JPH0677976A - Transmission line reconstituting method for circular transmission system - Google Patents

Transmission line reconstituting method for circular transmission system

Info

Publication number
JPH0677976A
JPH0677976A JP3292673A JP29267391A JPH0677976A JP H0677976 A JPH0677976 A JP H0677976A JP 3292673 A JP3292673 A JP 3292673A JP 29267391 A JP29267391 A JP 29267391A JP H0677976 A JPH0677976 A JP H0677976A
Authority
JP
Japan
Prior art keywords
transmission
transmission line
time
time fill
fill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3292673A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kuwaki
克彦 桑木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3292673A priority Critical patent/JPH0677976A/en
Publication of JPH0677976A publication Critical patent/JPH0677976A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the outage time of a system function by disconnecting the fault position of a transmission line and performing reconstitution in a short time after the fault generation of a present system even in the case of double fault in which both of present system and spare system transmission lines are turned to the fault. CONSTITUTION:A transmitter 4 disabling the reception of the time fill for a certain time instructs switching to a spare system transmission line 6 to transmitters 1, 2 and 3 and when it can not be received, the transmitter 4 suppress the sending of the time fill to each transmission line and tries to disconnect itself. When the time fill can not be received for a certain time since the transmitter 4 suppresses the sending of the time fill to the spare system transmission line 6, the transmitter 2 instructed the switching to the spare system transmission line 6 instructs switching to a present system transmission line 5 to the transmitter 1 and 3 and performs loop back. Further, when time fill can not be received for a certain time, the transmitter 3 instructed the transmission line switching to the present system transmission line 5 instructs switching to the spare system transmission line 6 to the transmitters 1 and 2 and performs loop back.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は環状伝送システムにお
いて伝送路の障害箇所を切り離し再構成する方式に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for disconnecting and reconstructing a faulty part of a transmission line in a ring transmission system.

【0002】[0002]

【従来の技術】図5は例えば特開62−181544号
公報に示された従来の環状伝送システムを示す構成図で
あり、一例として4台の伝送装置が接続されている。図
において1〜4はこのシステムに接続される独立同期の
伝送装置、5は環状の現用系伝送路、6は環状の予備系
伝送路である。現用系伝送路5および予備系伝送路6中
を伝送される信号の流れる方向は、矢印で図示するよう
に互いに逆向きになっている。ここで各伝送装置は伝送
系に関して同一構成とし、また伝送路についても同様と
する。通常は現用系伝送路5が使用され、現用系伝送路
5に障害が生じたときに予備系伝送路6に切り替えら
れ、現用として使用される。
2. Description of the Related Art FIG. 5 is a block diagram showing a conventional ring transmission system disclosed in, for example, Japanese Unexamined Patent Publication No. 62-181544, in which four transmission devices are connected. In the figure, 1 to 4 are independent synchronous transmission devices connected to this system, 5 is an annular active transmission line, and 6 is an annular backup transmission line. The directions of the signals transmitted through the active transmission path 5 and the standby transmission path 6 are opposite to each other as shown by the arrows. Here, each transmission device has the same configuration with respect to the transmission system, and the same applies to the transmission path. Normally, the working transmission line 5 is used, and when a failure occurs in the working transmission line 5, it is switched to the protection transmission line 6 and used as the working.

【0003】次に、図5の構成の環状伝送システムにお
いて現用系伝送路5および予備系伝送路6の両方が障害
となる伝送路の二重障害の場合の動作について図面を用
いて説明する。図4は各伝送装置で実行される処理の流
れを示すフローチャートである。図6は異なる伝送装置
間において障害箇所7,8が生じるような両系伝送路障
害の例を示す図である。図7〜図9は、順を追って伝送
路が再構成されていく状態を示す図である。まず最初に
現用系伝送路5を使用してデータ伝送を行っているとき
に、伝送装置2と4との間で現用系伝送路5に断線障害
が発生したものとし、同時に伝送装置3と4との間で予
備系伝送路6にすでに断線障害が起こっていたものとす
る(図6参照)。現用系伝送路5の障害箇所8で障害が
生じているため、伝送装置4では伝送装置2が送出する
タイムフィルを受信することができず、クロック異常を
検出する(1回目のタイムフィル監視成立)。一定時間
(N秒)クロックを監視してもタイムフィルを受信でき
ないので、伝送装置4はタイムフィル受信不可と判定し
(ステップ12)、現用系伝送路5に特殊パターンを送出
する(ステップ13)。この特殊パターンとはこれを受信
した伝送装置に対して伝送路切替を指示する特定の信号
である。この特殊パターンは伝送装置3,1,2の順で
受信され(ステップ21,22)、すべての伝送装置は伝送
路を切り替える(ステップ14)。これによって予備系伝
送路6が現用の伝送路となり、各伝送装置は予備系伝送
路6に対してタイムフィルを送出し、その一方で受信す
るタイムフィルを一定時間(N秒)監視する(ステップ
15)。ここで伝送装置3と4との間の予備系伝送路6で
断線障害が発生しているため、伝送装置1,2,3はタ
イムフィルを受信できるが伝送装置4はタイムフィルを
受信できない(2回目のタイムフィル監視成立)。そこ
で伝送装置4は、伝送路切替を行ってもタイムフィルを
受信できないため、図7に示すように現用系伝送路5を
入力、予備系伝送路6を出力とするループバック切替を
行って(ステップ16)、タイムフィルを一定時間(N
秒)監視する(ステップ17)。しかし伝送装置2と4の
間の現用系伝送路5に断線障害があるため、伝送装置4
はタイムフィルを受信することができない(3回目のタ
イムフィル監視成立)。そこで伝送装置4は予備系伝送
路6に特殊パターンを送出する(ステップ18)。この特
殊パターンは予備系伝送路6を通り、伝送装置2,1,
3の順で受信される(ステップ21,22)。伝送装置2,
1,3は現用系伝送路5に伝送路を切り替え(ステップ
14)、タイムフィルを一定時間(N秒)監視する(伝送
装置2,1,3はステップ15,伝送装置4はステップ1
9)。伝送装置3は伝送装置4がループバック切替を行
っているため、タイムフィルを受信することができない
(4回目のタイムフィル監視成立)。また伝送装置4も
伝送装置2と伝送装置4との間の現用系伝送路5で断線
障害があるため、タイムフィルを受信することができな
い。まず伝送装置3は特殊パターン受信後タイムフィル
を受信できないので、図8に示すように予備系伝送路6
を入力、現用系伝送路5を出力とするループバック切替
を行い(ステップ16)、タイムフィルを一定時間(N
秒)監視する(ステップ17)。また伝送装置4は、ルー
プバック切替後に特殊パターンを送出してもタイムフィ
ルを受信できないので、予備系伝送路6にタイムフィル
を送出するのを中止する。一方伝送装置3は、ループバ
ック切替後もタイムフィルを受信することができないの
で(5回目のタイムフィル監視成立)、現用系伝送路5
に特殊パターンを送出する(ステップ18)。この特殊パ
ターンは現用系伝送路5を通り、伝送装置1,2の順で
受信される(ステップ21,22)。伝送装置1,2は予備
系伝送路6に伝送路を切り替え(ステップ14)、タイム
フィルを一定時間(N秒)監視する(ステップ15)。伝
送装置3は伝送装置1が送出するタイムフィルを受信す
るが(ステップ19)、伝送装置2は伝送装置4がタイム
フィルの送出を抑止しているので、タイムフィルの受信
ができない(6回目のタイムフィル監視成立)。伝送装
置2は伝送路切替後にタイムフィルを受信することがで
きないので、図9に示すように、現用系伝送路5を入
力、予備系伝送路6を出力とするループバック切替を行
う(ステップ16)ことにより、伝送装置1が送出するタ
イムフィルを受信することができる(ステップ17)。こ
れによって図9に示すように、伝送装置4は現状伝送路
から切り離されるが、伝送装置1,2,3はタイムフィ
ルを受信でき、障害箇所7、8が切り離されて再構成が
完了する。
Next, the operation of the ring transmission system having the configuration shown in FIG. 5 in the case of a double failure of the transmission path in which both the active transmission path 5 and the protection transmission path 6 are defective will be described with reference to the drawings. FIG. 4 is a flowchart showing the flow of processing executed by each transmission device. FIG. 6 is a diagram showing an example of a transmission path failure of both systems in which failure points 7 and 8 occur between different transmission devices. 7 to 9 are diagrams showing a state in which the transmission path is reconfigured in order. First, it is assumed that a disconnection failure occurs in the active transmission line 5 between the transmission devices 2 and 4 during data transmission using the active transmission line 5, and at the same time, the transmission devices 3 and 4 are transmitted. It is assumed that a disconnection failure has already occurred in the backup transmission line 6 between the above and the above (see FIG. 6). Since the failure has occurred at the failure point 8 of the active transmission path 5, the transmission apparatus 4 cannot receive the time fill sent by the transmission apparatus 2 and detects a clock abnormality (establishes the first time fill monitoring). ). Since the time fill cannot be received even if the clock is monitored for a fixed time (N seconds), the transmission device 4 determines that the time fill cannot be received (step 12) and sends a special pattern to the active transmission line 5 (step 13). . This special pattern is a specific signal for instructing the transmission device that has received the special pattern to switch the transmission path. This special pattern is received by the transmission devices 3, 1 and 2 in this order (steps 21 and 22), and all the transmission devices switch the transmission path (step 14). As a result, the backup transmission line 6 becomes the active transmission line, and each transmission device sends a time fill to the backup transmission line 6, while monitoring the received time fill for a fixed time (N seconds) (step
15). Here, since the disconnection fault has occurred in the backup transmission line 6 between the transmission devices 3 and 4, the transmission devices 1, 2, and 3 can receive the time fill, but the transmission device 4 cannot receive the time fill ( Second time fill monitoring established). Therefore, the transmission device 4 cannot receive the time fill even if the transmission path is switched. Therefore, as shown in FIG. 7, the transmission apparatus 4 performs loopback switching in which the active transmission path 5 is input and the standby transmission path 6 is output ( Step 16), time fill for a certain time (N
Seconds) to monitor (step 17). However, since there is a disconnection fault in the active transmission line 5 between the transmission devices 2 and 4, the transmission device 4
Cannot receive timefill (third timefill monitoring established). Therefore, the transmission device 4 sends out the special pattern to the backup transmission line 6 (step 18). This special pattern passes through the backup transmission line 6, and is transmitted to the transmission devices 2, 1, 2.
It is received in the order of 3 (steps 21 and 22). Transmission device 2,
1 and 3 switch the transmission path to the active transmission path 5 (step
14), the time fill is monitored for a fixed time (N seconds) (steps 15 for transmission devices 2, 1 and 3 and step 1 for transmission device 4)
9). The transmission device 3 cannot receive the time fill because the transmission device 4 is performing loopback switching (the fourth time fill monitoring is established). Also, the transmission device 4 cannot receive the time fill because of a disconnection failure in the active transmission line 5 between the transmission device 2 and the transmission device 4. First, since the transmission device 3 cannot receive the time fill after receiving the special pattern, as shown in FIG.
Is input and the active transmission path 5 is output, and loopback switching is performed (step 16), and the time fill is set to a fixed time (N
Seconds) to monitor (step 17). Further, since the transmission device 4 cannot receive the time fill even if the special pattern is sent after the loopback switching, the sending device 4 stops sending the time fill to the backup transmission line 6. On the other hand, since the transmission device 3 cannot receive the time fill even after the loopback switching (the fifth time fill monitoring is established), the active transmission line 5
The special pattern is sent to (step 18). This special pattern is received by the transmission devices 1 and 2 in this order through the active transmission line 5 (steps 21 and 22). The transmission devices 1 and 2 switch the transmission path to the backup transmission path 6 (step 14) and monitor the time fill for a fixed time (N seconds) (step 15). The transmission device 3 receives the time fill sent by the transmission device 1 (step 19), but the transmission device 2 cannot receive the time fill because the transmission device 4 inhibits the time fill transmission (the sixth time). Timefill monitoring established). Since the transmission device 2 cannot receive the time fill after switching the transmission lines, as shown in FIG. 9, loopback switching is performed with the active transmission line 5 as the input and the standby transmission line 6 as the output (step 16). By doing so, the time fill sent by the transmission device 1 can be received (step 17). As a result, as shown in FIG. 9, the transmission device 4 is disconnected from the current transmission path, but the transmission devices 1, 2 and 3 can receive the time fill, the failure points 7 and 8 are disconnected, and the reconfiguration is completed.

【0004】[0004]

【発明が解決しようとする課題】従来の環状伝送システ
ムにおいて現用系伝送路および予備系伝送路の両方が障
害となる伝送路の2重障害の場合は以上のように動作す
るので、現用系の障害発生から伝送路の障害箇所を切り
離し再構成を完了するまで、一定時間(N秒)のタイム
フィル監視が計6回も成立する必要があるため、多大な
時間(6N秒以上)をかけてしまうという問題点があっ
た。これはシステム全体が機能停止している時間が多い
ことであり、常に確実なレスポンスを要求されるシステ
ムでは致命的な欠点となりうる。
In the conventional ring-shaped transmission system, the above operation is performed in the case of a double failure of the transmission path in which both the active transmission path and the standby transmission path are obstructed. It takes a long time (6 N seconds or more) because time fill monitoring for a certain time (N seconds) must be established a total of 6 times from the occurrence of a failure until the failure point of the transmission line is separated and the reconstruction is completed. There was a problem that it would end up. This is because the entire system is out of function for a long time, which can be a fatal drawback in a system that requires a reliable response at all times.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、現用系伝送路および予備系伝送
路の両方が障害となる伝送路の2重障害の場合でも、現
用系の障害発生から伝送路の障害箇所を切り離し再構成
を完了するまで短い時間で行い、システム全体の機能停
止の時間を少なくすることのできる環状伝送システムの
伝送路再構成方式を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and even in the case of a double failure of a transmission line in which both the active transmission line and the standby transmission line become obstacles, The purpose of the present invention is to obtain a transmission line reconfiguration method for a ring-shaped transmission system that can shorten the time of function stoppage of the entire system in a short time from the occurrence of a failure to the point of failure of the transmission path and complete the reconfiguration. .

【0006】[0006]

【課題を解決するための手段】この発明に係る環状伝送
システムは、はじめにタイムフィルを一定時間受信でき
ない伝送装置が伝送路切替指示後もタイムフィルを受信
できないときはタイムフィルの送出を抑止するととも
に、一方伝送路切替指示を受けた伝送装置は伝送路切替
後にタイムフィルを一定時間受信できないときは切替前
の伝送路を入力、切替後の伝送路を出力とするようにル
ープバックする伝送装置を備えたものである。
In the ring transmission system according to the present invention, when the transmission device which cannot receive the time fill for a certain period of time cannot receive the time fill even after the instruction to switch the transmission path, the transmission of the time fill is suppressed. On the other hand, if the transmission device that received the transmission path switching instruction cannot receive the time fill for a certain period after switching the transmission path, the transmission apparatus that loops back so that the transmission path before switching is input and the transmission path after switching is output. Be prepared.

【0007】[0007]

【作用】この発明における環状伝送システムの伝送路再
構成方式では、はじめにタイムフィルを一定時間受信で
きない伝送装置が伝送路切替指示後もタイムフィルを受
信できないときはタイムフィルの送出を抑止することで
この伝送装置の伝送路からの切り離しを図るとともに、
一方伝送路切替指示を受けた伝送装置は伝送路切替後に
タイムフィルを一定時間受信できないときは切替前の伝
送路を入力、切替後の伝送路を出力とするようにループ
バックすることで伝送路を再構成する。
In the transmission line reconfiguration method of the ring transmission system according to the present invention, when the transmission device which cannot receive the time fill for a certain period of time cannot receive the time fill even after the transmission line switching instruction, the transmission of the time fill is suppressed. While trying to separate this transmission device from the transmission path,
On the other hand, when the transmission device that received the transmission path switching instruction cannot receive the time fill for a certain period of time after switching the transmission path, the transmission path is looped back so that the transmission path before switching is input and the transmission path after switching is output. Reconfigure.

【0008】[0008]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1はこの発明の一実施例による環状
伝送システムの伝送路再構成方式の処理の流れを示すフ
ローチャートであり、第2図,第3図は、順を追って伝
送路が再構成されていく状態を示す図である。図中、第
5図〜第9図と同一の部分には同一の符号を付してある
ので、その説明は省略する。
EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing a processing flow of a transmission line reconfiguration method of a ring transmission system according to an embodiment of the present invention, and FIGS. 2 and 3 show a state in which the transmission line is reconfigured in order. FIG. In the figure, the same parts as those in FIGS. 5 to 9 are designated by the same reference numerals, and the description thereof will be omitted.

【0009】次に本実施例の伝送路再構成方式の動作に
ついて説明する。例えば同じく図6のような異なる伝送
装置間において障害箇所7,8が生じるような両系伝送
路障害の場合を考える。まず最初に現用系伝送路5を使
用してデータ伝送を行っているときに、伝送装置2と4
との間で現用系伝送路5に断線障害が発生したものと
し、同時に伝送装置3と4との間で予備系伝送路6にす
でに断線障害が起こっていたものとする(図6参照)。
現用系伝送路5の障害箇所8で障害が生じているため、
伝送装置4では伝送装置2が送出するタイムフィルを受
信することができず、クロック異常を検出する(ステッ
プ31)。一定時間(N秒)クロックを監視してもタイム
フィルを受信できないので(1回目のタイムフィル監視
成立)、伝送装置4はタイムフィル受信不可と判定し
(ステップ32)、現用系伝送路5に特殊パターンを送出
する(ステップ33)。この特殊パターンは伝送装置3,
1,2の順で受信され(ステップ37,38)、すべての伝
送装置は伝送路を切り替える(ステップ34,40)。これ
によって予備系伝送路6が現用の伝送路となり、各伝送
装置は予備系伝送路6に対してタイムフィルを送出し、
その一方で受信するタイムフィルを一定時間(N秒)監
視する(ステップ35,41)。ここで伝送装置3と4との
間の予備系伝送路6で断線障害が発生しているため、伝
送装置1,2,3はタイムフィルを受信できるが伝送装
置4はタイムフィルを受信できない(2回目のタイムフ
ィル監視成立)。そこで伝送装置4は、伝送路切替を行
ってもタイムフィルを受信できないため、図2のように
予備系伝送路6にタイムフィルを送出するのを中止する
(ステップ36)。これにより、伝送装置2はタイムフィ
ルを受信することができなくなる(3回目のタイムフィ
ル監視成立)。そこで伝送装置2は特殊パターン受信後
タイムフィルを受信できないので予備系伝送路6に特殊
パターンを送出し(ステップ42)、図3に示すように現
用系伝送路5を入力、予備系伝送路6を出力とするルー
プバック切替を行い(ステップ43)、タイムフィルを一
定時間(N秒)監視する(ステップ44)。一方、伝送装
置2から出力された特殊パターンは予備系伝送路6を通
り、伝送装置1,3の順で受信される(ステップ45,4
6)。伝送装置1,3は現用系伝送路5に伝送路を切り
替え(ステップ47)、タイムフィルを一定時間(N秒)
監視する(ステップ48)。伝送装置1,2は、タイムフ
ィルを受信できるが、伝送装置3は伝送装置4がタイム
フィルを送出するのを中止しているため、タイムフィル
を受信することができない(4回目のタイムフィル監視
成立)。そこで伝送装置3は特殊パターン受信後タイム
フィルを受信できないので、現用系伝送路5に特殊パタ
ーンを送出し(ステップ42)、図9に示すように予備系
伝送路6を入力、現用系伝送路5を出力とするループバ
ック切替を行い(ステップ43)、タイムフィルを一定時
間(N秒)監視する(ステップ44)。一方、伝送装置3
から出力されたこの特殊パターンは現用系伝送路5を通
り、伝送装置1,2の順で受信される(ステップ37,3
8)。伝送装置1は予備系伝送路6に伝送路を切り替え
(ステップ40)、タイムフィルを一定時間(N秒)監視
する(ステップ41)。伝送装置2はループバック切替を
行っているのでなにもしない。これによって図9に示す
ように、伝送装置4は現状伝送路から切り離されるが、
伝送装置1,2,3はタイムフィルを受信でき、障害箇
所7、8が切り離されて再構成が完了する。従って、本
方式によれば現用系の障害発生から伝送路の障害箇所を
切り離し再構成を完了するまで、一定時間(N秒)のタ
イムフィル監視が成立するのは計4回しかないため、短
時間(4N秒程度)ですむことになる。
Next, the operation of the transmission line reconfiguration method of this embodiment will be described. For example, let us consider a case in which there is a failure in the transmission path of both systems such that failure points 7 and 8 occur between different transmission devices as shown in FIG. First, when data is transmitted using the active transmission path 5, the transmission devices 2 and 4
It is assumed that a disconnection failure has occurred in the active transmission path 5 between the transmission lines 3 and 4 and a disconnection failure has already occurred in the protection transmission path 6 between the transmission devices 3 and 4 (see FIG. 6).
Since a failure has occurred at the failure point 8 of the active transmission line 5,
The transmission device 4 cannot receive the time fill sent by the transmission device 2 and detects a clock abnormality (step 31). Since the time fill cannot be received even if the clock is monitored for a fixed time (N seconds) (first time fill monitoring is established), the transmission device 4 judges that the time fill cannot be received (step 32), and the active transmission line 5 is set. The special pattern is transmitted (step 33). This special pattern is transmitted by the transmitter 3,
The signals are received in the order of 1 and 2 (steps 37 and 38), and all the transmission devices switch the transmission path (steps 34 and 40). As a result, the backup transmission line 6 becomes the working transmission line, and each transmission device sends a time fill to the backup transmission line 6,
On the other hand, the received time fill is monitored for a fixed time (N seconds) (steps 35 and 41). Here, since the disconnection fault has occurred in the backup transmission line 6 between the transmission devices 3 and 4, the transmission devices 1, 2, and 3 can receive the time fill, but the transmission device 4 cannot receive the time fill ( Second time fill monitoring established). Therefore, since the transmission device 4 cannot receive the time fill even if the transmission line is switched, it stops sending the time fill to the backup transmission line 6 as shown in FIG. 2 (step 36). As a result, the transmission device 2 cannot receive the time fill (the third time fill monitoring is established). Therefore, since the transmission device 2 cannot receive the time fill after receiving the special pattern, it transmits the special pattern to the backup transmission line 6 (step 42), inputs the active transmission line 5 as shown in FIG. The loopback is switched to output (step 43), and the time fill is monitored for a fixed time (N seconds) (step 44). On the other hand, the special pattern output from the transmission device 2 passes through the backup transmission line 6 and is received by the transmission devices 1 and 3 in that order (steps 45 and 4).
6). The transmission devices 1 and 3 switch the transmission path to the active transmission path 5 (step 47) and set the time fill to a fixed time (N seconds).
Monitor (step 48). The transmission devices 1 and 2 can receive the time fill, but the transmission device 3 cannot receive the time fill because the transmission device 4 has stopped sending the time fill (the fourth time fill monitoring). Established). Therefore, since the transmission device 3 cannot receive the time fill after receiving the special pattern, it transmits the special pattern to the active transmission line 5 (step 42) and inputs the standby transmission line 6 as shown in FIG. Loopback switching is performed with 5 as the output (step 43), and the time fill is monitored for a fixed time (N seconds) (step 44). On the other hand, the transmission device 3
This special pattern output from the device passes through the active transmission line 5 and is received by the transmission devices 1 and 2 in that order (steps 37 and 3).
8). The transmission device 1 switches the transmission path to the backup transmission path 6 (step 40) and monitors the time fill for a fixed time (N seconds) (step 41). Since the transmission device 2 is performing loopback switching, nothing is done. As a result, as shown in FIG. 9, the transmission device 4 is disconnected from the current transmission line,
The transmission devices 1, 2 and 3 can receive the time fill, the faulty parts 7 and 8 are separated, and the reconfiguration is completed. Therefore, according to this method, the time fill monitoring for the fixed time (N seconds) is established only 4 times in total from the occurrence of the failure in the active system to the disconnection of the failure point in the transmission line and the completion of the reconfiguration. (4N seconds).

【0010】[0010]

【発明の効果】以上のようにこの発明によれば、はじめ
にタイムフィルを一定時間受信できない伝送装置が伝送
路切替指示後もタイムフィルを受信できないときはタイ
ムフィルの送出を抑止するとともに、一方伝送路切替指
示を受けた伝送装置は伝送路切替後にタイムフィルを一
定時間受信できないときは切替前の伝送路を入力、切替
後の伝送路を出力とするようにループバックするように
したので、異なる伝送装置間における両系伝送路障害の
場合でも短時間でしかも確実に伝送路の再構成ができる
ため、システム全体が機能停止している時間を少なくす
ることができるという優れた効果を奏する。
As described above, according to the present invention, when the transmission device which cannot receive the time fill for a certain period of time cannot receive the time fill even after the transmission path switching instruction, the transmission of the time fill is suppressed and the one-way transmission is performed. The transmission device that receives the path switching instruction loops back so that the transmission path before switching is input and the transmission path after switching is output when the time fill cannot be received for a certain period after switching the transmission path. Even in the case of a failure in the transmission paths between the transmission devices, the transmission paths can be reconfigured in a short time and reliably, so that it is possible to reduce the time during which the entire system stops functioning.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による環状伝送システムの
伝送路再構成方式の処理の流れを示すフローチャートで
ある。
FIG. 1 is a flowchart showing a processing flow of a transmission line reconfiguration method of a ring transmission system according to an embodiment of the present invention.

【図2】この発明の一実施例による環状伝送システムの
伝送路再構成方式において順を追って伝送路が再構成さ
れていく状態を示す図である。
FIG. 2 is a diagram showing a state in which transmission lines are reconfigured in order in a transmission line reconfiguration method of a ring transmission system according to an embodiment of the present invention.

【図3】この発明の一実施例による環状伝送システムの
伝送路再構成方式において順を追って伝送路が再構成さ
れていく状態を示す図である。
FIG. 3 is a diagram showing a state in which the transmission line is reconfigured in order in the transmission line reconfiguration method of the ring transmission system according to the embodiment of the present invention.

【図4】従来の環状伝送システムの伝送路再構成方式の
処理の流れを示すフローチャートである。
FIG. 4 is a flowchart showing a processing flow of a transmission path reconfiguration method of a conventional ring transmission system.

【図5】従来の環状伝送システムの構成を示す図であ
る。
FIG. 5 is a diagram showing a configuration of a conventional ring transmission system.

【図6】異なる伝送装置間において2か所の障害箇所が
生じるような両系伝送路障害の例を示す図である。
FIG. 6 is a diagram showing an example of a transmission path failure of both systems in which two failure points occur between different transmission devices.

【図7】従来の環状伝送システムの伝送路再構成方式に
おいて順を追って伝送路が再構成されていく状態を示す
図である。
FIG. 7 is a diagram showing a state in which the transmission lines are reconfigured in order in the transmission line reconfiguration method of the conventional ring transmission system.

【図8】従来の環状伝送システムの伝送路再構成方式に
おいて順を追って伝送路が再構成されていく状態を示す
図である。
FIG. 8 is a diagram showing a state in which the transmission line is reconfigured in order in the transmission line reconfiguration method of the conventional ring transmission system.

【図9】従来の環状伝送システムの伝送路再構成方式に
おいて順を追って伝送路が再構成されていく状態を示す
図である。
FIG. 9 is a diagram showing a state in which the transmission line is reconfigured in order in the transmission line reconfiguration method of the conventional ring transmission system.

【符号の説明】[Explanation of symbols]

1〜4 独立同期の伝送装置 5 環状の現用系伝送路 6 環状の予備系伝送路 7,8 障害箇所 1 to 4 Independently synchronized transmission device 5 Circular working transmission line 6 Circular backup transmission line 7 and 8 Fault location

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数個の伝送装置とこれらの伝送装置に
接続される互いに伝送方向が逆向きの二つの環状伝送路
とを有し、前記伝送装置は前記伝送路のいずれか一方を
現用系伝送路としてデータ送受を行い、他方を予備系伝
送路として待機させておくとともに、前記伝送路のいず
れか一方を入力側とし、他方を出力側とするように折り
返すことのできるループバック機能を有する環状伝送シ
ステムにおいて、前記伝送装置は上流の伝送装置からタ
イムフィルを一定時間受信できないとき下流の伝送装置
に対して予備系伝送路に切り替えるように指示するとと
もに自身も予備系伝送路に切り替え、それでも前記タイ
ムフィルを一定時間受信できないとき上流の伝送装置に
対して自身のタイムフィルの送出を抑止するとともに、
一方伝送路切替指示を受けた伝送装置は伝送路切替後に
タイムフィルを一定時間受信できないとき切替前の伝送
路を入力側、切替後の伝送路を出力側とするようにルー
プバックすることを特徴とする環状伝送システムの伝送
路再構成方法。
1. A transmission system, comprising: a plurality of transmission devices; and two annular transmission lines connected to these transmission devices, the transmission directions of which are opposite to each other. The transmission device uses one of the transmission lines as an active system. It has a loop-back function that can send and receive data as a transmission line, keep the other as a standby transmission line, and loop back so that one of the transmission lines is the input side and the other is the output side. In the ring transmission system, the transmission device instructs the downstream transmission device to switch to the backup transmission line when it cannot receive the time fill from the upstream transmission device for a certain period of time, and also switches itself to the backup transmission line, and still When the time fill cannot be received for a certain period of time, it suppresses the transmission of its own time fill to the upstream transmission device,
On the other hand, the transmission device that receives the transmission path switching instruction loops back so that the transmission path before switching is the input side and the transmission path after switching is the output side when the time fill cannot be received for a certain period of time after switching the transmission path. A method for reconfiguring a transmission line of a ring transmission system.
JP3292673A 1991-11-08 1991-11-08 Transmission line reconstituting method for circular transmission system Pending JPH0677976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3292673A JPH0677976A (en) 1991-11-08 1991-11-08 Transmission line reconstituting method for circular transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3292673A JPH0677976A (en) 1991-11-08 1991-11-08 Transmission line reconstituting method for circular transmission system

Publications (1)

Publication Number Publication Date
JPH0677976A true JPH0677976A (en) 1994-03-18

Family

ID=17784822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3292673A Pending JPH0677976A (en) 1991-11-08 1991-11-08 Transmission line reconstituting method for circular transmission system

Country Status (1)

Country Link
JP (1) JPH0677976A (en)

Similar Documents

Publication Publication Date Title
JPH0614643B2 (en) Failure recovery detection method for loop data transmission system
JP4045419B2 (en) Transmission path setting method, transmission apparatus and network system
JPH0677976A (en) Transmission line reconstituting method for circular transmission system
JP3189158B2 (en) Working spare switching method
JPH08214019A (en) Fault detection method for duplicate communication system
JPH0653980A (en) Order wire signal transmission system
JPH03107241A (en) Lan ring reconstitution system
JPS62181544A (en) Transmission line reconstitution system for current transmission system
JPS60236543A (en) Loop constitution control system of duplex loop type network
JP2671930B2 (en) Ring LAN configuration control method
JPH0695687B2 (en) Loop transmission failure countermeasure control method
JPH0650871B2 (en) Transmission line control method in ring type network
JPH0461445A (en) Loop type data transmitter
JPH022258A (en) Signal line duplicated loopback system
JPS6242627A (en) Annular transmission equipment
JPH02121434A (en) Local area network
JPH03139041A (en) Fault processing system in ring network
JPH01264334A (en) Transmission path controller
JPH04151926A (en) Spare changeover system
JPS61292438A (en) Loopback control system
JPH04351037A (en) Loop transmission system
JPS61283253A (en) Transmission control system
JPS63228849A (en) Decentralized transmitting device
JPS61113340A (en) Loop type data transmission system
JPS6119254A (en) Restoration detecting system of transmission fault in duplicated ring network