JPH0678593B2 - Method for producing gas by molten salt electrolysis - Google Patents

Method for producing gas by molten salt electrolysis

Info

Publication number
JPH0678593B2
JPH0678593B2 JP1049998A JP4999889A JPH0678593B2 JP H0678593 B2 JPH0678593 B2 JP H0678593B2 JP 1049998 A JP1049998 A JP 1049998A JP 4999889 A JP4999889 A JP 4999889A JP H0678593 B2 JPH0678593 B2 JP H0678593B2
Authority
JP
Japan
Prior art keywords
gas
pressure
anode
cathode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1049998A
Other languages
Japanese (ja)
Other versions
JPH02232386A (en
Inventor
功 原田
徳幸 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1049998A priority Critical patent/JPH0678593B2/en
Publication of JPH02232386A publication Critical patent/JPH02232386A/en
Publication of JPH0678593B2 publication Critical patent/JPH0678593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は三弗化窒素(NF3)ガスや弗素(F2)ガス製造
方法に関する。更に詳しくは、溶融塩電解法によるNF3
ガスやF2ガスの製造方法に関する。
The present invention relates to a method for producing nitrogen trifluoride (NF 3 ) gas or fluorine (F 2 ) gas. More specifically, NF 3 by the molten salt electrolysis method
The present invention relates to a method for producing gas or F 2 gas.

〔従来の技術及び発明が解決しようとする課題〕 溶融塩電解法によってNF3ガスやF2ガスを製造する場
合、通常、NH4F・xHFを加熱・溶融した状態で電解しNF3
を製造する方法や、KF・xHFを加熱・溶融した状態で電
解しF2を製造する方法が一般的である。このような方法
は、例えば第8図に示す如き電解槽を使用し、陽極から
発生した粗NF3ガスまたは粗F2ガスを第7図に示す如き
捕集装置に導き、NF3またはF2を液化・捕集する方法で
製造されている。
[Problems to be Solved by Conventional Techniques and Inventions] When producing NF 3 gas or F 2 gas by a molten salt electrolysis method, NH 4 F ・ xHF is usually electrolyzed in a heated and molten state to produce NF 3
In general, a method for producing F 2 and a method for producing F 2 by electrolyzing KF · xHF in a heated and molten state. Such methods, using such electrolytic cell shown in FIG. 8 for example, lead to crude NF 3 gas or crude F 2 gas generated from the anode such as collecting device shown in Figure 7, NF 3 or F 2 It is manufactured by the method of liquefying and collecting.

即ち、電解槽中の陽極2と陰極4は隔板6で隔離されて
いて、空間部(気相部)はそれぞれ陽極室3及び陰極室
5を構成している。しかして、隔板6は陽極2から発生
する粗NF3ガスまたは粗F2ガスと陰極4から発生する水
素(H2)ガスが混合すると爆発を引き起こすので、この
混合を防止するために設けられているものである。
That is, the anode 2 and the cathode 4 in the electrolytic cell are separated by the partition plate 6, and the space portion (vapor phase portion) constitutes the anode chamber 3 and the cathode chamber 5, respectively. The partition plate 6 is provided to prevent the mixing because the crude NF 3 gas or the crude F 2 gas generated from the anode 2 and the hydrogen (H 2 ) gas generated from the cathode 4 cause an explosion. It is what

しかし、隔板6の電解液7中へ浸液している部分は、陽
極2から陰極4へ通電しないので、この部分の電極は電
極としての機能を果たさない。従って、電極の電流効率
を低下させないためには、隔板6の浸液部は極力小さい
ことが望ましく、通常、この浸液部は30〜100mm程度で
実施される。
However, since the part of the partition plate 6 that is immersed in the electrolytic solution 7 does not conduct electricity from the anode 2 to the cathode 4, the electrode of this part does not function as an electrode. Therefore, in order not to reduce the current efficiency of the electrodes, it is desirable that the liquid immersion portion of the partition plate 6 is as small as possible, and normally this liquid immersion portion is carried out at about 30 to 100 mm.

また、電解中は陽極室3及び陰極室5へはそれぞれ窒素
(N2)ガスやヘリウム(He)ガス等の不活性ガスをキャ
リヤーガスとして導入している。
Further, during electrolysis, an inert gas such as nitrogen (N 2 ) gas or helium (He) gas is introduced as a carrier gas into the anode chamber 3 and the cathode chamber 5, respectively.

ところが、電解中に陽極室3と陰極室5との間に差圧が
生ずる場合が多く、この差圧によって、電解液7は陽極
室3と陰極室5において、液面の差が発生する。しかし
て、上記の差圧が大きくなると、陽極室3または陰極室
5の一方の液面が、隔板6の最下部より下に位置するよ
うになる。
However, a pressure difference is often generated between the anode chamber 3 and the cathode chamber 5 during electrolysis, and due to this pressure difference, the electrolyte 7 has a difference in liquid level between the anode chamber 3 and the cathode chamber 5. Then, when the above-mentioned differential pressure becomes large, one of the liquid surfaces of the anode chamber 3 and the cathode chamber 5 comes to be positioned below the lowermost portion of the partition plate 6.

このような状態になると陽極室3と陰極室5の隔離が不
十分となり、陽極2から発生するNF3ガスまたはF2ガス
と陰極4から発生するH2ガスが混合し、爆発を引き起こ
すことになる。ところが、隔板6の浸液部は前記の通り
30〜100mm程度と僅かであるので、陽極室3と陰極室5
の差圧が水柱60〜200mm程度の小さな差圧でも、NF3ガス
またはF2ガスとH2ガスとが混合し、爆発の可能性が生ず
るので、上記差圧は極力小さな範囲に抑えなければなら
ないのである。
In such a state, the isolation between the anode chamber 3 and the cathode chamber 5 becomes insufficient, and the NF 3 gas or F 2 gas generated from the anode 2 and the H 2 gas generated from the cathode 4 are mixed with each other to cause an explosion. Become. However, the liquid immersion part of the partition plate 6 is as described above.
It is as small as about 30 to 100 mm, so the anode chamber 3 and the cathode chamber 5
Even if the differential pressure of the column is a small differential pressure of about 60 to 200 mm of water column, NF 3 gas or F 2 gas and H 2 gas are mixed, and there is a possibility of explosion.Therefore, the above differential pressure must be kept as small as possible. It doesn't happen.

尚、NF3ガスまたはF2ガスとH2ガスとの混合ガスは、爆
発限界が非常に広いので、この両者の混合ガスは非常に
爆発の可能性が高く危険である。
Since the explosion limit of the NF 3 gas or the mixed gas of the F 2 gas and the H 2 gas is very wide, the mixed gas of the both has a high possibility of explosion and is dangerous.

陽極室3と陰極室5との間に差圧が生ずる原因について
は、種々の要因が考えられるが、以下の理由によるもの
と考えられる。即ち、 1)陽極2から発生するガス量と陰極4から発生するガ
ス量が異なること。
The cause of the differential pressure between the anode chamber 3 and the cathode chamber 5 may be various factors, but is considered to be due to the following reasons. That is, 1) The amount of gas generated from the anode 2 and the amount of gas generated from the cathode 4 are different.

2)陽極2から発生するガスは前述の通り捕集装置に導
かれ、ここでNF3またはF2は冷却・液化して捕集される
ので、この系においてガス量が大幅に少なくなる。従っ
て捕集器21内の圧力が低下し、その結果、陽極室3の圧
力変動を及ぼすこと。3)また、捕集容器21は液体窒素
等を冷媒25として冷却されているので、冷媒容器24中の
冷媒量の変動によりNF3またはF2の液化速度が変化し、
その結果陽極室3に圧力変動を及ぼすこと。
2) The gas generated from the anode 2 is guided to the collecting device as described above, where NF 3 or F 2 is cooled and liquefied and collected, so that the amount of gas in this system is significantly reduced. Therefore, the pressure in the collector 21 is lowered, and as a result, the pressure in the anode chamber 3 is changed. 3) Further, since the collection container 21 is cooled by using liquid nitrogen or the like as the refrigerant 25, the liquefaction rate of NF 3 or F 2 changes due to the fluctuation of the refrigerant amount in the refrigerant container 24,
As a result, exert a pressure fluctuation on the anode chamber 3.

4)陰極4から発生するガスはH2ガスが主成分である
が、弗化水素(HF)等を含有しているので、陰極発生ガ
ス出口管20にこれが除去のための洗浄工程(図示してい
ない)が設けてあ。従って、この洗浄工程での圧力変動
が陰極室5の圧力に影響を及ぼすこと。などである。
4) The gas generated from the cathode 4 is mainly composed of H 2 gas, but since it contains hydrogen fluoride (HF), etc., the cathode generation gas outlet pipe 20 has a cleaning process for removing it (see the figure). Not). Therefore, the pressure fluctuation in the cleaning process affects the pressure in the cathode chamber 5. And so on.

これらによる圧力変動を防止する目的で、前記の通り電
解中は陽極室3及び陰極室5へキャリヤーガスを連続的
に導入しているわけである。(陽極室3及び陰極室5へ
はそれぞれ圧力計14a、14cを設けて圧力を監視しなが
ら、導入するキャリヤーガス量を流量計12a、12c及び弁
9a、9bで調節している。) しかしながら、陽極室3と陰極室5の間の差圧は前述の
通り極めて小さい範囲に抑えなければならないので、キ
ャリヤーガスの導入のみでは爆発を防止できないのであ
る。
As described above, the carrier gas is continuously introduced into the anode chamber 3 and the cathode chamber 5 during the electrolysis in order to prevent pressure fluctuations due to these. (The anode chamber 3 and the cathode chamber 5 are provided with pressure gauges 14a and 14c, respectively, and the amount of carrier gas to be introduced is controlled by the flowmeters 12a and 12c and the valves while monitoring the pressure.
It is adjusted with 9a and 9b. However, since the differential pressure between the anode chamber 3 and the cathode chamber 5 must be suppressed to an extremely small range as described above, the introduction of the carrier gas cannot prevent the explosion.

そこで第9図に示す如き、例えば、キャリヤーガス陽極
室導入管10に圧力自動制御弁17を設けて、キャリヤーガ
スの導入量を自動制御し、陽極室3と陰極室5の差圧を
極力抑制する方法も採用されている。しかしこの方法
は、陽極室3内の圧力と陰極室5内の圧力を検出し、こ
れを電気信号等に変換して圧力自動制御ユニット18に伝
達し、圧力自動制御弁17の開閉度を自動調節する方法で
ある。従って、陽極室3内及び陰極室5内の圧力変動の
電気信号への変換の遅れ(タイムラグ)や、陽極室3内
及び陰極室5内の圧力検出精度に欠けるという点で満足
な結果が得られず、電解槽における爆発を完全に防止す
るに至っていないのが実情である。
Therefore, as shown in FIG. 9, for example, a carrier gas anode chamber introducing pipe 10 is provided with an automatic pressure control valve 17 to automatically control the introduction amount of the carrier gas to suppress the differential pressure between the anode chamber 3 and the cathode chamber 5 as much as possible. The method of doing is also adopted. However, according to this method, the pressure in the anode chamber 3 and the pressure in the cathode chamber 5 are detected, converted into an electric signal and transmitted to the automatic pressure control unit 18, and the opening / closing degree of the automatic pressure control valve 17 is automatically adjusted. It is a method of adjusting. Therefore, satisfactory results are obtained in terms of a delay (time lag) in conversion of pressure fluctuations in the anode chamber 3 and the cathode chamber 5 into an electric signal, and lack of pressure detection accuracy in the anode chamber 3 and the cathode chamber 5. In reality, the explosion has not been completely prevented in the electrolytic cell.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者等は上記状況に鑑み、溶融塩電解法によるガス
の製造において、電解槽での爆発を完全に解消すること
を目的として鋭意検討を重ねた結果、陽極室及び陰極室
に導入するキャリヤーガス導入管を単一の弁より分岐さ
せれば、上記目的が達成できることを見い出し本発明を
完成するに至ったものである。
In view of the above situation, the present inventors have made extensive studies in the production of gas by the molten salt electrolysis method for the purpose of completely eliminating the explosion in the electrolytic cell, and as a result, a carrier to be introduced into the anode chamber and the cathode chamber. The present invention has been completed by finding that the above object can be achieved by branching the gas introduction pipe from a single valve.

即ち本発明は、溶融塩電解法によるガスの製造におい
て、陽極室及び陰極室が単数または複数であり、各陽極
室及び陰極室に導入するキャリヤーガス導入管が単一の
弁から複数に分岐され、各分岐されたキャリヤーガス導
入管は逆止弁を経て各陽極室及び各陰極室の気相部にそ
れぞれ接続されていて、該キャリヤーガスを単一の弁に
供給して導入することを特徴とする溶融塩電解法による
ガスの製造方法を提供するものである。
That is, the present invention, in the production of gas by the molten salt electrolysis method, the anode chamber and the cathode chamber are singular or plural, and the carrier gas introduction pipe introduced into each of the anode chamber and the cathode chamber is branched from a single valve into a plurality. The branched carrier gas introduction pipes are connected to the gas phase portions of the anode chambers and the cathode chambers via check valves, respectively, and the carrier gas is supplied to and introduced into a single valve. The present invention provides a method for producing a gas by the molten salt electrolysis method.

〔発明の詳細な開示〕[Detailed Disclosure of the Invention]

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

溶融塩電解法によってNF3ガスを製造する場合、電解槽
の陽極からはNF3とN2との混合ガスが発生し、陰極から
はH2ガスが発生する。またF2ガスを製造する場合、電解
槽の陽極からはF2ガスが発生し、陰極からはH2ガスが発
生する。そして、陽極から発生したNF3とN2との混合ガ
スまたはF2ガスを冷却して、NF3またはF2を液化または
固化して捕集する。
When NF 3 gas is produced by the molten salt electrolysis method, a mixed gas of NF 3 and N 2 is generated from the anode of the electrolytic cell, and H 2 gas is generated from the cathode. Further, in the case of producing F 2 gas, F 2 gas is generated from the anode of the electrolytic cell and H 2 gas is generated from the cathode. Then, the mixed gas of NF 3 and N 2 or the F 2 gas generated from the anode is cooled, and NF 3 or F 2 is liquefied or solidified and collected.

上記冷却には、通常、液化ガスが使用されるが、NF3
ス製造の場合には液体窒素が好ましく、F2ガス製造の場
合には液体窒素または液体ヘリウム、あるいは液体窒素
と液体ヘリウムの混合液化ガスが適当である。
A liquefied gas is usually used for the cooling, but liquid nitrogen is preferable in the case of NF 3 gas production, liquid nitrogen or liquid helium in the case of F 2 gas production, or a mixture of liquid nitrogen and liquid helium. Liquefied gas is suitable.

従って、本発明で使用するキャリヤーガスは、NF3また
はF2が液化する温度において液化または固化しないもの
であって、かつ、不活性なガスから選択される。かかる
キャリヤーガスとしては、NF3ガス製造の場合にはN2
スまたはヘリウムガスが使用され、F2ガス製造の場合に
はヘリウムガスが使用される。
Therefore, the carrier gas used in the present invention is selected from inert gases which do not liquefy or solidify at the temperature at which NF 3 or F 2 liquefies. As such a carrier gas, N 2 gas or helium gas is used in the case of NF 3 gas production, and helium gas is used in the case of F 2 gas production.

本発明において使用する電解槽を例示すると、第1図ま
たは第3図に示す形状のものが挙げられる。第1図及び
第3図は電解槽の正面断面図であり、第2図は第1図に
おけるA−A′矢視した、電極(陽極及び陰極)並びに
隔板の配置を示す平面図、第4図は第3図における電極
並びに隔板の配置を示す、第2図と同様な平面図であ
る。
Examples of the electrolytic cell used in the present invention include those having a shape shown in FIG. 1 or 3. 1 and 3 are front cross-sectional views of the electrolytic cell, and FIG. 2 is a plan view showing the arrangement of electrodes (anode and cathode) and partition plates, as viewed from the direction of arrows AA ′ in FIG. FIG. 4 is a plan view similar to FIG. 2, showing the arrangement of electrodes and partition plates in FIG.

第1図に示す電解槽は、陽極2と陰極4が各1枚で1対
をなすもので、電解槽の基本形である。第3図に示す電
解槽は、陽極が2a及び2b、陰極が4a及4bと各2枚(2
対)からなっており、第1図に示す形状の電解槽を横に
直列に接続した形状をなすものであり、このように電極
を次々に何対も接続した形状も可能である。
The electrolytic cell shown in FIG. 1 is a basic type of electrolytic cell in which one anode 2 and one cathode 4 form a pair. The electrolytic cell shown in Fig. 3 has two anodes (2a and 2b) and four cathodes (4a and 4b) (2 sheets each).
2), which has a shape in which the electrolytic cells having the shape shown in FIG. 1 are horizontally connected in series, and a shape in which many pairs of electrodes are connected one after another is also possible.

また、電極並びに隔板の配置を、第5図または第6図の
ようにした形状でも差支えない。
Further, the electrodes and the partition plates may be arranged as shown in FIG. 5 or FIG.

要は本発明においては、キャリヤーガス導入管10、11が
各陽極室3及び陰極室5の気相部にそれぞれ設けられて
おり、該各キャリヤーガス導入管10、11は単一の弁9よ
り分岐されたものであり、各分岐されたキャリヤーガス
導入管10、11は、逆止弁13を経て上記気相部にそれぞれ
接続されていなければならない。
In short, in the present invention, the carrier gas introducing pipes 10 and 11 are provided in the gas phase portions of the anode chamber 3 and the cathode chamber 5, respectively, and the carrier gas introducing pipes 10 and 11 are provided by a single valve 9. Each of the branched carrier gas introduction pipes 10 and 11 must be connected to the gas phase portion via a check valve 13 in a branched manner.

従ってキャリヤーガス導入管は、第1図及び第2図では
2本、第3図及び第4図では4本、第5図では2本、6
図では3本それぞれ必要である。尚、分岐された各キャ
リヤーガス導入管10、11は、その長さ及び口径がなるべ
く等しいことが望ましい。
Therefore, there are two carrier gas introduction pipes in FIGS. 1 and 2, four in FIGS. 3 and 4, and two in FIG.
In the figure, three are required respectively. It is desirable that the branched carrier gas introduction pipes 10 and 11 have the same length and diameter.

また、各キャリヤーガス導入管10、11にはそれぞれ流量
計12を設けて置くのが好ましい。流量計12は外部から制
御を行うことはなく、電解槽の陽極室及び陰極室の液面
の変化に対する、圧力の変動によってキャリヤーガスが
単一の弁9を通ってすばやく液面の変化に対応するので
ある。したがって、流量計12は、むしろ、プロセスの監
視を行うために取りつけるもので、フローモニター等の
流量指示計であればよい。尚、この流量計12はキャリヤ
ーガス導入の際の圧力損失のなるべく小さい形式のも
の、例えばローターメーター等が望ましい。
In addition, it is preferable that a flow meter 12 is provided in each of the carrier gas introduction pipes 10 and 11. The flow meter 12 does not control from the outside, and the carrier gas quickly responds to the change in the liquid level of the anode chamber and the cathode chamber of the electrolytic cell through the single valve 9 due to the change in the pressure. To do. Therefore, the flow meter 12 is rather attached to monitor the process, and may be a flow indicator such as a flow monitor. The flow meter 12 is preferably of a type in which the pressure loss at the time of introducing the carrier gas is as small as possible, for example, a rotor meter or the like.

本発明は上記の通り各キャリヤーガス導入管10、11には
それぞれ逆止弁13が設けてあるが、これは電解槽におい
て何れかの電極からのガスの発生量が急増した場合に、
該急増したガスがキャリヤーガス導入管を経て、他の電
極からの発生ガスと混合する(陽極2からの発生ガスで
あるNF3ガスまたはF2ガスと陰極4からの発生ガスであ
るH2ガス混合)のを防止するためである。
In the present invention, as described above, each carrier gas introduction pipe 10, 11 is provided with a check valve 13, respectively, which is provided when the amount of gas generated from any of the electrodes in the electrolytic cell increases sharply.
The rapidly increased gas is mixed with the gas generated from the other electrode through the carrier gas introduction pipe (NF 3 gas or F 2 gas which is the gas generated from the anode 2 and H 2 gas which is the gas generated from the cathode 4). This is to prevent (mixing).

本発明においては、キャリヤーガスは単一の弁9に供給
して各陽極室3及び陰極室5に導入されるが、該キャリ
ヤーガスは高圧のガスボンベから取り出す場合、PSA法
で取り出した低圧の窒素をキャリヤーガスとして使用す
る場合または冷媒として使用する液体窒素が気化した後
の低圧のキャリヤーガスを使用する場合などである。こ
の中でキャリヤーガスを高圧のガスボンベから取り出し
て使用する場合は、高圧のキャリヤーガスを直接単一の
弁9に供給するのは危険でもあり、また、キャリヤーガ
スの導入量も調節しにくいので、単一の弁9のガス入口
側に圧力調節器8を設け、キャリヤーガスの圧力を適当
な圧力まで低下して、単一の弁9に供給する。したがっ
て、キャリヤーガスに低圧の窒素を使用する場合は、圧
力調節器8を設ける必要はない。この際のキャリヤーガ
スの圧力は、圧力調整器8の二次側の圧力で1〜5kg/
cm−G程度が好ましい。
In the present invention, the carrier gas is supplied to the single valve 9 and introduced into each of the anode chamber 3 and the cathode chamber 5. When the carrier gas is taken out from the high pressure gas cylinder, the low pressure nitrogen taken out by the PSA method is used. Is used as a carrier gas or a low-pressure carrier gas after liquid nitrogen used as a refrigerant is vaporized. When the carrier gas is taken out of the high-pressure gas cylinder and used, it is dangerous to directly supply the high-pressure carrier gas to the single valve 9, and it is difficult to control the introduction amount of the carrier gas. A pressure regulator 8 is provided on the gas inlet side of the single valve 9 so that the pressure of the carrier gas is reduced to an appropriate pressure and supplied to the single valve 9. Therefore, when low-pressure nitrogen is used as the carrier gas, it is not necessary to provide the pressure regulator 8. The pressure of the carrier gas at this time is 1 to 5 kg / in the pressure on the secondary side of the pressure regulator 8.
A cm 2 -G level is preferred.

本発明においては、キャリヤーガスの導入量は電解槽の
大きさや電極からのガスの発生量等によって異なるが、
各陽極室3及び陰極室5当たり1〜10Nl/minで実施され
る。
In the present invention, the amount of carrier gas introduced varies depending on the size of the electrolytic cell, the amount of gas generated from the electrodes, etc.
It is carried out at 1 to 10 Nl / min for each anode chamber 3 and cathode chamber 5.

本発明では、電解槽は第7図に示す如き捕集装置と陽極
発生ガス出口管19で接続して使用されるが、かかる状態
で溶融塩電解を行なえば、キャリヤーガスが単一の弁9
より分岐された、キャリヤーガス陽極室導入管10及びキ
ャリヤーガス陰極室導入管11により、各陽極室3及び陰
極室5に導入されるので、従来の各陽極室3及び陰極室
5で差圧を発生する要因が発生しても、それに対応して
自動的にキャリヤーガスの導入量が変化するので、これ
によって各陽極室3及び陰極室5内の圧力は同一圧力に
維持されて差圧の発生を防止できるのである。
In the present invention, the electrolytic cell is used by connecting it with a collector as shown in FIG. 7 by means of an anode generated gas outlet pipe 19, but if molten salt electrolysis is performed in such a state, a single carrier gas valve 9 is used.
Since the carrier gas anode chamber introducing pipe 10 and the carrier gas cathode chamber introducing pipe 11 are further branched, they are introduced into the respective anode chambers 3 and the cathode chambers 5, so that the pressure difference between the conventional anode chambers 3 and the cathode chambers 5 is increased. Even if a factor is generated, the amount of carrier gas introduced automatically changes in response to this, so that the pressure in each anode chamber 3 and cathode chamber 5 is maintained at the same pressure, and a differential pressure is generated. Can be prevented.

〔実施例〕〔Example〕

以下、実施例及び比較例により本発明をより具体的に説
明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1 第1図に示す電解槽に第7図に示す捕集装置を連結し
て、溶融塩電解法によりNF3ガスの製造を行なった。
尚、電解槽本体1は大きさが幅300mm、奥行き300mm、高
さ、300mmで、内面がテフロンライニングされており、
隔板6もテフロンライニングで上部よりの長さは120mm
とした。
Example 1 NF 3 gas was produced by a molten salt electrolysis method by connecting the collector shown in FIG. 7 to the electrolytic cell shown in FIG.
The electrolytic cell body 1 has a width of 300 mm, a depth of 300 mm, a height of 300 mm, and the inner surface is Teflon-lined.
The partition plate 6 is also Teflon lining and the length from the top is 120 mm.
And

上記の電解槽に酸性弗化アンモニウム(NH4F・HF)と弗
化水素(HF)をHF/NH4モル比が1.7となるように液面が
上部より70mmまで仕込んだのち、これを120〜125℃の温
度に昇温しNH4F・HF系の電解液を形成した。また、捕集
容器24は液体窒素を冷媒として冷却した。
Acidic ammonium fluoride (NH 4 F · HF) and hydrogen fluoride (HF) were charged into the above electrolytic cell so that the HF / NH 4 molar ratio would be 1.7, and then the liquid surface up to 70 mm from the top. The temperature was raised to a temperature of ~ 125 ° C to form an NH 4 F · HF-based electrolytic solution. Further, the collection container 24 was cooled using liquid nitrogen as a refrigerant.

しかる後、単一の弁9にキャリヤーガスとして圧力が2
kg/cm−GのN2ガスを1Nl/minの流量で供給して、陽
極室3及び陰極室5へ導入した。この状態でN2ガスの陽
極室3への導入量は450Nml/min、陰極室5への導入量は
550Nml/minであり、陽極室3内と陰極室5内の圧力は共
に3×10-3kg/cm−Gあり差圧はなかった。
After that, the pressure of 2 as carrier gas is applied to the single valve 9.
N 2 gas of kg / cm 2 -G was supplied at a flow rate of 1 Nl / min and introduced into the anode chamber 3 and the cathode chamber 5. In this state, the amount of N 2 gas introduced into the anode chamber 3 is 450 Nml / min, and the amount introduced into the cathode chamber 5 is
The pressure was 550 Nml / min, the pressure inside the anode chamber 3 and the pressure inside the cathode chamber 5 were both 3 × 10 −3 kg / cm 2 -G, and there was no differential pressure.

この状態で陽極2より陰極4へ直流の電流を50アンペア
流して電解を50時間行なった。
In this state, a direct current of 50 ampere was passed from the anode 2 to the cathode 4 to carry out electrolysis for 50 hours.

電解により陽極2からは約70Nml/minのNF3ガスと約30Nm
l/minのH2ガスが発生し、陰極4からは約300Nml/minのH
2ガスが発生した。電解中におけるキャリヤーガスの導
入量は、陽極室3へは650〜700Nml/minであり、陰極室
5へは300〜350Nml/minであった。また、陽極室3内の
圧力は4×10-3〜5×10-3kg/cm−G、陰極室5内の
圧力は5×10-3〜6×10-3kg/cm−Gの範囲で変動し
ており、差圧は殆ど生じなかった。
About 70 Nml / min of NF 3 gas and about 30 Nm from anode 2 by electrolysis.
l / min H 2 gas is generated, and about 300 Nml / min H 2 is emitted from the cathode 4.
2 gas was generated. The amount of carrier gas introduced during electrolysis was 650 to 700 Nml / min into the anode chamber 3 and 300 to 350 Nml / min into the cathode chamber 5. The pressure in the anode chamber 3 is 4 × 10 −3 to 5 × 10 −3 kg / cm 2 −G, and the pressure in the cathode chamber 5 is 5 × 10 −3 to 6 × 10 −3 kg / cm 3 −. It fluctuated in the range of G, and almost no differential pressure was generated.

実施例2 実施例1で使用した装置を用いて、溶融塩電解法により
F2ガスの製造を行なった。ただし、電解槽本体1及び隔
板6の材質はニッケル製とした。
Example 2 Using the apparatus used in Example 1, the molten salt electrolysis method was used.
F 2 gas was produced. However, the electrolytic cell body 1 and the partition plate 6 were made of nickel.

上記の電解槽に酸性弗化カリウム(KF・HF)とHFをHF/K
Fモル比が2.0となるように液面が上部より70mmまで仕込
んだのち、これを90〜100℃の温度に昇温しKF・HF系の
電解液を形成した。
HF / K of acidic potassium fluoride (KF ・ HF) and HF in the above electrolyzer
After the liquid surface was charged to 70 mm from the top so that the F molar ratio was 2.0, this was heated to a temperature of 90 to 100 ° C. to form a KF · HF electrolyte.

しかる後、単一の弁9にキャリヤーガスとして圧力が2
kg/cm−GのNeガスを2Nl/minの流量で供給して、陽
極室3及び陰極室5へ導入した。この状態でHeガスの陽
極室3への導入量は900Nml/min、陰極室5への導入量は
1100Nml/minであり、陽極室3内と陰極室5内の圧力は
共に4×10-3kg/cm−Gあり差圧はなかった。
After that, the pressure of 2 as carrier gas is applied to the single valve 9.
Ne gas of kg / cm 2 -G was supplied at a flow rate of 2 Nl / min and introduced into the anode chamber 3 and the cathode chamber 5. In this state, the amount of He gas introduced into the anode chamber 3 is 900 Nml / min, and the amount introduced into the cathode chamber 5 is
The pressure in the anode chamber 3 and the cathode chamber 5 were both 4 × 10 −3 kg / cm 2 -G and there was no differential pressure.

この状態で陽極2より陰極4へ直流の電流を30アンペア
流して電解を50時間行なった。
In this state, a direct current of 30 amps was passed from the anode 2 to the cathode 4 to carry out electrolysis for 50 hours.

電解により陽極2からは約200Nml/minのF3ガス発生し、
陰極4からは約220Nml/minのH2ガスが発生した。電解中
におけるキャリヤーガスの導入量は、陽極室3へは850
〜1050Nml/minであり、陰極室5へは950〜1150Nml/min
であった。また、陽極室3内の圧力は3×10-3〜5×10
-3kg/cm−G、陰極室5内の圧力は3×10-3〜5×10
-3kg/cm−Gの範囲で変動しており、差圧は殆ど生じ
なかった。
About 200 Nml / min of F 3 gas is generated from the anode 2 by electrolysis,
About 220 Nml / min of H 2 gas was generated from the cathode 4. The amount of carrier gas introduced during electrolysis is 850 in the anode chamber 3.
~ 1050 Nml / min, and cathode chamber 5 950 ~ 1150 Nml / min
Met. Moreover, the pressure in the anode chamber 3 is 3 × 10 −3 to 5 × 10 5.
-3 kg / cm 2 -G, the pressure in the cathode chamber 5 is 3 × 10 -3 to 5 × 10
It fluctuated within the range of -3 kg / cm 2 -G, and almost no differential pressure occurred.

比較例1 キャリヤーガスの導入方法を第8図に示すように変更し
た以外は、実施例1と同様な方法によりNF3ガスの製造
を行なった。
Comparative Example 1 NF 3 gas was produced in the same manner as in Example 1 except that the method of introducing the carrier gas was changed as shown in FIG.

即ち、キャリヤーガスとしてN2ガスを陽極室3へは450N
ml/minの流量で弁9aを調節して導入し、陰極室5へは55
0Nml/minの流量で弁9bを調節して導入した。尚、この時
の陽極室3内と陰極室5内の圧力は共に3×10-3kg/cm
−Gあり、差圧はなかった。
That is, N 2 gas as a carrier gas is delivered to the anode chamber 3 by 450N.
The valve 9a is adjusted and introduced at a flow rate of ml / min, and 55 is introduced into the cathode chamber 5.
The valve 9b was adjusted and introduced at a flow rate of 0 Nml / min. The pressure in the anode chamber 3 and the cathode chamber 5 at this time are both 3 × 10 -3 kg / cm 2.
There was 2- G and there was no differential pressure.

この状態で実施例1と同様に、陽極2より陰極4へ直流
の電流を50アンペア流して電解を開始した。電解開始後
は陽極室3内の圧力と陰極室5内の圧力に差圧が生じな
いように、陽極室3へのキャリヤーガス導入量を調節し
ながら電解を行なったが、電解開始後約1時間10分後に
差圧が7×10-3となり、爆発の危険が生じたので電解を
中止せざるを得なかった。
In this state, in the same manner as in Example 1, a direct current of 50 ampere was passed from the anode 2 to the cathode 4 to start electrolysis. After the electrolysis was started, the electrolysis was performed while adjusting the amount of carrier gas introduced into the anode chamber 3 so that a pressure difference between the pressure in the anode chamber 3 and the pressure in the cathode chamber 5 did not occur. After 10 minutes, the differential pressure became 7 × 10 −3 , and there was a danger of explosion, so the electrolysis had to be stopped.

比較例2 キャリヤーガスの導入方法を第9図に示すように変更し
た以外は、実施例1と同様な方法によりNF3ガスの製造
を行なった。
Comparative Example 2 NF 3 gas was produced in the same manner as in Example 1 except that the method of introducing the carrier gas was changed as shown in FIG.

即ち、キャリヤーガスとしてN2ガスを陰極室5へ550Nml
/minの流量で弁9bを調節して一定量導入し、陽極室3へ
は陰極室5内の圧力と同圧となるように、圧力自動制御
ユニット18を作動させ圧力自動制御弁17を調節してN2
スを導入した。尚、この状態で陽極室3内と陰極室5内
の圧力は共に3×10-3kg/cm2−Gあった。
That is, 550 Nml of N 2 gas as a carrier gas to the cathode chamber 5.
Adjust the valve 9b at a flow rate of / min to introduce a fixed amount, and operate the automatic pressure control unit 18 and adjust the automatic pressure control valve 17 so that the pressure in the anode chamber 3 becomes the same as the pressure in the cathode chamber 5. Then, N 2 gas was introduced. In this state, the pressure in the anode chamber 3 and the pressure in the cathode chamber 5 were both 3 × 10 −3 kg / cm 2 -G.

この状態で実施例1と同様に、陽極2より陰極4へ直流
の電流を50アンペア流して電解を開始した。電解開始後
は陽極室3内の圧力と陰極室5内の圧力に差圧が生じな
いように、陽極室3へのキャリヤーガス導入量を圧力自
動制御ユニット18で自動調節しながら電解を行なった
が、圧力自動制御ユニット18の電気信号のタイムラグ等
により差圧が生じ、電解開始後約2時間後にその差圧が
7×10-3kg/cm−Gとなり、爆発の危険が生じたので
電解を中止せざるを得なかった。
In this state, in the same manner as in Example 1, a direct current of 50 ampere was passed from the anode 2 to the cathode 4 to start electrolysis. After the start of electrolysis, electrolysis was performed while automatically adjusting the amount of carrier gas introduced into the anode chamber 3 by the automatic pressure control unit 18 so that a pressure difference between the pressure in the anode chamber 3 and the pressure in the cathode chamber 5 did not occur. However, due to the time lag of the electric signal of the automatic pressure control unit 18, a differential pressure is generated, and the differential pressure becomes 7 × 10 -3 kg / cm 2 -G about 2 hours after the start of electrolysis, and there is a danger of explosion. I had no choice but to stop electrolysis.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明は溶融塩電解法によ
るガスの製造に関し、各陽極室及び陰極室へのキャリヤ
ーガスの導入を、単一の弁から複数に分岐されたキャリ
ヤーガス導入管から、それぞれの陽極室及び陰極室へ導
入するという極めて簡単な方法である。従来の方法で
は、陽極室と陰極室の間に差圧が発生し、その結果、陽
極から発生したガスと陰極から発生したガスが混合し
て、電解中に爆発を惹起するという重大な問題があっ
た。これに対し本発明の方法を採用すれば、この電解中
の爆発という問題を完全に解消することができるのであ
る。とりわけ陽極と陰極で発生するガス量が異なるNF3
製造等の溶融塩電解では有効である。
As described in detail above, the present invention relates to the production of gas by a molten salt electrolysis method, and the introduction of carrier gas into each anode chamber and cathode chamber is performed from a carrier gas introducing pipe branched from a single valve into a plurality of branches. This is a very simple method of introducing into the respective anode chamber and cathode chamber. In the conventional method, a pressure difference is generated between the anode chamber and the cathode chamber, and as a result, the gas generated from the anode and the gas generated from the cathode are mixed, which causes a serious problem of causing an explosion during electrolysis. there were. On the other hand, if the method of the present invention is adopted, the problem of explosion during electrolysis can be completely solved. Especially, the amount of gas generated at the anode and cathode is different NF 3
It is effective in molten salt electrolysis such as manufacturing.

しかも、本発明の方法は上記の通り極めて簡単な方法で
あって、従来差圧防止のために使用していた、圧力自動
制御ユニットや圧力自動制御弁等を使用する必要もな
い。
Moreover, the method of the present invention is an extremely simple method as described above, and it is not necessary to use an automatic pressure control unit, an automatic pressure control valve, etc., which have been used to prevent differential pressure.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第3図は、本発明に使用する電解槽の正面断
面図であり、第2図は第1図におけるA−A′矢視し
た、電極(陽極及び陰極)並びに隔板の配置を示す平面
図、第4図は第3図における電極並びに隔板の配置を示
す、第2図と同様な平面図である。第5図及び第6図
は、電極並びに隔板の配置の他の実施態様を示す、第2
図及び第4図と同様な平面図である。 第7図は、電解槽の陽極から発生した粗NF3ガスまたは
粗F2ガス中の、NF3またはF2を捕集する装置の1例を示
す図である。 第8図及び第9図は、従来の電解槽の正面断面図であ
る。 図において、 1……電解槽本体、2……陽極 3……陽極室、4……陰極 5……陰極室、6……隔板 7……電解液、8……圧力調整器 9……単一の弁、9a、9b……弁 10……キャリヤーガス陽極室導入管 11……キャリヤーガス陰極室導入管 12……流量計、13……逆止弁 14……圧力計 17……圧力自動制御弁 18……圧力自動制御ユニット 19……陽極発生ガス出口管 20……陰極発生ガス出口管 21……捕集容器、22、23……弁 24……冷媒容器、25……冷媒 26……排気管 を示す。
1 and 3 are front cross-sectional views of an electrolytic cell used in the present invention, and FIG. 2 is an arrangement of electrodes (anode and cathode) and a partition plate taken along the line AA 'in FIG. FIG. 4 is a plan view similar to FIG. 2, showing the arrangement of electrodes and partition plates in FIG. 5 and 6 show another embodiment of the arrangement of electrodes and diaphragms, FIG.
It is a top view similar to FIG. And FIG. FIG. 7 is a diagram showing an example of an apparatus for collecting NF 3 or F 2 in crude NF 3 gas or crude F 2 gas generated from the anode of the electrolytic cell. FIG. 8 and FIG. 9 are front sectional views of a conventional electrolytic cell. In the figure, 1 ... Electrolyzer body, 2 ... Anode 3 ... Anode chamber, 4 ... Cathode 5 ... Cathode chamber, 6 ... Separator plate 7 ... Electrolyte solution, 8 ... Pressure regulator 9 ... Single valve, 9a, 9b …… Valve 10 …… Carrier gas anode chamber inlet pipe 11 …… Carrier gas cathode chamber inlet pipe 12 …… Flowmeter, 13 …… Check valve 14 …… Pressure gauge 17 …… Pressure Automatic control valve 18 …… Automatic pressure control unit 19 …… Anode generated gas outlet pipe 20 …… Cathode generated gas outlet pipe 21 …… Collection container, 22,23 …… Valve 24 …… Refrigerant container, 25 …… Refrigerant 26 …… Indicates an exhaust pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶融塩電解法によるガスの製造において、
陽極室及び陰極室が単数または複数であり、各陽極室及
び陰極室に導入するキャリヤーガス導入管が単一の弁か
ら複数に分岐され、各分岐されたキャリヤーガス導入管
は逆止弁を経て各陽極室及び陰極室の気相部にそれぞれ
接続されていて、該キャリヤーガスを単一の弁に供給し
て導入することを特徴とする溶融塩電解法によるガスの
製造方法。
1. In the production of gas by a molten salt electrolysis method,
The number of the anode chamber and the cathode chamber is one or more, and the carrier gas introducing pipes to be introduced into each anode chamber and the cathode chamber are branched from a single valve into a plurality, and each branched carrier gas introducing pipe is passed through a check valve. A method for producing gas by a molten salt electrolysis method, which is connected to a gas phase portion of each of the anode chamber and the cathode chamber, and supplies the carrier gas by supplying it to a single valve.
JP1049998A 1989-03-03 1989-03-03 Method for producing gas by molten salt electrolysis Expired - Fee Related JPH0678593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049998A JPH0678593B2 (en) 1989-03-03 1989-03-03 Method for producing gas by molten salt electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049998A JPH0678593B2 (en) 1989-03-03 1989-03-03 Method for producing gas by molten salt electrolysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3206831A Division JP2766845B2 (en) 1991-08-19 1991-08-19 Electrolytic cell

Publications (2)

Publication Number Publication Date
JPH02232386A JPH02232386A (en) 1990-09-14
JPH0678593B2 true JPH0678593B2 (en) 1994-10-05

Family

ID=12846676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049998A Expired - Fee Related JPH0678593B2 (en) 1989-03-03 1989-03-03 Method for producing gas by molten salt electrolysis

Country Status (1)

Country Link
JP (1) JPH0678593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065906B1 (en) * 2002-07-11 2011-09-19 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Apparatus for the generation of fluorine gas

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766845B2 (en) * 1991-08-19 1998-06-18 三井化学株式会社 Electrolytic cell
JPH0688267A (en) * 1992-09-08 1994-03-29 Mitsui Toatsu Chem Inc Electrolytic bath
CN1307325C (en) * 2000-04-07 2007-03-28 东洋炭素株式会社 Apparatus for generating fluorine gas
KR100519843B1 (en) 2002-05-29 2005-10-06 도요탄소 가부시키가이샤 Fluorine gas generator
GB0216828D0 (en) * 2002-07-19 2002-08-28 Boc Group Plc Apparatus and method for fluorine production
KR100533411B1 (en) 2002-11-08 2005-12-02 도요탄소 가부시키가이샤 Fluorine gas generator and method of electrolytic bath liquid level control
JP2005097667A (en) * 2003-09-24 2005-04-14 Air Liquide Japan Ltd Gaseous fluorine generator
JP4831557B2 (en) * 2004-09-27 2011-12-07 煕濬 金 Fluorine electrolyzer
EP1932949A4 (en) * 2005-08-25 2011-08-03 Toyo Tanso Co Fluorogas generator
JP5716288B2 (en) * 2010-04-16 2015-05-13 セントラル硝子株式会社 Fluorine gas generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065906B1 (en) * 2002-07-11 2011-09-19 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Apparatus for the generation of fluorine gas

Also Published As

Publication number Publication date
JPH02232386A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
JPH0678593B2 (en) Method for producing gas by molten salt electrolysis
FI60622B (en) BATTERY VARI HALOGEN KAN LAGRAS
CN101213325B (en) Electrolytic apparatus for producing fluorine or nitrogen trifluoride
US7314544B2 (en) Electrochemical synthesis of ammonia
US7559978B2 (en) Gas-liquid separator and method of operation
US20120103824A1 (en) Multi-Cell Dual Voltage Electrolysis Apparatus and Method of Using Same
CA1118711A (en) Gas phase free liquid chlorine electrochemical systems
JP2015029921A (en) Method for electrolytic concentration of heavy water
EP2171129A1 (en) Electrolysis cell comprising sulfur dioxide-depolarized anode and method of using the same in hydrogen generation
JPH01122910A (en) Production of nitrogen trifluoride
US4273839A (en) Activating carbonaceous electrodes
CN108193221B (en) Preparation method of fluorine-containing mixed gas
CN102286755A (en) Fluoride gas generator
US5470669A (en) Thermoelectrochemical system and method
JP2003505591A (en) Gas-liquid separation method and apparatus in electrolytic cell
EP2426235B1 (en) Electrochemical process and cell for the preparation of germane
US9540740B2 (en) Undivided electrolytic cell and use thereof
CA1101928A (en) Anhydrous h.sub.2/cl.sub.2 regenerative fuel cell
Jiricny et al. Regeneration of zinc particles for zinc–air fuel cells in a spouted-bed electrode
JP2809811B2 (en) Method for producing nitrogen trifluoride gas
JPS5851676B2 (en) A method for storing halogen generated during charging of a rechargeable battery, and a halide rechargeable battery using this method
KR101593800B1 (en) Advanced fluorine gas generator
JP2896196B2 (en) Method for producing nitrogen trifluoride gas
CN112376074B (en) Electrochemical fluorination external circulation efficient electrolysis system
JPS5853074B2 (en) Method for producing electrolytic hydrogen

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Effective date: 20050221

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100311

LAPS Cancellation because of no payment of annual fees