツ
状、格子状、ハニカム状、その他、対電極3と組合わせ
て光ファイバ4の光入射面近傍に電圧を印加できる形状
であればよい。
Such a working electrode 2 may be formed on the entire light incident surface of the optical fiber 4 or may be formed partially. When partially formed, the shape may be a donut shape, a lattice shape, a honeycomb shape, or any other shape capable of applying a voltage in the vicinity of the light incident surface of the optical fiber 4 in combination with the counter electrode 3.

また、作用電極2および対電極3を対向して、光ファイ
バ4の光入射面に形成することもできる。この場合、作
用電極2および対電極3は、クシ状であることが好まし
い。
Alternatively, the working electrode 2 and the counter electrode 3 may be opposed to each other and formed on the light incident surface of the optical fiber 4. In this case, the working electrode 2 and the counter electrode 3 are preferably comb-shaped.

対電極3は、第1図に示す例では光ファイバ4の外周側
面の円周方向に形成されているが、この例に限らず、上
記のように光ファイバ4の光入射面に作用電極2と対向
させて形成してもよい。
Although the counter electrode 3 is formed in the circumferential direction of the outer peripheral side surface of the optical fiber 4 in the example shown in FIG. 1, the present invention is not limited to this example, and the working electrode 2 is formed on the light incident surface of the optical fiber 4 as described above. It may be formed so as to face.

ただ、製造の容易性から、また、通常は作用電極2より
対電極3の面積を大きくする必要があり、光ファイバ4
の端面径が小さいものであることを考慮すると、対電極
3は光ファイバ4の外周側面に形成することが好まし
い。
However, it is necessary to make the area of the counter electrode 3 larger than that of the working electrode 2 because of the ease of manufacturing.
Considering that the end face diameter is small, the counter electrode 3 is preferably formed on the outer peripheral side surface of the optical fiber 4.

なお、対電極3の面積は作用電極2の面積の2倍以上、
より好ましくは3〜10倍とすることが好ましい。これに
より印加電位の制御が容易となる。
The area of the counter electrode 3 is at least twice the area of the working electrode 2,
It is more preferably 3 to 10 times. This facilitates control of the applied potential.

なお、上記の各例において、作用電極2および対電極3
をリード線5と直接接続せず、作用電極2および対電極
3とそれぞれ一体的に形成したリード部を光ファイバ4
の外周側面の軸方向に延設し、対電極の一部を切欠き、
使用時に被検溶液の液面より上となる部分にてリード線
5とリード部とを接続してもよい。
In each of the above examples, the working electrode 2 and the counter electrode 3
Is not directly connected to the lead wire 5, but the lead portions integrally formed with the working electrode 2 and the counter electrode 3 are connected to the optical fiber 4
Extending in the axial direction of the outer peripheral side of, notch a part of the counter electrode,
The lead wire 5 may be connected to the lead portion at a portion above the liquid surface of the test solution during use.

作用電極2の材質としては、白金、金、銅等のイオン化
傾向の小さい金属あるいはITO、SnO2:Sb等の金属化合物
等を用いることが好ましい。
As the material of the working electrode 2, it is preferable to use a metal having a low ionization tendency such as platinum, gold and copper or a metal compound such as ITO and SnO 2 : Sb.

このような作用電極2を光ファイバ4の光入射面に形成
するには、スパッタ法、蒸着法あるいは塗布等によれば
よい。なお、この際、適当なマスキングを施せば、光フ
ァイバ4の光入射面に作用電極2と対向してあるいは光
ファイバ4の外周側面に、上記の金属あるいは金属化合
物からなる対電極3も同時に形成することができる。ま
た、同様にして、上記のリード部も形成することができ
る。
To form such a working electrode 2 on the light incident surface of the optical fiber 4, a sputtering method, a vapor deposition method, a coating method, or the like may be used. At this time, if appropriate masking is performed, the counter electrode 3 made of the above metal or metal compound is simultaneously formed on the light incident surface of the optical fiber 4 facing the working electrode 2 or on the outer peripheral side surface of the optical fiber 4. can do. In addition, the lead portion described above can be formed in the same manner.

このようにして形成される作用電極2の厚さは、一般に
100Å〜300Å程度が好ましい。この厚さが100Å未満で
あると電極の強度が不足し、また、電極としての導電性
が不十分(電気抵抗が増大)となり、被検光の波長にも
よるが、通常の材質では300Åを越えると作用電極2の
光透過性が不十分となる。
The thickness of the working electrode 2 thus formed is generally
About 100Å to 300Å is preferable. If this thickness is less than 100Å, the strength of the electrode will be insufficient, and the electrical conductivity as an electrode will be insufficient (electrical resistance will increase). When it exceeds, the light transmittance of the working electrode 2 becomes insufficient.

対電極3は上記のように光ファイバ4の光入射面に作用
電極2と対向して形成される場合、上記の作用電極2と
同様に光透過性を有する必要があるため、その材質とし
ては、作用電極2に用いる上記した金属あるいは金属化
合物等を用いることが好ましいが、その他の場合は光透
過性を有する必要はないため、種々の導電性物質を用い
ることができる。
When the counter electrode 3 is formed on the light incident surface of the optical fiber 4 so as to face the working electrode 2 as described above, the counter electrode 3 needs to have light transmissivity similarly to the working electrode 2 described above. It is preferable to use the above-mentioned metal or metal compound used for the working electrode 2, but in other cases, it is not necessary to have light transmittance, and thus various conductive substances can be used.

対電極3は、上記したスパッタ法、蒸着法、塗布法等の
他、例えば、導電性塗料を印刷等によって塗布したり、
金属薄板等を光ファイバ4の外周側面に巻回して形成し
てもよい。
The counter electrode 3 may be formed by applying a conductive paint by printing or the like in addition to the above-mentioned sputtering method, vapor deposition method, coating method, or the like.
A thin metal plate or the like may be wound around the outer peripheral side surface of the optical fiber 4.

このように光ファイバ4と作用電極2と対電極3とを一
体的に形成することにより、極間距離および電極・光検
出部間距離が一定し、またその狂いもなく、しかも扱い
が容易となる。
By integrally forming the optical fiber 4, the working electrode 2, and the counter electrode 3 as described above, the distance between the electrodes and the distance between the electrode and the light detecting portion are constant, and there is no deviation thereof, and the handling is easy. Become.

接合部6は導電性をもたせるため、導電性接着剤、ハン
ダ等の導電性材料の接着によって形成される。なお、接
合部6に絶縁性、耐久性、耐食性等を付与するため、非
導電性、耐水性、耐食性を有する樹脂製接着剤等で接合
部6付近を被覆することが好ましい。なお、上記のよう
なリード部を設ける場合にも、リード部に絶縁性を付与
するため、このような被覆を設けることが好ましい。
Since the joint portion 6 has conductivity, it is formed by adhering a conductive material such as a conductive adhesive or solder. In order to impart insulation, durability, corrosion resistance and the like to the joint 6, it is preferable to cover the vicinity of the joint 6 with a resin adhesive or the like having non-conductivity, water resistance and corrosion resistance. Even when the lead portion as described above is provided, it is preferable to provide such a coating in order to impart insulation to the lead portion.

なお、場合によっては上記とは異なり、作用電極2を透
明ないし不透明な剛体材質とし、これらの構造体を形成
するか、あるいは作用電極2・対電極3対を透明ないし
不透明な剛体材質とし、これらの構造体を形成し、これ
ら構造体を光ファイバ端面に接着等してもよい。
In some cases, differently from the above, the working electrode 2 is made of a transparent or opaque rigid material to form these structures, or the working electrode 2 and the counter electrode 3 are made of a transparent or opaque rigid material. Alternatively, the structures may be formed and these structures may be bonded to the end face of the optical fiber.

光ファイバ4は、ガラス、樹脂製等の通常の光ファイバ
を用いればよく、その直径は用途にもよるが1mm程度以
上であれば十分である。
As the optical fiber 4, a normal optical fiber made of glass, resin, or the like may be used, and its diameter may be about 1 mm or more, depending on the application.

また、光ファイバ4の長さは、用途にもよるが5〜100c
m程度である。
The length of the optical fiber 4 depends on the application but is 5 to 100c.
It is about m.

V 発明の具体的作用 本発明の電気化学的光学特性検出用電極を使用した電気
化学的光学特性測定装置の一構成例として電気化学的発
光測定装置を、第2図に示す。
V. Specific Action of the Invention An electrochemical luminescence measuring device is shown in FIG. 2 as one structural example of the electrochemical optical property measuring device using the electrode for detecting the electrochemical optical property of the present invention.

本発明の電気化学的光学特性検出用電極1は、その作用
電極2および対電極3が例えばファンクションジェネレ
ータ21およびポテンシオスタット22から構成されるパル
ス電圧発生装置とリード線5により接続される。
In the electrochemical optical characteristic detecting electrode 1 of the present invention, the working electrode 2 and the counter electrode 3 are connected by a lead wire 5 to a pulse voltage generator including a function generator 21 and a potentiostat 22, for example.

電圧発生装置により作用電極2および対電極3の間にス
テップ状のパルス電圧が印加されると、試料容器11内の
被検溶液にルミノール等の電気化学的発光が生じ、この
発光光は光ファイバ4の光入射面側から光ファイバ4に
入射し光ファイバ4の光出射面側に接続されたフォトマ
ルチプライヤ、光ダイオード等の光検出部23に入射し、
光電変換が行われる。変換された電気信号は、例えばプ
リアンプ24、パルスカウンタ25を経てオシログラフ、レ
コーダ等の信号出力器26に送られる。信号出力器26に
は、パルス電圧発生装置から上記のステップ状のパルス
電圧が送られ、作用電極2および対電極3に印加した電
圧に対する電気化学的発光が測定できる。
When a step-like pulse voltage is applied between the working electrode 2 and the counter electrode 3 by the voltage generator, electrochemical emission of luminol or the like occurs in the test solution in the sample container 11, and this emitted light is emitted from the optical fiber. 4 enters the optical fiber 4 from the light incident surface side and enters the photodetector 23 such as a photomultiplier or a photodiode connected to the light emitting surface side of the optical fiber 4,
Photoelectric conversion is performed. The converted electric signal is sent to a signal output device 26 such as an oscillograph or a recorder via a preamplifier 24 and a pulse counter 25, for example. The above-mentioned stepwise pulse voltage is sent from the pulse voltage generator to the signal output device 26, and the electrochemical luminescence with respect to the voltage applied to the working electrode 2 and the counter electrode 3 can be measured.

この場合、印加するパルスは、被検物質の発光機構によ
り種々のものであってよい。例えばルミノール等では、
まず所定の電圧をパルス状に印加し、その後パルス状の
逆電圧を印加することが好ましい。最初の印加電圧とし
ては、例えばルミノールでは負電圧を作用電極2に印加
する。このとき、励起活性種が形成される。その後、最
初の印加電圧と逆の電圧の印加により生じた活性種が、
この励起活性種と反応して発光が生じる。
In this case, the applied pulse may be various depending on the light emission mechanism of the test substance. For example, in Luminor,
It is preferable to first apply a predetermined voltage in pulses and then apply a reverse voltage in pulses. As the first applied voltage, for example, in the case of luminol, a negative voltage is applied to the working electrode 2. At this time, excited active species are formed. After that, the active species generated by applying a voltage opposite to the initial applied voltage,
Luminescence is generated by reacting with the excited active species.

この場合、最初の印加電圧は例えばルミノールでは対電
極に対し絶対値で3V以上、また次の印加電圧は絶対値で
1.2V以上とする。またパルス巾は最初の電圧が3〜20se
c程度、次の逆電圧が6〜60sec程度とする。
In this case, the first applied voltage is 3 V or more in absolute value with respect to the counter electrode in Luminol, and the second applied voltage is absolute value in the next.
1.2V or more. The pulse width of the initial voltage is 3 to 20se.
c, and the next reverse voltage is about 6 to 60 seconds.

そして、このステップ状パルス電圧印加を、例えば15〜
90sec程度の周期でくりかえすことにより、2回目以降
安定な発光がくりかえし発生する。
Then, this step-like pulse voltage application, for example, 15 ~
By repeating the cycle for about 90 seconds, stable light emission is repeated after the second time.

あるいは、例えばアミノピレンでは、このようにステッ
プ状のパルス電圧印加を行わず、単に負電圧をパルス状
にくりかえし印加すればよい。
Alternatively, for example, in the case of aminopyrene, the stepwise pulse voltage application is not performed in this way, and the negative voltage may simply be repeatedly applied in the pulse form.

このようなパルス状の励起を行うときには、いわゆるサ
イクリックボルトルミノメトリーに従い印加電圧を正か
ら負へあるいは負から正へ走査するときと比較して格段
と大きな発光効率を得ることができる。
When such pulse-like excitation is performed, a significantly higher luminous efficiency can be obtained as compared with the case where the applied voltage is scanned from positive to negative or from negative to positive according to so-called cyclic volt luminometry.

なお、発光物質としては、ルミノール、ピレン、アント
ラセン、ルブレン、フルオレセインおよびこれらの誘導
体等を用いることができる。溶媒としては用いる発光物
質に従い、水系、非水系いずれであってもよい。
As the luminescent substance, luminol, pyrene, anthracene, rubrene, fluorescein and their derivatives can be used. The solvent may be either aqueous or non-aqueous depending on the luminescent substance used.

また、本発明の電極は、特に抗原・抗体反応の検出に用
いて有効である。
Further, the electrode of the present invention is particularly effective when used for detecting an antigen-antibody reaction.

この場合には、まず抗原に上記発光物質を固定して標識
化する。抗原としては各種の蛋白質、ポリペプチド、多
糖体、脂質、核酸等、いずれも使用できる。
In this case, first, the above-mentioned luminescent substance is immobilized on the antigen and labeled. As the antigen, any of various proteins, polypeptides, polysaccharides, lipids, nucleic acids and the like can be used.

また発光物質の固定には、通常架橋剤を用いればよい。Further, a cross-linking agent may be usually used for fixing the luminescent substance.

この標識化した抗原に抗体を反応させる。反応は、適当
な緩衝液を含有する水溶液中で行う。
An antibody is reacted with this labeled antigen. The reaction is carried out in an aqueous solution containing a suitable buffer.

その後、通常この溶液をそのまま用い本発明の電極を用
いてその発光を測定すればよい。
Thereafter, this solution is usually used as it is, and its luminescence may be measured using the electrode of the present invention.

なお、本発明にて検出する溶液系での電気化学的光学特
性としては、電気化学的発光の他、光学スペクトル変化
や透過率、反射率変化等の色変化、蛍光変化等がある。
The electrochemical optical characteristics in the solution system to be detected in the present invention include electrochemical emission, color change such as optical spectrum change, transmittance and reflectance change, and fluorescence change.

VI 発明の効果 本発明の電気化学的光学特性検出用電極は、光透過性の
作用電極と対電極と光ファイバとを一体的に有し、作用
電極が光ファイバの光入射面に一体的に形成されてい
る。
VI Effect of the Invention The electrode for detecting electrochemical optical properties of the present invention integrally has a light-transmissive working electrode, a counter electrode, and an optical fiber, and the working electrode is integrally formed on the light incident surface of the optical fiber. Has been formed.

そして、電極と光検出装置は光ファイバで連結されるた
め、電気化学的光学特性測定に際し、再現性確保のため
の作用電極と対電極との位置関係ならびに電極と光検出
装置と被検溶液の容器との位置関係を一定に保つ操作あ
るいは装置が不必要であり、操作上煩雑であったり装置
が複雑化・大型化する等の問題がない。しかも測定値の
再現性は良好である。
Since the electrode and the photodetector are connected by an optical fiber, the positional relationship between the working electrode and the counter electrode for ensuring reproducibility and the electrode, the photodetector, and the test solution are ensured when measuring the electrochemical optical characteristics. There is no need for an operation or a device for keeping the positional relationship with the container constant, and there is no problem that the operation is complicated and the device becomes complicated and large. Moreover, the reproducibility of measured values is good.

また、電極と光検出装置とが光ファイバで結ばれており
光の減衰がほとんどなく、測定感度も高いものである。
Moreover, since the electrodes and the photodetector are connected by an optical fiber, there is almost no light attenuation and the measurement sensitivity is high.

VII 発明の具体的実施例 以下、本発明の具体的実施例を挙げ、詳細に説明する。VII Specific Examples of the Invention Hereinafter, specific examples of the present invention will be described in detail.

[実施例1] 直径2.5mm、長さ12cmのポリメチルメタクリレート樹脂
系光ファイバの端面を平滑に研磨し、一方の端面に白金
をスパッタにより200Å厚に形成し、作用電極とした。
なお、対電極は、作用電極形成時にマスキングすること
により光ファイバの作用電極形成面から2mm上方の外周
側面に幅3mmの帯状に、作用電極と同時に形成した。
[Example 1] An end face of a polymethylmethacrylate resin-based optical fiber having a diameter of 2.5 mm and a length of 12 cm was smoothly polished, and platinum was sputtered on one end face to a thickness of 200 Å to form a working electrode.
The counter electrode was formed at the same time as the working electrode in a strip shape with a width of 3 mm on the outer peripheral side surface 2 mm above the working electrode formation surface of the optical fiber by masking when forming the working electrode.

このようにして、第1図に示すような電気化学的光学特
性検出用電極を作製し、被検溶液としてルミノール水溶
液を用い、第2図に示す構成の電気化学的光学特性測定
装置に組込んだ。
In this way, an electrode for detecting an electrochemical optical characteristic as shown in FIG. 1 was prepared, and an aqueous luminol solution was used as a test solution and incorporated into an electrochemical optical characteristic measuring device having the configuration shown in FIG. It is.

この電気化学的光学特性検出用電極の作用電極に第3図
に示すステップ状のパルス電圧(e=+2V、e2=−3V、
t1−t0=5sec、t2−t1=10sec)を30秒間隔にて印加
し、溶液中のルミノール濃度と最大発光量との関係を測
定した。最大発光量は、発光が安定する2回目から11回
目までの10回のパルスによるものの平均を測定し、標準
曲線を作製した。なお、第3図に示す電圧は、対電極に
対するものである。
Stepped pulse voltage shown in FIG. 3 to the working electrode of the electrochemical optical characteristic detecting electrodes (e = + 2V, e 2 = -3V,
(t 1 −t 0 = 5 sec, t 2 −t 1 = 10 sec) was applied at 30-second intervals, and the relationship between the luminol concentration in the solution and the maximum luminescence amount was measured. The maximum luminescence amount was obtained by measuring the average of 10 times of pulses from the 2nd time to the 11th time when the luminescence was stable, and prepared a standard curve. The voltages shown in FIG. 3 are for the counter electrode.

また、比較として10×10mmの作用電極と10×30mmの対電
極とを互いに直角に設け、光ファイバおよび光検出部は
本発明のものと同じものを用いて、同様にステップ状の
パルス電圧を印加して最大発光量を測定し、標準曲線を
作製した。
Further, as a comparison, a working electrode of 10 × 10 mm and a counter electrode of 10 × 30 mm are provided at right angles to each other, the optical fiber and the photodetector are the same as those of the present invention, and a stepwise pulse voltage is similarly used. The maximum amount of light emission was measured by applying, and a standard curve was prepared.

なお、作用電極は光ファイバの光入射面と対向させ、距
離は2mmとした。
The working electrode was opposed to the light incident surface of the optical fiber, and the distance was 2 mm.

結果を第4図に示す。Results are shown in FIG.

第4図に示されるように、本発明の電気化学的光学特性
検出用電極は、従来の電極と比較して100倍以上の測定
感度が得られた。
As shown in FIG. 4, the electrode for detecting electrochemical optical characteristics of the present invention provided a measurement sensitivity 100 times or more that of the conventional electrode.

なお、上記において印加電圧をパルス状ではなく、いわ
ゆるサイクリックボルトルミノメトリーに従い、−3Vか
ら+2Vにスキャンして測定した。なお、スキャン速度は
100mV/secとした。この場合と比較して、上記ステップ
状のパルス電圧印加をした場合は、最大発光量が100倍
向上した。
In the above, the applied voltage was not pulsed, but was measured by scanning from −3 V to +2 V according to so-called cyclic volt luminometry. The scan speed is
It was set to 100 mV / sec. Compared to this case, the maximum light emission amount was improved 100 times when the stepwise pulse voltage was applied.

[実施例2] 実施例1にて作製した電気化学的発光測定装置を用い
て、ヒトIgG抗体の定量を行なった。
Example 2 Human IgG antibody was quantified using the electrochemiluminescence measurement device produced in Example 1.

市販のヒトIgGとルミノールを、グルタルアルデヒドで
架橋し、ルミノールで標識したヒトIgG溶液を作製し
た。量比は、モル比でヒトIgG:ルミノール:グルタルア
ルデヒド=1:100:100とした。また、溶媒はリン酸緩衝
液を用いた。
A commercially available human IgG and luminol were cross-linked with glutaraldehyde to prepare a human IgG solution labeled with luminol. The molar ratio was human IgG: luminol: glutaraldehyde = 1: 100: 100. A phosphate buffer solution was used as the solvent.

次に、市販の抗ヒトIgG抗体をリン酸緩衝液に溶解し
て、種々の濃度の抗ヒトIgG抗体溶液を作製した。これ
らを上記のルミノール標識ヒトIgG溶液に添加して、抗
原・抗体反応を行なわせ、検量線を作製した。
Next, a commercially available anti-human IgG antibody was dissolved in a phosphate buffer to prepare anti-human IgG antibody solutions having various concentrations. These were added to the above-mentioned luminol-labeled human IgG solution to cause an antigen-antibody reaction to prepare a calibration curve.

なお、インキュベーションは、37℃で60分間行なった。The incubation was carried out at 37 ° C for 60 minutes.

このような検量線の作製を繰り返し行なったところ、そ
れぞれの検量線同士のズレは少なく、本発明の電気化学
的光学特性検出用電極の測定値の再現性の高さが確認さ
れた。
When such a calibration curve was repeatedly prepared, it was confirmed that there was little deviation between the calibration curves, and that the reproducibility of the measured values of the electrochemical optical characteristic detection electrode of the present invention was high.

[実施例3] 実施例1、2において、ルミノールをアミノピレンにか
え、パルスをくりかえし印加して同様に実験を行ったと
ころ、上記と同様に発光量の定量測定を精度よく行うこ
とができた。
[Example 3] In the same manner as in Examples 1 and 2, luminol was changed to aminopyrene, and a pulse was repeatedly applied to perform the same experiment. As a result, quantitative measurement of the luminescence amount could be performed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の電気化学的光学特性検出用電極の好
適実施例を示す斜視図である。 第2図は、本発明の電気化学的光学特性検出用電極を使
用した電気化学的光学特性測定装置の構成例を示す図で
ある。 第3図は、作用電極に印加する電圧を示すグラフであ
る。 第4図は、ルミノール濃度と最大発光量との関係を表わ
すグラフである。 符号の説明 1……電気化学的光学特性検出用電極、 2……作用電極、 3……対電極、 4……光ファイバ、 5……リード線、 6……接合部
FIG. 1 is a perspective view showing a preferred embodiment of the electrode for detecting electrochemical optical characteristics of the present invention. FIG. 2 is a diagram showing a configuration example of an electrochemical optical characteristic measuring device using the electrode for detecting electrochemical optical characteristic of the present invention. FIG. 3 is a graph showing the voltage applied to the working electrode. FIG. 4 is a graph showing the relationship between the luminol concentration and the maximum luminescence amount. DESCRIPTION OF SYMBOLS 1 ... Electrode for detecting electrochemical optical characteristics, 2 ... Working electrode, 3 ... Counter electrode, 4 ... Optical fiber, 5 ... Lead wire, 6 ... Joint part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光透過性の作用電極と対電極と光ファイバ
とを一体的に有し、前記作用電極が前記光ファイバの光
入射面に一体的に形成されていることを特徴とする電気
化学的光学特性検出用電極。
1. An electric appliance comprising a light-transmissive working electrode, a counter electrode, and an optical fiber, wherein the working electrode is integrally formed on a light incident surface of the optical fiber. Electrode for chemical and optical property detection.
【請求項2】光透過性の作用電極と対電極と光ファイバ
とを一体的に有し、前記作用電極が前記光ファイバの光
入射面に一体的に形成されている電極を用い、この電極
を被検溶液に浸漬し、前記作用電極と対電極との間に電
圧を印加し、電気化学的光学特性を検出することを特徴
とする電気化学的光学特性検出方法。
2. An electrode having a light-transmissive working electrode, a counter electrode, and an optical fiber, wherein the working electrode is integrally formed on a light incident surface of the optical fiber. Is immersed in a test solution, a voltage is applied between the working electrode and the counter electrode, and the electrochemical optical property is detected.
【請求項3】前記作用電極と対電極との間にパルス状の
電圧を印加する特許請求の範囲第2項に記載の電気化学
的光学特性検出方法。
3. The electrochemical optical property detection method according to claim 2, wherein a pulsed voltage is applied between the working electrode and the counter electrode.
JP62051803A 1987-03-06 1987-03-06 Electrode for detecting electrochemical optical property and method for detecting electrochemical optical property Expired - Lifetime JPH0678985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051803A JPH0678985B2 (en) 1987-03-06 1987-03-06 Electrode for detecting electrochemical optical property and method for detecting electrochemical optical property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051803A JPH0678985B2 (en) 1987-03-06 1987-03-06 Electrode for detecting electrochemical optical property and method for detecting electrochemical optical property

Publications (2)

Publication Number Publication Date
JPS63218846A JPS63218846A (en) 1988-09-12
JPH0678985B2 true JPH0678985B2 (en) 1994-10-05

Family

ID=12897086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051803A Expired - Lifetime JPH0678985B2 (en) 1987-03-06 1987-03-06 Electrode for detecting electrochemical optical property and method for detecting electrochemical optical property

Country Status (1)

Country Link
JP (1) JPH0678985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061445A (en) * 1988-11-03 1991-10-29 Igen, Inc. Apparatus for conducting measurements of electrochemiluminescent phenomena
JPH0534345A (en) * 1991-02-19 1993-02-09 Tdk Corp Measuring method of antigen-antibody utilizing chemiluminescence

Also Published As

Publication number Publication date
JPS63218846A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
Yuqing et al. New technology for the detection of pH
US5522977A (en) Glucose sensor
CN110470722B (en) Method and device for detecting potential change by photoelectrochemical method
US20100310422A1 (en) Optical biosensor
WO2005085809A1 (en) Nanowire light sensor and kit with the same
US20220349820A1 (en) Fiber-optic sensing apparatus, system and method for characterizing metal ions in solution
AU644779B2 (en) Enhanced electrochemiluminescence
Zhao et al. Electrochemiluminescence sensor having a Pt electrode coated with a Ru (bpy) 32+-modified chitosan/silica gel membrane
Cao et al. Capillary electrophoresis with solid‐state electrochemiluminescence detector
O'Dea et al. Square wave voltammetry at electrodes having a small dimension
Mohammadizadeh et al. Carbon paste electrode modified with ZrO 2 nanoparticles and ionic liquid for sensing of dopamine in the presence of uric acid
CN109142745A (en) It is a kind of based on stannic oxide/cadmium carbonate/cadmium sulfide optical electro-chemistry immunosensor preparation method and application
CN111024786A (en) Establishment method and application of closed bipolar electrochemiluminescence detection platform based on quantum dots
DE3617946C2 (en)
WO1993021530A1 (en) PROCESS AND DEVICE FOR INCREASING THE SENSITIVITY AND SELECTIVITY OF IMMUNO-ASSAYS, MOLECULE-RECEPTOR, DNA-COMPLEMENTARY DNA and FOREIGN MOLECULE-HOST MOLECULE INTERACTION ASSAYS
CN113155917B (en) Construction method of photo-assisted bipolar self-powered sensor for detecting ochratoxin A or aflatoxin B1
JPH0678985B2 (en) Electrode for detecting electrochemical optical property and method for detecting electrochemical optical property
ANZAI et al. Urea sensor based on an ion-sensitive field effect transistor. IV. Determination of urea in human blood
CN115308403B (en) ECL immunosensor with direct nanoparticle luminescence and low luminescence potential
JP2673957B2 (en) Electrochemiluminescence and immunoassay
Papkovsky et al. Fibre-optic lifetime-based enzyme biosensor
CN101393202A (en) Evanescent wave optical fiber biosensor and use thereof
JPH03504043A (en) Device for multiple simultaneous measurements of electrochemiluminescence phenomena
Schaffar et al. A sodium-selective optrode
Dybko et al. Analyte recognition and signal conversion in potentiometric and optical chemical sensors

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term