JPH0678540B2 - Method and apparatus for supplying char to gasifier - Google Patents

Method and apparatus for supplying char to gasifier

Info

Publication number
JPH0678540B2
JPH0678540B2 JP20140490A JP20140490A JPH0678540B2 JP H0678540 B2 JPH0678540 B2 JP H0678540B2 JP 20140490 A JP20140490 A JP 20140490A JP 20140490 A JP20140490 A JP 20140490A JP H0678540 B2 JPH0678540 B2 JP H0678540B2
Authority
JP
Japan
Prior art keywords
char
amount
gasification furnace
air
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20140490A
Other languages
Japanese (ja)
Other versions
JPH0488086A (en
Inventor
三郎 原
淳 犬丸
敏之 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
Mitsubishi Heavy Industries Ltd
Original Assignee
Denryoku Chuo Kenkyusho
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho, Mitsubishi Heavy Industries Ltd filed Critical Denryoku Chuo Kenkyusho
Priority to JP20140490A priority Critical patent/JPH0678540B2/en
Publication of JPH0488086A publication Critical patent/JPH0488086A/en
Publication of JPH0678540B2 publication Critical patent/JPH0678540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭からガス燃料を生成するガス化炉におい
て発生するチャーのガス化炉へのリサイクルシステムに
関する。更に詳述すると、本発明はチャーのガス化炉へ
のリサイクル量を適正に保つチャー供給方法及びその装
置に関する。
TECHNICAL FIELD The present invention relates to a system for recycling char generated in a gasifier for producing gas fuel from coal to the gasifier. More specifically, the present invention relates to a char feeding method and apparatus for keeping the amount of char recycled to the gasification furnace appropriately.

(従来の技術) 近年、高効率で環境保全性に優れた石炭利用新技術とし
て石炭ガス化複合発電が国内外において注目されてい
る。石炭ガス化複合発電とは石炭をガス化炉でガス化
し、これをガス精製装置により脱硫、脱塵した後、ガス
タービン燃焼器で燃焼させることによりガスタービンで
発電すると同時にその排熱で蒸気を発生させて蒸気ター
ビンでも発電する方式である。
(Prior Art) In recent years, coal gasification combined cycle power generation has been attracting attention in Japan and overseas as a new coal utilization technology with high efficiency and excellent environmental protection. What is combined gasification combined cycle power generation? Coal gasification combined power generation gasifies coal in a gasification furnace, desulfurizes and dedusts it with a gas purifier, and then combusts it in a gas turbine combustor to generate power in a gas turbine and at the same time generate steam from its exhaust heat. It is a method of generating and generating electricity with a steam turbine.

ところで、このような複合発電システムの実現において
は、石炭ガス化技術は最も重要な技術課題の一つであ
る。石炭ガス化は石炭の熱分解とその後生成するチャー
(主成分は未燃炭素と灰分である)をガス化する二つの
過程に大別される。熱分解は高温になる程比較的短い時
間で反応するがその際発生したチャーのガス化反応は遅
いためこのチャーをいかに効率良くガス化プロセスに組
入れるかが重要な課題となる。ガス化炉においては、ガ
ス化炉から出た量のチャー即ち生成チャーの全量をコン
バスタに供給するとき最大の効率を発揮する。
By the way, in the realization of such a combined cycle power generation system, the coal gasification technology is one of the most important technical issues. Coal gasification is roughly divided into two processes: pyrolysis of coal and subsequent gasification of char (main components are unburned carbon and ash). Pyrolysis reacts in a relatively short time as the temperature rises, but the gasification reaction of the char generated at that time is slow, so how to efficiently incorporate this char into the gasification process is an important issue. In the gasification furnace, maximum efficiency is exhibited when the entire amount of the char, that is, the generated char, that has come out of the gasification furnace is supplied to the combustor.

そこで従来の実験炉においては、ガス化炉101から生成
ガスとともに炉外に搬出されるチャーを回収してガス化
炉のコンバスタへ再投入するリサイクル設備が設けられ
ている。生成チャーはサイクロン102にて捕集され、集
塵ホッパー108、ロックホッパー103、計量ホッパー104
を経てテーブルフィーダ105で所定量取出され分配器106
により各バーナへ供給される。ここで、チャー供給量は
従来計量ホッパー104に取付けられたロードセル107の指
示値より計量ホッパー104に受け入れた量を目標値とし
て運転している。
Therefore, the conventional experimental furnace is provided with a recycling facility for collecting the char carried out of the gasification furnace 101 together with the generated gas and recharging the char to the combustor of the gasification furnace. The generated char is collected by the cyclone 102, and the dust collecting hopper 108, the lock hopper 103, and the weighing hopper 104.
Then, a predetermined amount is taken out by the table feeder 105 and the distributor 106
Is supplied to each burner. Here, the char supply amount is operated with the target value being the amount received by the weighing hopper 104 from the indicated value of the load cell 107 conventionally attached to the weighing hopper 104.

(発明が解決しようとする課題) しかしながら、従来のチャー供給方法によると、運転空
気比において性能を最大限に発揮するために供給すべき
チャー量の絶対目標値を運転中に知ることができない。
即ち、サイクロン効率の変動、ホッパー間の払い出し性
の影響を受け、計量ホッパーの受け入れチャー量と生成
チャー量が必ずしも対応していないからである。サイク
ロン効率が安定し、ホッパー間の払出し性が良好なら
ば、受け入れ量と生成チャー量は対応する。しかし、空
気比が同一でもチャー供給量により生成チャー量が変化
するため、ある時点で計量ホッパーへの受け入れ量を目
標にチャー供給量を変化させると次の時点では生成チャ
ー量が変化し、それに応じて計量ホッパーへの受け入れ
量も変化するため、またその受け入れ量を目標にチャー
供給量を変えなければならない。つまり、生成チャー量
に対し過不足なく供給するための目標値が明確でない問
題がある。
(Problems to be Solved by the Invention) However, according to the conventional char supply method, the absolute target value of the char amount to be supplied in order to maximize the performance at the operating air ratio cannot be known during operation.
That is, this is because the amount of char received by the weighing hopper does not necessarily correspond to the amount of char generated due to the influence of fluctuations in cyclone efficiency and payout between hoppers. If the cyclone efficiency is stable and the payout between the hoppers is good, then the amount of char received and the amount of char produced will correspond. However, even if the air ratio is the same, the generated char amount changes depending on the char supply amount.Therefore, if the char supply amount is changed at the target of the amount received by the weighing hopper at a certain point, the generated char amount will change at the next point. The amount of chars supplied to the weighing hopper will change accordingly, and the char supply must be changed with the target of the amount of chars received. That is, there is a problem that the target value for supplying the generated char amount without excess or deficiency is not clear.

現在、このガス化炉は基礎実験段階であることから上述
のようなチャー供給設備でも問題は少ないが、ガス化炉
の実用化に先立って効率的なガス化炉の運転の実現のた
めには、ガス化炉への適正なチャー供給システムの確立
が望まれている。
At present, this gasifier is in the basic experiment stage, so there are few problems with the char supply equipment as described above, but in order to realize efficient operation of the gasifier prior to commercialization of the gasifier. , Establishment of an appropriate char supply system to the gasifier is desired.

本発明は、石炭からガス燃料を得るガス化炉の運転にお
いて回収チャーをガス化炉に再投入する場合の適正なチ
ャー供給量を決定できるシステムを確立することを目的
とし、具体的には適量のチャーを供給する方法及び装置
を提供することを目的とする。
The present invention aims to establish a system capable of determining an appropriate char supply amount when recharging the recovered char to the gasifier in the operation of a gasifier that obtains gas fuel from coal, and specifically, an appropriate amount. It is an object of the present invention to provide a method and a device for supplying char.

(課題を解決するための手段) かかる目的を達成するため、本発明のガス化炉のチャー
供給方法は、ガス化炉に供給される空気量と微粉炭量を
求め、この供給空気量と供給微粉炭量に基づいて生成さ
れるチャーが全量ガス化炉に再投入されたときの生成ガ
ス発熱量を算出し、この生成ガス発熱量をあらかじめ収
集された炉内空気比に対する生成ガス発熱量及び炉内空
気比に対するチャー理論空気量の関係を示す実験データ
と比較して生成チャー量を推定し、それと同量のチャー
をガス化炉に供給するようにしている。
(Means for Solving the Problem) In order to achieve the above object, the char supply method for a gasification furnace of the present invention obtains the amount of air supplied to the gasification furnace and the amount of pulverized coal, and supplies the supplied air amount and supply. Calculate the calorific value of the generated gas when all the char generated based on the amount of pulverized coal is re-introduced into the gasification furnace, and calculate the calorific value of the generated gas with respect to the calorific value of the generated gas relative to the air ratio in the furnace collected in advance. The amount of char produced is estimated by comparing with the experimental data showing the relationship of the theoretical air amount of char to the air ratio in the furnace, and the same amount of char is supplied to the gasification furnace.

また、本発明のガス化炉のチャー供給装置は、ガス化炉
と、該ガス化炉に供給される空気量と微粉炭量とを測定
する手段と、前記ガス化炉から生成ガスと共に炉外に搬
出されるチャーを回収する手段と、回収されたチャーを
貯留する手段と、前記貯留手段からチャーを所定量だけ
取出し前記ガス化炉に供給する供給手段と、前記測定手
段によって求められたガス化炉に供給される空気量と微
粉炭量に基づいて生成されるチャーが全量ガス化炉に再
投入されたときの生成ガス発熱量を算出する手段と、こ
の生成ガス発熱量をあらかじめ収集された炉内空気比に
対する生成ガス発熱量及び炉内空気比に対するチャー理
論空気量の関係を示す実験データと比較して生成チャー
量を推定する手段と、それと同量のチャーを前記供給手
段を制御して前記ガス化炉に供給する制御手段とから構
成されている。
Further, the char supply device of the gasification furnace of the present invention is a gasification furnace, means for measuring the amount of air and the amount of pulverized coal supplied to the gasification furnace, and the outside of the furnace together with the produced gas from the gasification furnace. Means for collecting the char to be carried out to, a means for storing the collected char, a supplying means for extracting a predetermined amount of the char from the storing means to the gasification furnace, and a gas obtained by the measuring means A means for calculating the calorific value of the generated gas when all the char generated based on the amount of air supplied to the gasification furnace and the amount of pulverized coal is re-introduced into the gasification furnace, and the calorific value of the generated gas is collected in advance. Means for estimating the generated char amount by comparing with experimental data showing the relationship between the generated gas calorific value with respect to the furnace air ratio and the char theoretical air amount with respect to the furnace air ratio, and controlling the supply means with the same amount of char And then And a control means for supplying the gasification furnace.

(作用) したがって、ガス化炉に供給される微粉炭と空気の量が
求められれば、それから生成されるチャーの全量がガス
化炉に再投入されたときの生成ガス発熱量が求められ、
それをあらかじめ収集された炉内空気比に対する生成ガ
ス発熱量及び炉内空気比に対するチャー理論空気量との
関係を示す実験データと比較することによって、炉内空
気比が推定され、かつこの炉内空気比から更にチャー理
論空気量が推定され、次いで生成チャー量が推定され
る。
(Operation) Therefore, if the amount of pulverized coal and air to be supplied to the gasification furnace is determined, the calorific value of the generated gas when the total amount of char generated therefrom is reintroduced into the gasification furnace is determined,
The in-reactor air ratio was estimated by comparing it with experimental data showing the relationship between the collected gas heat value for the in-reactor air ratio and the char theoretical air amount for the in-reactor air ratio, and The char theoretical air amount is further estimated from the air ratio, and then the generated char amount is estimated.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the structure of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明のガス化炉へのチャー供給装置の一実施
例を示す。このチャー供給装置は、ガス化炉1と、該ガ
ス化炉1に供給される空気量と微粉炭量とを測定する手
段2,3と、ガス化炉1から生成ガスと共に搬出されるチ
ャーを回収する手段4と、回収されたチャーを貯留する
手段5と、貯留手段5からチャーを取出しガス化炉1に
供給する供給手段6と、測定手段2,3によって求められ
たガス化炉1に供給される空気量と微粉炭量に基づいて
生成されるチャーが全量ガス化炉に再投入されたときの
生成ガス発熱量を算出する手段7と、この生成ガス発熱
量をあらかじめ収集された炉内空気比に対する生成ガス
発熱量及び炉内空気比に対するチャー理論空気量の関係
を示す実験データと比較して生成チャー量を推定する手
段8と、それと同量のチャーを前記供給手段6を制御し
てガス化炉1に供給する制御手段9とから構成されてい
る。
FIG. 1 shows an embodiment of a char supply device for a gasification furnace according to the present invention. This char supply device includes a gasification furnace 1, means 2 and 3 for measuring the amount of air and the amount of pulverized coal supplied to the gasification furnace 1, and a char carried out from the gasification furnace 1 together with the produced gas. The means 4 for collecting, the means 5 for storing the recovered char, the supply means 6 for extracting the char from the storing means 5 to the gasification furnace 1, and the gasification furnace 1 obtained by the measuring means 2, 3 Means 7 for calculating the calorific value of the generated gas when all the char generated based on the supplied air amount and the pulverized coal amount is re-introduced into the gasification furnace, and the furnace in which the calorific value of the generated gas is collected in advance. Means 8 for estimating the amount of generated char by comparing with experimental data showing the relationship between the calorific value of generated gas with respect to the internal air ratio and the theoretical air amount of char with respect to the in-furnace air ratio, and controlling the supply means 6 with the same amount of char Control means for supplying to the gasification furnace 1 It is composed of a.

ガス化炉1としては、例えば2段噴流床ガス化炉が採用
されている。このガス化炉1は、石炭とチャーを高温で
燃焼させるコンバスタ部1aと、石炭とコンバスタから上
昇してくる高温ガスを完全に混合させ石炭の乾留及び熱
分解を促進させるディフューザ部1bと、チャーのガス化
を行うリダクタ部1cとを有する。
As the gasification furnace 1, for example, a two-stage spouted bed gasification furnace is adopted. This gasification furnace 1 comprises a combustor section 1a for burning coal and char at high temperature, a diffuser section 1b for completely mixing coal and high temperature gas rising from the combustor to promote coal carbonization and thermal decomposition, and a char. And a reducer section 1c for performing gasification.

前記ガス化炉1に供給される空気量と微粉炭量を測定す
る手段2,3としては、例えばロードセルや流量計等が使
用される。例えば、微粉炭燃料を貯留するホッパー10に
ロードセル2を取付け、ホッパー10の重量変化から供給
微粉炭量を測定する。また、空気供給管路系15に流量計
3を設け、供給空気量を測定して電気信号にて出力する
ように設けている。尚、微粉炭は空気供給用送風機16か
ら供給される空気によって空気輸送される。
As the means 2 and 3 for measuring the amount of air supplied to the gasification furnace 1 and the amount of pulverized coal, for example, a load cell or a flow meter is used. For example, the load cell 2 is attached to the hopper 10 that stores the pulverized coal fuel, and the amount of pulverized coal supplied is measured from the change in the weight of the hopper 10. Further, the flow meter 3 is provided in the air supply pipeline 15 so as to measure the amount of supplied air and output it as an electric signal. The pulverized coal is pneumatically transported by the air supplied from the air supply blower 16.

また、回収手段4としては、例えばサイクロン等の使用
が好適である。また、貯留手段5としてはロックホッパ
ー等の使用が好適である。更に、チャー供給手段6とし
ては、例えばロックホッパー5に一旦貯留されたチャー
を受け取る計算ホッパー11と、該計量ホッパー11から制
御手段9の制御によってチャーを取出すテーブルフィー
ダ12と、テーブルフィーダ12によって取出されたチャー
をガス化炉1のコンバスタ1aに気流搬送するチャー分配
器13とによって構成されている。チャー分配器13は、例
えば底部に目皿を有し、そこから吹出される搬送用ガス
によってチャーを流動状態に保ちながらチャー供給管路
へ気流搬送するものである。搬送用ガスとしては、空気
の使用も考えられるがサイクロン4を通過した生成ガス
の一部をブロワー14にて抽出したものの使用が好まし
い。尚、図中の符号17はロードセルである。
Further, as the collecting means 4, for example, use of a cyclone or the like is suitable. Further, it is preferable to use a lock hopper or the like as the storage means 5. Further, as the char supply means 6, for example, a calculation hopper 11 for receiving the char once stored in the lock hopper 5, a table feeder 12 for taking out the char from the weighing hopper 11 under the control of the control means 9, and a take-out by the table feeder 12. It is configured by a char distributor 13 that conveys the formed char to the combustor 1a of the gasification furnace 1 by air flow. The char distributor 13 has, for example, a perforated plate at the bottom thereof, and conveys the char to the char supply pipe while maintaining the char in a fluid state by the conveying gas blown from the perforation. Although air may be used as the carrier gas, it is preferable to use a gas obtained by extracting a part of the produced gas that has passed through the cyclone 4 with the blower 14. Reference numeral 17 in the drawing is a load cell.

更に、生成ガス発熱量を算出する手段7と、生成チャー
量を推定する手段8と、供給手段を制御する制御手段9
とは周知の計算機とこれを作動させるプログラムによっ
て構成されている。計算機は基本的には中央処理部(CP
U)と、プログラムを書込んだROM及びRAMとから構成さ
れており、インターフェースを介して各測定手段2,3お
よび制御対象たるチャー供給手段6のテーブルフィーダ
12に電気的に接続され、ROMに書込まれたプログラムに
従って作動し生成ガス発熱量を算出する手段7と、生成
チャー量を推定する手段8及び供給手段6を制御する制
御手段9として機能する。
Further, means 7 for calculating the generated gas calorific value, means 8 for estimating the generated char amount, and control means 9 for controlling the supply means.
Is composed of a well-known computer and a program for operating the computer. The computer is basically a central processing unit (CP
U) and a ROM and RAM in which a program is written, and a table feeder of each of the measuring means 2 and 3 and the char supplying means 6 to be controlled through the interface.
12 which is electrically connected to 12 and operates according to a program written in the ROM to calculate the generated gas calorific value, and functions as a means 8 for estimating the generated char amount and a controller 9 for controlling the supply means 6. .

以上のように構成されているので、次のようにして適正
な量のチャーがガス化炉に再投入される。
With the above structure, an appropriate amount of char is reintroduced into the gasification furnace as follows.

まず、ガス化炉に供給される空気量と微粉炭量が測定手
段2,3によって求められる。そして、この供給空気量と
供給微粉炭量に基づいて生成されるチャーがガス化炉に
全量再投入されたときの生成ガス発熱量が生成ガス発熱
量算出手段7において算出される。そして、この生成ガ
ス発熱量をあらかじめ収集された炉内空気比に対する生
成ガス発熱量及び炉内空気比に対するチャー論理空気量
の関係を示す実験データと比較して生成チャー量を推定
手段8において推定する。
First, the amount of air supplied to the gasification furnace and the amount of pulverized coal are obtained by the measuring means 2 and 3. Then, the generated gas calorific value when the char generated based on the supplied air amount and the supplied pulverized coal amount is recharged into the gasification furnace is calculated by the generated gas calorific value calculation means 7. Then, the generated char amount is estimated by the estimation means 8 by comparing the generated gas calorific value with experimental data showing the relationship between the collected gas calorific value with respect to the in-reactor air ratio and the char logical air amount with respect to the in-reactor air ratio collected in advance. To do.

炉内空気比と生成ガス発熱量との間には直線的な一定関
係があり、それは HHV=a1λm+b1 …(1) で表され、また、炉内空気比に対するチャー理論空気量
は Achar=a2λm+b2 …(2) で求められる。そこで、あらかじめ炉内空気比と生成ガ
ス発熱量、炉内空気比とチャー理論空気量の関係を示す
実験データを蓄積し、このデータから上述の関係を
(1),(2)式にして計算機に記憶させておけば、生
成ガス発熱量から炉内空気比を求めることができる。ま
た、この炉内空気比から同様にして(2)式よりチャー
理論空気量を算出できる。そして、これらを炉内空気比
の定義、 に代入することによってチャー量が算出される。そこ
で、算出されたチャー量と同量のチャーを貯留手段5よ
り取出してガス化炉1に供給する。
There is a linear constant relationship between the in-reactor air ratio and the generated gas calorific value, which is expressed as HHV = a 1 λm + b 1 … (1), and the char theoretical air amount for the in-reactor air ratio is Achar = A 2 λm + b 2 (2) Therefore, experimental data showing the relationship between the in-furnace air ratio and the generated gas calorific value, and the in-reactor air ratio and the char theoretical air amount are accumulated in advance, and the above-mentioned relationship is calculated from these data by the equations (1) and (2) If it is stored in, the furnace air ratio can be obtained from the calorific value of the generated gas. Further, the char theoretical air amount can be calculated from the in-furnace air ratio in the same manner from the equation (2). And these are defined as the air ratio in the furnace, The amount of char is calculated by substituting into Therefore, the same amount of char as the calculated amount of char is taken out from the storage means 5 and supplied to the gasification furnace 1.

以下、上述の適正チャー供給量決定システムの動作を第
2図に示すフローチャートに基づいて更に詳細に説明す
る。
Hereinafter, the operation of the above-mentioned proper char supply amount determination system will be described in more detail based on the flowchart shown in FIG.

まず、ガス化炉1及びチャー供給装置を使用して、あら
かじめ炉内空気比に対する生成ガス発熱量と炉内空気比
に対するチャー理論空気量との関係を示す実験データが
収集され、(1),(2)式の関係データとして計算機
に記憶される。この他、投入微粉炭性状、投入空気性
状、ガス化炉炉壁吸熱量、排出スラグ量等の諸データを
入力する(ステップ21)。このとき石炭の性状、空気の
性状はあらかじめ判明しているので一度計算機に入力し
記憶させておけば足りる。また、ガス化炉炉壁吸熱量、
排出スラグ量のデータについてはチャーが全量再投入し
たときの生成ガス発熱量を計算するときに必要なもので
ある。
First, using the gasification furnace 1 and the char supply device, experimental data showing the relationship between the calorific value of the produced gas with respect to the air ratio in the furnace and the char theoretical air amount with respect to the air ratio in the furnace were collected in advance, (1), It is stored in the computer as the relational data of the equation (2). In addition, various data such as pulverized coal input properties, input air properties, gasification furnace furnace wall heat absorption amount, and exhaust slag amount are input (step 21). At this time, the properties of the coal and the properties of the air are known in advance, so it suffices to input them once into the computer and store them. Also, the gasification furnace wall endotherm,
The data on the amount of discharged slag is necessary when calculating the calorific value of the generated gas when the char is completely recharged.

次いで、投入微粉炭量と投入燃焼空気量が測定手段2,3
から随時入力され(ステップ22)、空気比が計算される
(ステップ23)。そして、生成ガス発熱量を計算するた
めの生成ガス温度Tgを仮定する(ステップ24)。そし
て、この仮定の生成ガス温度Tgに基づいてC,H,Oバラン
ス、シフト反応を演算し、生成ガスの性状を計算する
(ステップ5)。このC,H,Oバランス、フト反応演算は Cバランス 投入微粉炭中のC=生成ガス中CO,CO2のCHバランス 投入微粉炭、空気中のH=生成ガス中のH2、H2OのH Oバランス 投入石炭、空気中O=生成ガス中のCO,CO2、H2OのO シフト反応 (但し、C1,C2,C3,C4は定数) となるように計算し、ガス温度Tg下における生成ガスの
性状等を算出する(ステップ25)。
Next, the amount of pulverized coal input and the amount of input combustion air are measured by measuring means 2, 3
Is input from time to time (step 22), and the air ratio is calculated (step 23). Then, the generated gas temperature Tg for calculating the generated gas calorific value is assumed (step 24). Then, the C, H, O balance and the shift reaction are calculated based on this assumed product gas temperature Tg, and the property of the product gas is calculated (step 5). This C, H, O balance, ft reaction calculation is C balance C in input pulverized coal = CH balance of CO and CO 2 in produced gas H in input pulverized coal, H in air = H 2 , H 2 O in produced gas of H O balance turned coal, air O = CO in the product gas, CO 2, H 2 O in O shift reaction (However, C 1 , C 2 , C 3 , C 4 are constants), and the properties of the produced gas under the gas temperature Tg are calculated (step 25).

次いで、上述の生成ガスの性状において、ヒートバラン
スの観点から生成ガス温度Tg′を求める(ステップ2
6)。このヒートバランス演算は、 投入石炭化学熱、顕熱+投入空気顕熱 =生成ガス化学熱、顕熱 +ガス化炉炉壁吸熱量+スラグ顕熱 となるようにバランスさせるべく、生成ガスの顕熱即ち
温度分を未知数として生成ガスの温度をあらためて計算
する。
Next, in the properties of the generated gas described above, the generated gas temperature Tg ′ is obtained from the viewpoint of heat balance (step 2
6). This heat balance calculation is carried out with the sensible heat of the produced gas in order to balance the chemical heat of coal input, sensible heat + sensible heat of input air = chemical heat of generated gas, sensible heat + gasification furnace wall endothermic amount + slag sensible heat. The temperature of the produced gas is newly calculated by using heat, that is, the temperature component as an unknown number.

そして、この生成ガス温度Tg′と仮定の生成ガス温度Tg
との差の絶対値がある値cより大きいか小さいかを判断
する(ステップ27)。そして、その値が大きい場合に
は、ステップ4の前にジャンプしTg′を仮定温度Tgとし
て上述の計算を繰返す(ステップ28)。また、前述の値
がεよりも小さい場合には、そのときの生成ガスの性状
を真の値として特定する。そして、この生成ガスの性状
からガス発熱量を算出する(ステップ29)。
Then, the product gas temperature Tg ′ and the assumed product gas temperature Tg
It is determined whether the absolute value of the difference between and is larger or smaller than a certain value c (step 27). If the value is large, the process jumps before step 4 and the above calculation is repeated with Tg 'as the assumed temperature Tg (step 28). When the above value is smaller than ε, the property of the produced gas at that time is specified as a true value. Then, the calorific value of the gas is calculated from the properties of the generated gas (step 29).

次に生成ガス発熱量から炉内空気比λm1を、炉内空気比
に対する生成ガス発熱量及び炉内空気比に対するチャー
理論空気量の関係を示す実験データと比較して求める。
即ち、生成ガス発熱量から炉内空気比λm1を(1)式よ
り演算して求める(ステップ30)。そして、この炉内空
気比λm1のときのチャー理論空気量Acharを(2)式よ
り算出する(ステップ31)。そして、更に炉内空気比の
定義を示す(3)式よりチャー量を計算する(ステップ
32)。斯様にして得られたチャー量は運転操作板等に表
示されたり、あるいはチャー供給装置の制御信号として
出力される(ステップ33)。例えば、チャー供給装置6
のテーブルフィーダ12の制御信号として使用され、時事
刻々変化する供給微粉炭量及び供給空気量に対応させて
適正な量のチャーをガス化炉1のコンバスタ1aに再投入
し最大の効率を上げるように自動運転することができ
る。
Next, the in-reactor air ratio λm 1 is determined from the generated gas heat value by comparing with experimental data showing the relationship between the in-reactor air ratio and the generated gas heat value and the char theoretical air amount.
That is, the in-furnace air ratio λm 1 is calculated from the calorific value of the generated gas according to the equation (1) (step 30). Then, the char theoretical air amount Achar when the in-furnace air ratio λm 1 is calculated from the equation (2) (step 31). Then, the char amount is further calculated from the equation (3) showing the definition of the air ratio in the furnace (step
32). The char amount thus obtained is displayed on the operation control panel or the like, or is output as a control signal for the char feeding device (step 33). For example, the char feeding device 6
It is used as a control signal for the table feeder 12 of No. 1 and recharges an appropriate amount of char to the combustor 1a of the gasification furnace 1 in accordance with the pulverized coal amount and the supply air amount that change from time to time to improve the maximum efficiency. It can be driven automatically.

(発明の効果) 以上の説明より明らかなように、本発明は、ガス化炉に
供給される微粉炭と空気の量が求められれば、それから
生成されるチャーの全量がガス化炉に再投入されたとき
の生成ガス発熱量が求められ、それをあらかじめ収集さ
れた炉内空気比に対する生成ガス発熱量及び炉内空気比
に対するチャー理論空気量との関係を示す実験データと
比較することによって、炉内空気比が推定され、かつこ
の炉内空気比から更にチャー理論空気量が推定され、次
いで生成チャー量が推定されるので、時事刻々変化する
投入すべきチャー量の絶対目標値が供給微粉炭量と供給
空気量から即座に求められる。したがって、この生成チ
ャー量を絶対目標値としてチャー供給設備の運転を行え
ばガス化炉に最大の効率が得られる。
(Effects of the Invention) As is apparent from the above description, according to the present invention, if the amounts of pulverized coal and air supplied to the gasification furnace are obtained, the entire amount of char produced therefrom is re-introduced into the gasification furnace. The calorific value of the generated gas at the time of is calculated, and by comparing it with the experimental data showing the relationship between the calorific value of the generated gas with respect to the in-reactor air ratio collected in advance and the char theoretical air amount with respect to the in-reactor air ratio, The furnace air ratio is estimated, and the char theoretical air amount is further estimated from this furnace air ratio, and the generated char amount is then estimated.Therefore, the absolute target value of the char amount to be charged, which changes from time to time, is supplied. It can be calculated immediately from the amount of coal and the amount of air supplied. Therefore, if the char supply facility is operated with this generated char amount as an absolute target value, maximum efficiency can be obtained in the gasification furnace.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のクレーム対応図である。 第2図は本発明のチャー供給装置の供給量決定プロセス
を説明するフローチャートである。 第3図は従来のチャー供給設備を示す概略図である。 1……ガス化炉、 2,3……測定手段、 4……回収手段、 5……貯留手段、 6……チャー供給手段、 12……チャー供給量を制御するテーブルフィーダ、 7……生成ガス発熱量算出手段、 8……生成チャー量推定手段、 9……制御手段。
FIG. 1 is a diagram corresponding to the claims of the present invention. FIG. 2 is a flow chart for explaining the supply amount determination process of the char feeder according to the present invention. FIG. 3 is a schematic diagram showing a conventional char supply facility. 1 ... Gasification furnace, 2, 3 ... Measuring means, 4 ... Recovery means, 5 ... Storage means, 6 ... Char supply means, 12 ... Table feeder for controlling char supply amount, 7 ... Generation Gas calorific value calculating means, 8 ... Generated char amount estimating means, 9 ... Control means.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガス化炉に供給される空気量と微粉炭量を
求め、この供給空気量と供給微粉炭量に基づいて生成さ
れるチャーが全量前記ガス化炉に再投入されたときの生
成ガス発熱量を算出し、この生成ガス発熱量をあらかじ
め収集された炉内空気比に対する生成ガス発熱量及び炉
内空気比に対するチャー理論空気量の関係を示す実験デ
ータと比較して生成チャー量を推定し、それと同量のチ
ャーを前記ガス化炉に供給することを特徴とするガス化
炉へのチャー供給方法。
1. An amount of air supplied to a gasification furnace and an amount of pulverized coal are obtained, and all chars generated based on the supplied air amount and the amount of supplied pulverized coal are recharged to the gasification furnace. The generated gas calorific value is calculated, and the generated gas calorific value is compared with experimental data showing the relationship between the collected gas calorific value with respect to the in-reactor air ratio and the char theoretical air amount with respect to the in-reactor air ratio collected in advance. Is estimated and the same amount of char is supplied to the gasification furnace as a char supply method.
【請求項2】ガス化炉と、該ガス化炉に供給される空気
量と微粉炭量とを測定する手段と、前記ガス化炉から生
成ガスと共に炉外に搬出されるチャーを回収する手段
と、回収されたチャーを貯留する手段と、前貯留手段か
らチャーを取出し前記ガス化炉に供給する供給手段と、
前記測定手段によって求められたガス化炉に供給される
空気量と微粉炭量に基づいて生成されるチャーが全量前
記ガス化炉に再投入されたときの生成ガス発熱量を算出
する手段と、この生成ガス発熱量をあらかじめ収集され
た炉内空気比に対する生成ガス発熱量及び炉内空気比に
対するチャー理論空気量の関係を示す実験データと比較
して生成チャー量を推定する手段と、それと同量のチャ
ーを前記供給手段を制御して前記ガス化炉に供給する制
御手段とから成ることを特徴とするガス化炉へのチャー
供給装置。
2. A gasification furnace, means for measuring the amount of air and the amount of pulverized coal supplied to the gasification furnace, and means for collecting char carried out of the gasification furnace together with the produced gas outside the furnace. A means for storing the recovered char, a supply means for extracting the char from the pre-storage means and supplying the char to the gasification furnace,
A means for calculating the generated gas calorific value when the total amount of char generated based on the amount of air supplied to the gasification furnace and the amount of pulverized coal determined by the measuring means is re-input to the gasification furnace, A means for estimating the generated char amount by comparing the generated gas calorific value with experimental data showing the relationship between the collected gas calorific value with respect to the in-reactor air ratio and the char theoretical air amount with respect to the in-reactor air ratio collected beforehand A char supply device for a gasification furnace, comprising: a control means for supplying a quantity of char to the gasification furnace by controlling the supply means.
JP20140490A 1990-07-31 1990-07-31 Method and apparatus for supplying char to gasifier Expired - Lifetime JPH0678540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20140490A JPH0678540B2 (en) 1990-07-31 1990-07-31 Method and apparatus for supplying char to gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20140490A JPH0678540B2 (en) 1990-07-31 1990-07-31 Method and apparatus for supplying char to gasifier

Publications (2)

Publication Number Publication Date
JPH0488086A JPH0488086A (en) 1992-03-19
JPH0678540B2 true JPH0678540B2 (en) 1994-10-05

Family

ID=16440529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20140490A Expired - Lifetime JPH0678540B2 (en) 1990-07-31 1990-07-31 Method and apparatus for supplying char to gasifier

Country Status (1)

Country Link
JP (1) JPH0678540B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121513A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Gas turbine power generation system and method of detecting calorie abnormality thereof
JP2008150463A (en) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd Two-stage entrained bed gasification oven and method for controlling operation of the same
WO2011052170A1 (en) 2009-10-28 2011-05-05 株式会社Ihi Method and device for combustion engine temperature control in gasification equipment
JP6200731B2 (en) * 2013-09-05 2017-09-20 三菱日立パワーシステムズ株式会社 Control method of gasification power generation system
PT3250662T (en) * 2015-01-30 2021-06-02 Lummus Technology Inc Standpipe-fluid bed hybrid system for char collection, transport, and flow control

Also Published As

Publication number Publication date
JPH0488086A (en) 1992-03-19

Similar Documents

Publication Publication Date Title
Zainal et al. Experimental investigation of a downdraft biomass gasifier
Kim et al. Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier
Song et al. Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds
Karmakar et al. Investigation of fuel gas generation in a pilot scale fluidized bed autothermal gasifier using rice husk
CN107090315A (en) A kind of biomass double bed gasification and pyrolysis coupled electricity-generation system and method
Xiang et al. Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification
Uhm et al. Production of hydrogen-rich synthetic gas from low-grade coals by microwave steam-plasmas
Pei et al. A novel two-stage biomass gasification concept: Design and operation of a 1.5 MWth demonstration plant
CN109852429A (en) A kind of hydrogen generating system and method for coal combustion coupling rubbish steam gasification
Sikarwar et al. Thermal plasma assisted pyrolysis and gasification of RDF by utilizing sequestered CO2 as gasifying agent
JPH0678540B2 (en) Method and apparatus for supplying char to gasifier
JP5118338B2 (en) Carbonization and gasification method and system
Ashman et al. Research issues in combustion and gasification of lignite
Serov et al. Lignite gasification in thermal steam plasma
Park et al. Experimental investigations of the effect of coal type and coal burner with different oxygen supply angles on gasification characteristics
Yan et al. Modelling of fluidised-bed coal gasifiers: elimination of the combustion product distribution coefficient by considering homogeneous combustion
Liu et al. Process simulation of coal-direct chemical looping gasification for syngas production
Maksymov et al. Automatic Control for the Slow Pyrolysis of Organic Materials with Variable Composition
CN106675659A (en) Particle recovering device and method of high-temperature reaction system of gas-solid two phase flow
Rokhman et al. CO-FIRING OF GAS COAL DUST FINE PARTICLES AND SYNTHETIC PEAT GAS. PART 1. SIMULATION OF PROCESSES OF STEAM-AIR GASIFICATION OF PEAT IN A FIXED BED AND COMBUSTION OF DUST AND GAS MIX IN A STREAM.
Subramanian et al. Modeling and simulation of a waste Tire to liquefied synthetic natural gas (SNG) plant
Alobaid et al. Numerical and experimental study of co-combustion of refuse-derived fuels in a circulating fluidized bed during load change
JP3156093B2 (en) Gas bed gasifier
CN212955012U (en) External heating type gas producer
CN106398775B (en) Coal gasification system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20081005

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20081005

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20101005

EXPY Cancellation because of completion of term