JPH067736A - Functional thin film with monomolecular film on both faces and continuous preparation thereof - Google Patents
Functional thin film with monomolecular film on both faces and continuous preparation thereofInfo
- Publication number
- JPH067736A JPH067736A JP17319692A JP17319692A JPH067736A JP H067736 A JPH067736 A JP H067736A JP 17319692 A JP17319692 A JP 17319692A JP 17319692 A JP17319692 A JP 17319692A JP H067736 A JPH067736 A JP H067736A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- functional thin
- monomolecular
- monomolecular film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は単分子膜を両面に有する
機能性薄膜、およびその連続製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional thin film having a monomolecular film on both sides, and a continuous production method thereof.
【0002】[0002]
【従来の技術】従来半導体技術や光学技術分野において
使用される薄膜には無機材料が使用されていた。しか
し、最近では機能性に富む有機化合物が新しい機能性薄
膜材料として研究・開発されてきている。そして、集積
回路デバイスなどでは有機分子の単分子膜、累積膜の使
用が研究されている。2. Description of the Related Art Conventionally, inorganic materials have been used for thin films used in the fields of semiconductor technology and optical technology. However, recently, highly functional organic compounds have been researched and developed as new functional thin film materials. Further, in integrated circuit devices and the like, the use of monomolecular films and cumulative films of organic molecules has been studied.
【0003】基板表面に単分子膜あるいは累積膜をうる
には、まず液面上に単分子膜を形成し、それを基板表面
に移しとる方法で基板上に単分子膜を設け、これをくり
返して単分子累積膜とするのが一般的である。In order to obtain a monomolecular film or a cumulative film on the surface of a substrate, first, a monomolecular film is formed on the liquid surface and then transferred onto the surface of the substrate to form a monomolecular film on the substrate, which is repeated. In general, a monomolecular cumulative film is used.
【0004】すなわち、二次元ピストンとして移動可能
なフロートを設けた展開液槽に水または他の液体を満た
し、単分子膜形成物質を溶解した溶液を前記液面に滴下
し展開させる。単分子膜形成物質の量にくらべて液面が
十分に広いばあいには気体膜となるが、フロートを移動
して液面上の単分子が展開している液面の拡がりを縮め
てゆくと分子間の相互作用が強まり、液状膨脹膜を経て
分子の配向配列がきれいに揃った単分子膜、すなわち凝
縮膜(固体膜ともいう)が形成される。ついで前記単分
子膜に一定の表面圧をかけながら、基板を垂直に出し入
れして前記単分子膜を基板に移しとっている。That is, a developing liquid tank provided with a float that can move as a two-dimensional piston is filled with water or another liquid, and a solution in which a monomolecular film forming substance is dissolved is dropped on the liquid surface to be developed. If the liquid surface is sufficiently wide compared to the amount of the monomolecular film forming substance, it becomes a gas film, but it moves the float and shrinks the spread of the liquid surface where the monomolecules on the liquid surface are developing. The interaction between the molecules and the molecules is strengthened, and a monomolecular film in which the molecular orientation is neatly aligned, that is, a condensed film (also referred to as a solid film) is formed through the liquid expansion film. Then, the substrate is vertically taken in and out and the monomolecular film is transferred to the substrate while applying a constant surface pressure to the monomolecular film.
【0005】この方法では、浸漬時だけ単分子膜が基板
8に付着するX型(図5〜7)、浸漬時にも引上げ時に
も単分子膜が付着するY型(図8〜10)、引上げ時のみ
単分子膜が付着するZ型(図11〜13)の3種類がある。
なお、図5〜13において展開液は水であり、分子9の部
分91は親水性部分、部分92は疎水性部分である。In this method, an X type (FIGS. 5 to 7) in which the monomolecular film adheres to the substrate 8 only during immersion, a Y type (FIGS. 8 to 10) in which the monomolecular film adheres during immersion and pulling, There are three types of Z type (Figs. 11 to 13) in which the monomolecular film adheres only when.
5 to 13, the developing solution is water, the portion 91 of the molecule 9 is a hydrophilic portion, and the portion 92 is a hydrophobic portion.
【0006】しかし、この方法はいわゆるバッチ式であ
って、生産性は極めて低い。However, this method is a so-called batch method and its productivity is extremely low.
【0007】さらに従来は基板には金属、ガラス、プラ
スチックスなどが用いられており、基板として機能性薄
膜を用いた単分子膜はえられていない。基板に機能性薄
膜を用いることができれば、用途範囲は大きく広がるも
のと考えられる。Further, conventionally, metal, glass, plastics, etc. have been used for the substrate, and a monomolecular film using a functional thin film has not been obtained as the substrate. If the functional thin film can be used for the substrate, the range of applications is considered to be greatly expanded.
【0008】[0008]
【発明が解決しようとする課題】前記のごとく単分子膜
あるいは累積膜が脚光をあびてきてはいるものの、生産
性がきわめて低いこと、さらに機能性薄膜を基板として
使用することの困難性が、機能性薄膜を基板とした単分
子膜、累積膜開発の進展を妨げる一つの大きな要因とな
っている。As mentioned above, although the monomolecular film or the cumulative film is in the spotlight, the productivity is extremely low and the difficulty of using the functional thin film as a substrate is This is one of the major factors that hinder the progress of development of monomolecular films and cumulative films using functional thin films as substrates.
【0009】したがって、単分子膜を両面に有する機能
性薄膜の効率のよい製造方法の開発が各方面から強く望
まれている。Therefore, development of an efficient method for producing a functional thin film having a monomolecular film on both sides has been strongly desired from all sides.
【0010】[0010]
【課題を解決するための手段】本発明者は前記の欠点を
改善すべく鋭意研究の結果、単分子膜を両面に付着せし
めた機能性薄膜を連続して製造する方法を見出し、前記
の問題点を解決することに成功した。Means for Solving the Problems As a result of intensive studies to improve the above-mentioned drawbacks, the present inventor has found a method for continuously producing a functional thin film having a monomolecular film adhered on both sides, and the above-mentioned problem I succeeded in solving the problem.
【0011】すなわち本発明は、連続した機能性薄膜の
両面にそれぞれ連続した単分子膜を有することを特徴と
する単分子膜を両面に有する機能性薄膜に関する。That is, the present invention relates to a functional thin film having a monomolecular film on both sides, which is characterized by having a continuous monomolecular film on both sides of a continuous functional thin film.
【0012】本発明はまた、上方または下方に移動しう
る連続した機能性薄膜を、単分子膜形成用の第1の静止
表面および第2の静止液面の間に設け、第1の単分子膜
形成物質の溶剤溶液および第2の単分子膜形成物質の溶
剤溶液をそれぞれ前記第1の液面上および第2の液面上
に相対する方向に連続的に供給して第1の単分子膜およ
び第2の単分子膜を連続的に形成せしめ、該第1および
第2の単分子膜をそれぞれ前記上方または下方に移動す
る機能性薄膜のそれぞれの面上に連続して移すことを特
徴とする単分子膜を両面に有する機能性薄膜の連続製造
法に関する。The present invention also provides a continuous functional thin film capable of moving upward or downward between the first stationary surface and the second stationary liquid surface for forming the monomolecular film, and the first monomolecular film is formed. A solvent solution of a film-forming substance and a solvent solution of a second monomolecular film are continuously supplied to the first liquid surface and the second liquid surface in opposite directions, respectively, to obtain a first monomolecular molecule. A film and a second monomolecular film are continuously formed, and the first and second monomolecular films are successively transferred onto respective surfaces of the functional thin film moving upward or downward. The present invention relates to a continuous production method of a functional thin film having a monomolecular film on both sides.
【0013】本発明はまた、上方または下方に移動しう
る連続した機能性薄膜を、それぞれ相対する方向に移動
する第1の液面および第2の液面の間に設け、第1の単
分子膜形成物質の溶剤溶液および第2の単分子膜形成物
質の溶剤溶液をそれぞれ前記相対する方向に移動する第
1の液面上および第2の液面上に連続的に供給して第1
の単分子膜および第2の単分子膜を連続的に形成せし
め、該第1および第2の単分子膜をそれぞれ前記上方ま
たは下方に移動する機能性薄膜のそれぞれの面上に連続
して移すことを特徴とする単分子膜を両面に有する機能
性薄膜の連続製造法に関する。The present invention also provides a continuous functional thin film that can move upward or downward between the first liquid surface and the second liquid surface that move in opposite directions, and the first single molecule. The solvent solution of the film-forming substance and the solvent solution of the second monomolecular film-forming substance are continuously supplied onto the first liquid surface and the second liquid surface moving in the opposite directions, respectively.
And the second monolayer are continuously formed, and the first and second monolayers are continuously transferred onto the respective surfaces of the functional thin film that moves upward or downward. The present invention relates to a method for continuously producing a functional thin film having a monomolecular film on both sides.
【0014】[0014]
【作用および実施例】本発明は同一の、または異なった
単分子膜を連続した機能性薄膜の両面上に連続して移し
とることによって、連続した機能性薄膜の両面上にそれ
ぞれ連続した単分子膜を付着せしめた機能性薄膜および
その製造法を提供するものである。OPERATION AND EXAMPLES The present invention is based on the fact that the same or different monolayers are continuously transferred onto both sides of a continuous functional thin film, whereby continuous monolayers are formed on both sides of a continuous functional thin film. A functional thin film having a film attached thereto and a method for producing the same.
【0015】本発明に用いられる機能性薄膜としては、
たとえば電気的、磁気的、熱的、光学的特性、たとえば
導電性、絶縁性、帯電性、放電性、感圧性、感熱性、感
光性、着色性、発色性、常磁性、反磁性などの性質を有
するものが用いられる。該機能性薄膜は両面が平滑で、
厚さが約5〜2500μm程度、好ましくは10〜1000μmの
長尺のものであって、かつ上下に移動せしめることがで
きる程度の膜強度を有することが好ましい。The functional thin film used in the present invention includes:
For example, electrical, magnetic, thermal, optical characteristics such as conductivity, insulation, charging, discharge, pressure sensitivity, heat sensitivity, photosensitivity, colorability, color development, paramagnetism, diamagnetism, etc. The one having is used. Both sides of the functional thin film are smooth,
It is preferable that the film has a long thickness of about 5 to 2500 μm, preferably 10 to 1000 μm and has a film strength such that it can be moved up and down.
【0016】前記機能性薄膜の材料としては、たとえば
つぎのものがあげられるが、これらはその数例を示した
もので、本発明では前記のごとき各種機能を示すものが
いずれも使用可能である。Examples of the material of the functional thin film include the following. These are only a few examples, and in the present invention, materials exhibiting the various functions as described above can be used. .
【0017】(1)イソブチルメタクリレート−メタク
リル酸共重合体(共重合比90/10(重量比)分子量約4
3.5万、二次転移点76℃)80部(重量部、以下同様)に
スピロピラン20部を均一に混ぜ、たとえば厚さ500 μm
のフィルムに押出し成形した薄膜(紫外線の照射で赤紫
に発色)。(1) Isobutyl methacrylate-methacrylic acid copolymer (copolymerization ratio 90/10 (weight ratio) molecular weight about 4
35,000, second-order transition point 76 ° C) 20 parts of spiropyran are uniformly mixed with 80 parts (weight part, the same applies hereinafter), for example, a thickness of 500 μm
A thin film extruded on the film (developed into reddish purple when irradiated with ultraviolet rays).
【0018】(2)イソブチルメタクリレート−メタク
リル酸共重合体(共重合比95/5(重量比)、分子量4
2.5万、二次転移点74℃)75部にγ−Fe2 O3 25部を
均一に混ぜ、たとえば厚さ500 μmのフィルムに押出し
成形した薄膜(磁界中で磁性を示す)。(2) Isobutyl methacrylate-methacrylic acid copolymer (copolymerization ratio 95/5 (weight ratio), molecular weight 4
A thin film (magnetic property in a magnetic field) extruded into a film having a thickness of 500 μm, for example, by uniformly mixing 25 parts of γ-Fe 2 O 3 with 75 parts of 25,000, a second-order transition point of 74 ° C.).
【0019】(3)プラスチック製光ファイバーのコア
用ポリマーとクラッド用ポリマーを層状にラミネートし
たもの。たとえば三菱レーヨン(株)製のプラスチック
製光ファイバー(商品名スーパーエヌカ)のコア用ポリ
メチルメタクリレートとクラッド用のフッ素ポリマーを
ラミネートした、たとえば厚さ500 μmのフィルム(こ
の機能性薄膜は強靭であり、クラッド面に光を照射して
も光はフィルムを透過せず、光遮弊機能を有する)。(3) A layered laminate of a polymer for a core of a plastic optical fiber and a polymer for a clad. For example, a plastic optical fiber (trade name: Super Nuka) manufactured by Mitsubishi Rayon Co., Ltd. laminated with polymethylmethacrylate for the core and a fluoropolymer for the clad, for example, a film with a thickness of 500 μm (this functional thin film is tough. , Even if the cladding surface is irradiated with light, the light does not pass through the film and has a light blocking function).
【0020】(4)α−メチルスチレン−メチルメタク
リレート共重合体(メチルメタクリレートが80モル%、
重量平均分子量10万)40部とポリカーボネート(三菱化
成(株)製、商品名NOVAREX7025A)60部を均一
にブレンドしたポリマーアロイ(ヤング率120dyne/c
m2 、二次転移転150 ℃)の、たとえば厚さ500 μmの
薄膜(真珠光沢を有する)。(4) α-methylstyrene-methyl methacrylate copolymer (80 mol% of methyl methacrylate,
A polymer alloy (Young's modulus 120 dyne / c) in which 40 parts of a weight average molecular weight of 100,000 and 60 parts of polycarbonate (manufactured by Mitsubishi Kasei Co., Ltd., trade name NOVAREX 7025A) are uniformly blended.
m 2, the secondary transfer Transfer of 0.99 ° C.), for example, thickness 500 [mu] m of the thin film (having a pearlescent).
【0021】本発明の機能性薄膜は、前記機能性薄膜の
両面に連続した単分子膜を有するものであって、単分子
膜形成物質としては、皮膜形成能のある両親媒性の化合
物、たとえばカルボキシル基、スルホ基、アンモニウム
基、水酸基などの親水基と長鎖の炭化水素基などの疎水
基の両方をもつ界面活性剤、カップリング剤(たとえば
シラン系カップリング剤、チタネート系カップリング剤
などがあげられ、より具体的にはシラン系カップリング
剤として、メタクリロキシプロピルトリメトキシシラン
などが、チタネート系カップリング剤として米国、ケン
リッチペトロケミカルス(Kenrich Petrochemicals)社製
のKR−TTSなどがあげられる)、脂肪酸、有機合成
高分子、蛋白質などが用いられる。The functional thin film of the present invention has a continuous monomolecular film on both sides of the functional thin film. As the monomolecular film forming substance, an amphipathic compound capable of forming a film, for example, Surfactants and coupling agents (eg, silane coupling agents, titanate coupling agents, etc.) that have both hydrophilic groups such as carboxyl groups, sulfo groups, ammonium groups, and hydroxyl groups and hydrophobic groups such as long-chain hydrocarbon groups. More specifically, as a silane coupling agent, methacryloxypropyltrimethoxysilane and the like, and as a titanate coupling agent, KR-TTS manufactured by Kenrich Petrochemicals, Inc. in the United States. Used), fatty acids, organic synthetic polymers, proteins and the like.
【0022】前記単分子膜形成物質は、高純度で揮発性
または展開液と混合しうる有機溶剤、たとえばアルコー
ル類、ケトン類、エーテル類、エステル類、炭化水素な
どの単独または混合溶剤に完全に溶解して用いられる。
その濃度は単分子膜形成物質の種類、分子量、溶剤の溶
解能によって異なるが、容易に単分子膜に拡散すること
ができる範囲であって、しかも高濃度ほど好ましく、通
常0.1 〜 5.0重量%程度で使用される。The monomolecular film-forming substance is completely pure or mixed in an organic solvent which is highly pure and is volatile or can be mixed with a developing solution, such as alcohols, ketones, ethers, esters and hydrocarbons. Used by dissolving.
The concentration varies depending on the type of monolayer-forming substance, the molecular weight, and the ability to dissolve the solvent, but it is within the range where it can be easily diffused into the monolayer, and the higher the concentration, the better, usually 0.1 to 5.0% by weight. Used in.
【0023】前記単分子膜形成物質溶液から単分子膜を
作り、前記機能性薄膜の両面上に連続した前記単分子膜
を設ける方法について、以下図面にしたがって説明す
る。A method for forming a monomolecular film from the monomolecular film forming substance solution and providing the continuous monomolecular film on both surfaces of the functional thin film will be described below with reference to the drawings.
【0024】図1は本発明の方法の第1の態様において
使用する装置の断面を表す概念図である。該装置は図1
に示すごとく2つの展開液槽の間に矢印で示す上下方向
に移動しうる機能性薄膜2が設けられたものである。FIG. 1 is a conceptual diagram showing a cross section of an apparatus used in the first embodiment of the method of the present invention. The device is shown in FIG.
The functional thin film 2 that can move in the vertical direction indicated by the arrow is provided between the two developing solution tanks as shown in FIG.
【0025】前記展開液槽の形に特別の限定はないが、
通常は長方形のものが使用される。図1のごとく展開液
槽は2槽を用いるが、それらは前記機能性薄膜と接触し
ない程度にできるかぎり近接して設けられる。The shape of the developing solution tank is not particularly limited,
A rectangular one is usually used. As shown in FIG. 1, two developing solution tanks are used, but they are provided as close as possible to the extent that they do not come into contact with the functional thin film.
【0026】前記展開液槽の、機能性薄膜から遠い端面
71、72には、およそその幅にわたってごく狭いスリット
状のノズル31、32を有する単分子膜形成物質溶液の供給
手段が液面に接して設けられている。End face of the developing liquid tank far from the functional thin film
71, 72 are provided with a supply means for supplying a solution for a monomolecular film forming substance having nozzles 31, 32 in the shape of slits, which are very narrow over the width thereof, in contact with the liquid surface.
【0027】前記展開液槽には平滑な面を作る展開液が
満たされている。これは通常純水が使用されるが、必要
に応じて前記単分子膜形成物質を溶解しない化学的に不
活性な高純度の有機溶剤を用いることもできる。また左
右の展開液は同一であっても異なっていてもよい。水を
はじめこれらの溶剤は高純度であることが必要条件であ
る。The developing solution tank is filled with a developing solution that forms a smooth surface. Pure water is usually used for this, but if necessary, a chemically inert high-purity organic solvent that does not dissolve the monolayer-forming substance may be used. Further, the left and right developing solutions may be the same or different. It is a necessary condition that these solvents including water have high purity.
【0028】前記展開液槽の液面上には、機能性薄膜と
平行に各1本の線状体61、62が設けられていて液槽の端
部71、72との間に展開液面51、52を区切っている。該線
状体は絹糸、銅アンモニア人絹糸、レーヨン糸、アセテ
ート糸、ナイロン糸、ポリエステル糸など疎水性に近い
両親媒性繊維から作られる微細な糸からなるもので、細
いほどよく、通常は直径が1〜0.5 μm程度のものが好
ましい。前記線状体は展開液槽外にある緊張手段でたる
まないように液面上に張られており、かつ液槽外にある
移動手段によって機能性薄膜と平行を保ったまま展開液
槽の一端から機能性薄膜まで、液面上を移動することが
可能である。On the liquid surface of the developing liquid tank, one linear member 61, 62 is provided in parallel with the functional thin film, and the developing liquid surface is formed between the end portions 71, 72 of the liquid tank. 51 and 52 are separated. The linear body is a fine thread made of amphipathic fibers that are close to hydrophobic, such as silk thread, copper ammonia human silk thread, rayon thread, acetate thread, nylon thread, and polyester thread. The finer the thread, the better the diameter. Is preferably about 1 to 0.5 μm. The linear body is stretched on the liquid surface so as not to sag by the tension means outside the developing solution tank, and one end of the developing solution tank is kept parallel to the functional thin film by the moving means outside the solution tank. It is possible to move on the liquid surface from to the functional thin film.
【0029】前記線状体61、62は、液面上に生成した単
分子の層が表面圧によって単分子膜を形成しやすくする
ことと、生成した単分子膜の縁を機能性薄膜と平行に揃
え、その状態のまま機能性薄膜にまで誘導する機能を有
する。The linear bodies 61 and 62 make it easy for the monomolecular layer formed on the liquid surface to form a monomolecular film by the surface pressure and that the edges of the generated monomolecular film are parallel to the functional thin film. It has a function of guiding to a functional thin film in that state.
【0030】単分子膜を生成せしめるには、ノズル31お
よび32から前記単分子膜構成物質の溶液をそれぞれ静止
液面51、52上に静かに流延する。この際両単分子膜構成
物質溶液は必要に応じて同じであっても異なっていても
よい。前記単分子膜構成物質の溶液を一定速度で連続し
て供給しつづけると、溶剤が揮発するか展開液に溶解す
る結果、展開液に不溶の単分子膜形成物質が展開液面に
析出し、表面圧により線状体に沿って固体膜が形成され
る。そののちさらに前記溶液の供給をつづけながら前記
線状体を前記機能性薄膜方向に移動させ、左右の単分子
膜の前縁を機能性薄膜に同時に接触せしめる。単分子膜
は該単分子膜と機能性薄膜との親和性により機能性薄膜
の表面に密着する。In order to form a monomolecular film, a solution of the monomolecular film constituent substance is gently cast on the stationary liquid surfaces 51 and 52 from the nozzles 31 and 32, respectively. At this time, both monomolecular film constituent substance solutions may be the same or different as required. When the solution of the monomolecular film forming material is continuously supplied at a constant rate, the solvent is volatilized or dissolved in the developing solution, so that the monomolecular film forming material insoluble in the developing solution is deposited on the developing solution surface, Due to the surface pressure, a solid film is formed along the linear body. After that, while continuing to supply the solution, the linear body is moved in the direction of the functional thin film, and the front edges of the left and right monomolecular films are brought into contact with the functional thin film at the same time. The monomolecular film adheres to the surface of the functional thin film due to the affinity between the monomolecular film and the functional thin film.
【0031】該機能性薄膜は、下方に移動するばあいに
は図5のごとく分子の疎水性基が機能性薄膜に付着する
ので、親和力を高めるために疎水性であることが好まし
く、また上方に移動るするばあいには図12のごとく分子
の親水性基が機能性薄膜に付着するので、親和力を高め
るために親水性であることが好ましい。When the functional thin film moves downward, the hydrophobic group of the molecule adheres to the functional thin film as shown in FIG. 5, so it is preferable that the functional thin film is hydrophobic in order to increase the affinity. As shown in FIG. 12, the hydrophilic group of the molecule adheres to the functional thin film when it moves to, so that it is preferably hydrophilic in order to increase the affinity.
【0032】該機能性薄膜の移動速度は単分子膜の生成
速度と釣り合うことが必要で、通常約10〜200 mm/分程
度であるが、一般にディスペンサーと呼ばれている定比
例秤量、均斉混合、定量吐出装置を使用して単分子膜形
成物質を溶剤に溶解し、そのまま単分子膜を形成しやす
い濃度、速度で流延するときは20m/分の速度にまで上
昇せしめることができる。The moving speed of the functional thin film needs to be balanced with the forming speed of the monomolecular film, and is usually about 10 to 200 mm / min. When a monomolecular film-forming substance is dissolved in a solvent using a constant-quantity discharge device, and when casting is performed at such a concentration and speed that the monomolecular film can be formed as it is, the speed can be increased to 20 m / min.
【0033】単分子膜が表面に付着した機能性薄膜は、
乾燥あるいは架橋処理ののち巻き取られるかあるいはシ
ート状に裁断される。The functional thin film having a monomolecular film attached to the surface is
After being dried or cross-linked, it is wound or cut into a sheet.
【0034】単分子膜の形成に用いられる水、溶剤、器
具などは単分子膜形成の一般的注意にしたがって、不純
物などによる汚染をさけねばならない。また操作中は温
度は一定に、濃度はできるだけ一定に保つことが必要で
ある。The water, solvent, equipment, etc. used for forming the monomolecular film must be prevented from being contaminated by impurities according to the general precautions for forming the monomolecular film. It is also necessary to keep the temperature constant and the concentration as constant as possible during operation.
【0035】本発明の方法の第2の態様(以下、態様2
という)においては、図2のごとく中央に向かって相対
して移動する左右1組の無端ベルト(以下、ベルトとい
う)11の間に機能性薄膜2を設けた装置を用いる。前記
ベルト11は機能性薄膜2と接触しない程度にできるかぎ
り近接して設けられる。The second aspect of the method of the present invention (hereinafter, aspect 2)
2), a device in which the functional thin film 2 is provided between a pair of left and right endless belts (hereinafter, referred to as belts) 11 that move relatively toward the center as shown in FIG. The belt 11 is provided as close as possible to the extent that it does not come into contact with the functional thin film 2.
【0036】前記ベルト11の材質は、展開液に水を使用
するばあいには、高吸水性樹脂のシ−トを、金網または
これに変わりうる多孔性のベルト上に設けたものが好ま
しく用いられる。高吸水性樹脂シートに水を充分に吸収
させたばあい、表面にごく薄い水の層が保持され、この
水層を展開液として利用する。When water is used as a developing solution, the material of the belt 11 is preferably a sheet of super absorbent resin provided on a wire mesh or a porous belt which can be replaced with this. To be When the water-absorbent resin sheet absorbs water sufficiently, a very thin water layer is retained on the surface, and this water layer is used as a developing solution.
【0037】高吸水性樹脂としては、従来より知られて
いるものがとくに制限なく使用でき、たとえばアクリル
酸系、デンプン/アクリル酸系のものなどがあげられ
る。自己の体積の100 倍以上、とくに500 倍以上の水を
吸収しうるものが好ましい。As the highly water-absorbent resin, conventionally known resins can be used without particular limitation, and examples thereof include acrylic acid-based resins and starch / acrylic acid-based resins. Those capable of absorbing 100 times or more, especially 500 times or more of water of their own volume are preferable.
【0038】高吸水性樹脂シ−トにかえて、一般の連続
多孔性樹脂シ−トなども使用可能である。A general continuous porous resin sheet or the like can be used instead of the super absorbent resin sheet.
【0039】前記ベルト11は複数個の回転ローラによっ
て支持され、矢印のごとく中央に向かって相対する方向
に移動している。ベルト上部、すなわち外側端部と機能
性薄膜2側の端部との間は水平か水平に近い平面となっ
ている。The belt 11 is supported by a plurality of rotating rollers, and moves in the opposite directions toward the center as shown by arrows. The upper portion of the belt, that is, the outer end portion and the end portion on the functional thin film 2 side is horizontal or a plane close to horizontal.
【0040】前記ベルトの左右の端部付近には展開液を
ベルトに供給するための展開液供給口41が設けられてい
る。A developing solution supply port 41 for supplying a developing solution to the belt is provided near the left and right ends of the belt.
【0041】前記展開液供給口41から連続して供給され
る展開液によって、前記ベルト11の上面には展開液膜5
5、56が形成されている。ベルト11の樹脂が吸収しきれ
ない展開液は多孔性支持体を通して滴下する。A developing liquid film 5 is formed on the upper surface of the belt 11 by the developing liquid continuously supplied from the developing liquid supply port 41.
5, 56 are formed. The developing solution that cannot be completely absorbed by the resin of the belt 11 is dropped through the porous support.
【0042】前記展開液には通常純水が用いられるが、
後記単分子膜形成物質の溶剤に溶解しない溶剤を用いる
こともできる。Pure water is usually used as the developing solution,
It is also possible to use a solvent that does not dissolve in the solvent for the monolayer-forming substance described later.
【0043】前記ベルト11の外側端部付近で、前記展開
液供給口41の中央よりにはおよそベルトの幅にわたっ
て、それぞれ第1および第2の単分子膜形成物質の溶剤
溶液を連続的に供給する単分子膜形成物質溶液供給手段
の、ごく狭いスリット状のノズル31、32が展開液膜にご
く近接して設けられている。前記ノズル31、32は液の流
出が可能な限り狭いほうがよい。Near the outer end of the belt 11, the solvent solutions of the first and second monomolecular film-forming substances are continuously supplied from the center of the developing solution supply port 41 over the width of the belt. Very narrow slit-shaped nozzles 31, 32 of the monomolecular film forming substance solution supply means are provided in close proximity to the developing liquid film. The nozzles 31 and 32 should be as narrow as possible for the liquid to flow out.
【0044】単分子膜を形成せしめるには、まず前記展
開液供給口41から展開液を前記無端ベルト11上に供給し
て、ベルト面上に展開液の薄膜を形成する。ベルトが展
開液を吸収しきれない定常状態に達したのちは展開液の
供給速度を一定にして、ベルト上に常に一定の厚さの展
開液膜を形成させるようにすることが望ましい。このと
きはベルト上の展開液膜55、56はベルトに対する相対速
度ゼロで中央方向に移動する。この際ベルト上の展開液
膜面はできる限り平滑を保つようにすることが必要であ
る。In order to form a monomolecular film, first, the developing solution is supplied from the developing solution supply port 41 onto the endless belt 11 to form a thin film of the developing solution on the belt surface. After the belt reaches a steady state where it cannot absorb the developing solution, it is desirable to keep the developing solution supply rate constant so that a developing solution film having a constant thickness is always formed on the belt. At this time, the developing liquid films 55 and 56 on the belt move toward the center at a relative velocity of zero to the belt. At this time, it is necessary to keep the developing liquid film surface on the belt as smooth as possible.
【0045】つぎにノズル31から前記単分子膜形成物質
Aの溶液を前記展開液膜55の液面上に、またノズル32か
ら単分子膜形成物質Bの溶液を前記展開液膜56上の液面
に静かに流延する。この際物質AとBとは同じであって
も異なっていてもよい。それぞれの溶液の濃度は、前記
のごとく該溶液が展開液面上に供給されたとき溶剤が揮
発するか展開液に溶解する結果、ただちに単分子膜を生
成する範囲を選びうるので、稀薄溶液を用いなければな
らない従来のバッチ式の方法にくらべて効率がきわめて
よいということができる。Next, the solution of the monomolecular film forming substance A is discharged from the nozzle 31 onto the liquid surface of the developing liquid film 55, and the solution of the monomolecular film forming substance B is discharged from the nozzle 32 onto the developing liquid film 56. Cast gently onto the surface. At this time, the substances A and B may be the same or different. As for the concentration of each solution, as described above, the solvent volatilizes or dissolves in the developing solution when the solution is supplied on the developing solution surface, and as a result, a range in which a monomolecular film is immediately formed can be selected. It can be said that it is extremely efficient as compared with the conventional batch method that must be used.
【0046】この際単分子膜形成物質溶液の単位時間の
供給量は、単分子膜がそのまま連続して移動できるよう
に単分子膜の移動速度すなわちベルトの移動速度と釣り
合うことが必要である。この速度は通常約10〜 200mm/
分程度であるが、態様2では表面圧による圧縮工程のか
わりに展開液の移動を利用するので速度的に有利であ
り、一般にディスペンサーと呼ばれている定比例秤量、
均斉混合、定量吐出装置を使用して単分子膜形成物質を
溶剤に溶解し、そのまま単分子膜を形成しやすい濃度、
速度で流延するときは20m/分程度にまで上昇せしめる
ことができる。展開液面上に単分子膜形成物質溶液を流
延して単分子膜を形成しはじめたときは態様1のばあい
と同様にして前記単分子膜を機能性薄膜に接触せしめ
る。At this time, the supply amount of the monomolecular film forming substance solution per unit time needs to be balanced with the moving speed of the monomolecular film, that is, the moving speed of the belt so that the monomolecular film can continuously move as it is. This speed is usually about 10-200 mm /
Although it is about a minute, the aspect 2 is advantageous in terms of speed because the movement of the developing solution is used instead of the compression step by the surface pressure, and a constant proportional weighing generally called a dispenser,
Dissolve the monomolecular film forming substance in the solvent using the uniform mixing and quantitative discharge device, and the concentration that makes it easy to form the monomolecular film,
When casting at a speed, it can be raised to about 20 m / min. When the monomolecular film forming substance solution is cast on the developing liquid surface to start forming the monomolecular film, the monomolecular film is brought into contact with the functional thin film in the same manner as in the case of the first embodiment.
【0047】本発明の方法の別の態様(以下、態様3と
いう)においては、図3のごとく、前記機能性薄膜2を
挟んで2枚の平滑な、かつ展開液と親和性のある表面を
有する板状体16を設けた装置を用いる。前記板状体は機
能性薄膜2に向かって液体が自然に流下する程度に僅か
に下り勾配をなしている。また板状体16の両側には流下
する液体が途中で板状体16の左右から落下してしまわな
いように、側壁が設けられている(側壁は図示されてい
ない)。In another embodiment of the method of the present invention (hereinafter referred to as embodiment 3), as shown in FIG. 3, two smooth surfaces having the functional thin film 2 therebetween and having an affinity with the developing solution are formed. An apparatus provided with the plate-shaped body 16 having the same is used. The plate-shaped body has a slight downward gradient to the extent that the liquid naturally flows down toward the functional thin film 2. Further, side walls are provided on both sides of the plate-like body 16 (side walls are not shown) so that the flowing-down liquid does not fall from the left and right sides of the plate-like body 16 on the way.
【0048】前記板状体16と機能性薄膜2との位置関係
は態様2のばあいと同様である。The positional relationship between the plate-like body 16 and the functional thin film 2 is the same as in the case of the second aspect.
【0049】前記板状体16の左右の端部付近には前記態
様2のばあいと同様の展開液供給口41が設けられてい
る。In the vicinity of the left and right ends of the plate-like body 16, a developing solution supply port 41 similar to that in the case of the second aspect is provided.
【0050】単分子膜形成物質溶液の供給手段のノズル
31、32は前記態様2のばあいと同様のもので、板状体の
展開液供給口よりわずか機能性薄膜よりのところにごく
近接して設けられている。Nozzle for supplying monomolecular film forming substance solution
Reference numerals 31 and 32 are the same as in the case of the second embodiment, and they are provided very close to the developing solution supply port of the plate-like member and slightly closer to the functional thin film.
【0051】単分子膜を形成せしめるには、まず前記展
開液供給口41から展開液を前記板状体16上に供給して、
板状体面上に展開液膜55、56を形成する。定常状態に達
したのち展開液の供給速度を一定にして、板状体上に常
に一定の厚さの、かつ平滑な表面の展開液膜55、56とな
るようにすることが必要である。In order to form a monomolecular film, first, the developing solution is supplied from the developing solution supply port 41 onto the plate-like body 16,
The developing liquid films 55 and 56 are formed on the plate-like body surface. After reaching the steady state, it is necessary to make the supply rate of the developing solution constant so that the developing solution films 55 and 56 having a constant thickness and a smooth surface are always formed on the plate.
【0052】つぎに態様2のばあいと同様に、ノズル3
1、32から単分子膜形成物質の溶液を前記展開液膜55、5
6上に静かに流延する。Next, as in the case of the second aspect, the nozzle 3
The solution of the monomolecular film forming substance from 1, 32 is the developing liquid film 55, 5
6 Cast gently on top.
【0053】単分子膜の形成以後については態様2のば
あいと同様である。After the formation of the monomolecular film, it is the same as in the case of the second embodiment.
【0054】さらに第4の態様として、図4に示すよう
に2つの展開液槽の間に上下に移動しうる機能性薄膜2
が設けられたものを使用することもできる。As a fourth aspect, as shown in FIG. 4, a functional thin film 2 which can move vertically between two developing solution tanks.
It is also possible to use those provided with.
【0055】前記展開液槽の形は前記態様1に用いられ
る展開液槽と同様でよく、機能性薄膜2の両側にこれと
接触しない程度にできるかぎり近接して設けられる。The shape of the developing solution tank may be the same as that of the developing solution tank used in the first aspect, and it is provided on both sides of the functional thin film 2 as close as possible so as not to come into contact with the same.
【0056】各槽に設けられる展開液供給口41、および
単分子膜形成物質溶液の供給手段のノズル31、32は前記
態様2のばあいと同様である。The developing solution supply port 41 provided in each tank and the nozzles 31, 32 of the means for supplying the monomolecular film forming substance solution are the same as in the case of the second embodiment.
【0057】展開液槽の展開液供給口と反対側の端には
液面よりやや下がったところに排液口42が設けられてい
る。A drain port 42 is provided at an end of the developing solution tank opposite to the developing solution supply port, slightly below the liquid surface.
【0058】前記展開液槽には展開液が展開液供給口41
から排液口42へ向かって平滑な液面53、54を保つように
流れている。排液口から流出する液の量は供給される液
の量と等しくなるようにつねに制御されているので、液
面レベルは常に一定に保たれている。The developing solution is supplied to the developing solution tank by a developing solution supply port 41.
Flows toward the drainage port 42 so as to maintain smooth liquid surfaces 53 and 54. Since the amount of liquid flowing out from the drainage port is always controlled to be equal to the amount of liquid supplied, the liquid level is always kept constant.
【0059】展開液面53、54上に形成された単分子膜が
展開液の流れに乗って移動する点およびそれ以降は態様
2のばあいと同様である。The points in which the monomolecular films formed on the developing liquid surfaces 53 and 54 move along with the flow of the developing liquid and thereafter are the same as in the case of the second embodiment.
【0060】前記両面に単分子膜を付着せしめた機能性
薄膜は、さらに別の機能性薄膜の片面または両面上に密
着させて複合膜を形成することもできる。両面上に密着
させるばあい、両面に同一の機能性薄膜を適用すること
は必ずしも必要ではない。The functional thin film having a monomolecular film attached to both surfaces thereof may be further adhered to one surface or both surfaces of another functional thin film to form a composite film. It is not always necessary to apply the same functional thin film on both sides when closely contacting on both sides.
【0061】このようにしてえられる、単分子膜を両面
上に有する機能性薄膜は分子エレクトロニクスにおける
熱応答性、光応答性など外部の刺激に対応できるデバイ
ス素材として、あるいはバイオニクスにおける生体適合
性材料として用いられる。The thus obtained functional thin film having monomolecular films on both sides is used as a device material capable of responding to external stimuli such as thermal responsiveness and photoresponsiveness in molecular electronics, or biocompatibility in bionics. Used as a material.
【0062】なお一方向に移動させて両面に単分子膜を
付着せしめた機能性薄膜を、その終端まで移動し終えて
から、逆方向に移動させて単分子膜上にさらに単分子膜
を累積せしめることもできる。このばあい、はじめに機
能性薄膜を上方に移動させてから下方に移動させれば図
10に示すごときY型の累積膜がえられ、最初に下方に移
動させてから上方に移動させれば逆Y型の累積膜がえら
れる。この操作を繰り返すことによって機能性薄膜の両
面に多重累積膜を設けることができる。The functional thin film, which has been moved in one direction and has a monomolecular film attached on both sides, is moved to the end and then moved in the opposite direction to accumulate a monomolecular film on the monomolecular film. It can also be done. In this case, first move the functional thin film upward and then downward.
A Y-type cumulative film as shown in FIG. 10 is obtained, and an inverted Y-type cumulative film is obtained by first moving the film downward and then moving it upward. By repeating this operation, multiple cumulative films can be provided on both surfaces of the functional thin film.
【0063】実施例1 図1の装置を用い、メタクリロキシプロピルトリメトキ
シシランのトルエン溶液(0.8 重量%)を左右の水面上
に4.6 ml/分の割合でノズルから供給し単分子膜を形成
した。左右の液槽で形成された単分子膜を、10m/分の
速度で上方に移動しているイソブチルメタクリレート−
メチルメタクリレート共重合体(共重合比90/10(重量
比)、重量平均分子量43.5×104 、二次転移点76℃)80
部に、フォトクロミック化合物として、スピロピラン20
部を均一に混合分散した、厚さ500 μmの薄膜の両面に
連続して付着せしめて単分子膜を両面に有する機能性薄
膜を連続して製造した。Example 1 Using the apparatus shown in FIG. 1, a toluene solution of methacryloxypropyltrimethoxysilane (0.8 wt%) was supplied onto the left and right water surfaces at a rate of 4.6 ml / min from a nozzle to form a monomolecular film. . Isobutyl methacrylate-moving upward in the monolayer formed in the left and right liquid tanks at a speed of 10 m / min.
Methyl methacrylate copolymer (copolymerization ratio 90/10 (weight ratio), weight average molecular weight 43.5 × 10 4 , second-order transition point 76 ° C) 80
As a photochromic compound, spiropyran 20
A functional thin film having a monomolecular film on both sides was continuously produced by continuously adhering both sides of a thin film having a thickness of 500 μm in which parts were uniformly mixed and dispersed.
【0064】えられた機能性薄膜は、紫外線の照射で赤
紫色に発色し照射を止めると元の白色に戻った。また発
色後暗所に保管すると赤紫色はそのまま保たれた。ま
た、該機能性薄膜はさらに別の支持体と重ねて強固に密
着させることができた。The functional thin film thus obtained developed a reddish purple color upon irradiation with ultraviolet rays and returned to the original white color when the irradiation was stopped. After the color was developed, it was stored in a dark place and the reddish purple color was retained. Further, the functional thin film was able to be overlaid on another support and firmly adhered thereto.
【0065】実施例2 実施例1における薄膜を、イソブチルメタクリレート−
メチルメタクリレート、共重合体(共重合比95/5(重
量比)、重量平均分子量42.5×104 、二次転移点74℃)
75部に、γ−Fe2 O3 (平均長さ12nmの針状結晶)
25部を均一に混ぜた、厚さ500 μmの薄膜に変えたほか
は実施例1と同様にして、単分子膜を両面に有する機能
性薄膜を連続して製造した。Example 2 The thin film obtained in Example 1 was replaced with isobutylmethacrylate-
Methyl methacrylate, copolymer (copolymerization ratio 95/5 (weight ratio), weight average molecular weight 42.5 × 10 4 , secondary transition point 74 ° C)
In 75 parts, γ-Fe 2 O 3 (acicular crystals with an average length of 12 nm)
A functional thin film having monomolecular films on both sides was continuously produced in the same manner as in Example 1 except that 25 parts were uniformly mixed and a thin film having a thickness of 500 μm was used.
【0066】えられた機能性薄膜は常磁性を示し、ま
た、さらに別の支持体と重ねて強固に密着させることが
できた。The obtained functional thin film exhibited paramagnetism, and it could be firmly adhered to another support by superimposing it.
【0067】実施例3 図4に示す装置を使用し、機能性薄膜に三菱レーヨン
(株)製のプラスチック製光ファイバー(商品名スーパ
ーエヌカ)のコア用ポリメチルメタクリレートとクラッ
ド用のフッ素ポリマーをラミネートした厚さ500 μmの
薄膜を使用し、チタネート系カップリング剤KR−TT
Sの0.076 重量%イソプロピルアルコール溶液を、流速
20m/分で中央方向に向って流れている左右の水面の両
外端に5.1ml /分の割合で、ノズルから静かに供給し
た。水槽の幅は0.5 mで、前記供給面は前記カップリン
グ剤が単分子膜を形成するにちょうど必要な量である。Example 3 Using the apparatus shown in FIG. 4, the functional thin film was laminated with polymethylmethacrylate for the core of Mitsubishi Rayon Co., Ltd. plastic optical fiber (trade name Super Nuka) and fluoropolymer for the clad. Using a thin film with a thickness of 500 μm, the titanate coupling agent KR-TT
A 0.076 wt% isopropyl alcohol solution of S at a flow rate of
At a rate of 5.1 ml / min to both outer ends of the left and right water surfaces flowing toward the center at 20 m / min, the solution was gently fed from the nozzle. The width of the water tank is 0.5 m, and the amount of the coupling agent on the supply surface is exactly the amount necessary for forming the monomolecular film.
【0068】単分子膜形成用溶液は水面上に供給される
と、溶剤が水に溶解するにしたがって、チタネート系カ
ップリング剤を気体膜を経ずに直接単分子膜の形で析出
し、水の流れにのって連続して機能性薄膜に向って移動
した。When the solution for forming a monomolecular film is supplied onto the water surface, as the solvent dissolves in water, the titanate coupling agent is directly deposited in the form of a monomolecular film without passing through the gas film, and the water And moved toward the functional thin film continuously.
【0069】該単分子膜を20m/分で移動している前記
機能性薄膜には付着せしめ、実施例1と同様にして、単
分子膜を両面に有する機能性薄膜を連続して製造した。The monomolecular film was attached to the functional thin film moving at 20 m / min, and a functional thin film having the monomolecular film on both sides was continuously produced in the same manner as in Example 1.
【0070】えられた機能性薄膜は強靭でありクラッド
面に光を照射しても光はフィルムを透過せず、光遮弊機
能を有し、また、さらに別の支持体と重ねて強固に密着
させることができた。The obtained functional thin film is tough, and even if the cladding surface is irradiated with light, the light does not pass through the film and has a light shielding function, and it is firmly laminated with another support. It was possible to make it adhere.
【0071】実施例4 機能性薄膜2として、α−メチルスチレン−メチルメタ
クリレート共重合体(メチルメタクリレートが80モル
%、重量平均分子量10万)40部とポリカーボネート(三
菱化成(株)製、商品名NOVAREX7025A)60部を
均一にブレンドしたポリマーアロイ(ヤング率120 dyne
/cm2 、二次転移点150 ℃)の厚さ500 μmの薄膜を用
い、エンドレスベルトの材質に三井油化(株)製の易成
型性吸水性樹脂プラウエットG260 H(商品名)のシー
トを用いた、図2に示す装置を用い、単分子膜形成用溶
液としてグリシドキシプロピルトリメトキシシランの0.
76重量%トルエン溶液を、10m/分で中央にむかって移
動している幅1mのベルトの両外端に吐出ノズルから4.
6ml /分の割合で静かに供給した。液の供給量はベルト
上にちょうど単分子膜を形成するに必要な量である。Example 4 As the functional thin film 2, 40 parts of α-methylstyrene-methylmethacrylate copolymer (80 mol% of methylmethacrylate, weight average molecular weight 100,000) and polycarbonate (trade name, manufactured by Mitsubishi Kasei Co., Ltd.) NOVAREX 7025A) 60 parts homogenous blended polymer alloy (Young's modulus 120 dyne
/ Cm 2 , second-order transition temperature 150 ℃) thin film of 500 μm, endless belt made of Mitsui Yuka Co., Ltd. easily moldable water-absorbent resin plawet G260 H (trade name) sheet Using the apparatus shown in FIG. 2, a glycidoxypropyltrimethoxysilane solution of 0.1.
4. From the discharge nozzle to both outer ends of a 1 m wide belt that moves 76 wt% toluene solution toward the center at 10 m / min.
It was gently fed at a rate of 6 ml / min. The supply amount of the liquid is exactly the amount necessary to form a monomolecular film on the belt.
【0072】単分子膜形成用溶液はベルト上に供給され
ると溶剤が揮発するにしたがって、グリシドキシプロピ
ルトリメトキシシランを気体膜の形を経ずに直接単分子
膜の形で析出し、ベルトの移動にしたがって連続して機
能性薄膜へと移動した。該単分子膜を10m/分で移動し
ている前記機能性薄膜に付着せしめ実施例1と同様にし
て、単分子膜を両面に有する機能性薄膜を連続して製造
した。When the solution for forming a monomolecular film is supplied onto the belt, as the solvent volatilizes, glycidoxypropyltrimethoxysilane is directly deposited in the form of a monomolecular film without passing through the form of a gas film, As the belt moved, it continuously moved to the functional thin film. The monolayer was attached to the functional thin film moving at 10 m / min, and a functional thin film having the monolayer on both sides was continuously produced in the same manner as in Example 1.
【0073】えられた機能性薄膜は真珠光沢を有し、ま
た、さらに別の支持体と重ねて強固に密着させることが
できた。The obtained functional thin film had a pearlescent luster, and could be firmly adhered to another support by superimposing it.
【0074】[0074]
【発明の効果】本発明によると、単分子膜を両面に有す
る機能性薄膜を連続して、高速で効率よく製造すること
ができる。According to the present invention, a functional thin film having a monomolecular film on both sides can be continuously and efficiently manufactured at high speed.
【図1】態様1における単分子膜を両面に有する機能性
薄膜の連続製造装置を説明するための断面説明図であ
る。FIG. 1 is a cross-sectional explanatory view for explaining an apparatus for continuously producing a functional thin film having a monomolecular film on both sides in aspect 1.
【図2】態様2における単分子膜を両面に有する機能性
薄膜の連続製造装置を説明するための断面説明図であ
る。FIG. 2 is a cross-sectional explanatory view for explaining an apparatus for continuously producing a functional thin film having a monomolecular film on both sides according to an aspect 2.
【図3】態様3における単分子膜を両面に有する機能性
薄膜の連続製造装置を説明するための断面説明図であ
る。FIG. 3 is a cross-sectional explanatory diagram for explaining an apparatus for continuously producing a functional thin film having a monomolecular film on both sides in aspect 3.
【図4】態様4における単分子膜を両面に有する機能性
薄膜の連続製造装置を説明するための断面説明図であ
る。FIG. 4 is a cross-sectional explanatory diagram for explaining an apparatus for continuously producing a functional thin film having a monomolecular film on both sides according to an aspect 4.
【図5】単分子膜のX型沈積において、基板を侵漬する
ばあいの概念図である。FIG. 5 is a conceptual diagram when the substrate is immersed in the X-type deposition of the monomolecular film.
【図6】単分子膜のX型沈積において、基板を引き上げ
るばあいの概念図である。FIG. 6 is a conceptual diagram when the substrate is pulled up in the X-type deposition of a monomolecular film.
【図7】X型累積膜の概念図である。FIG. 7 is a conceptual diagram of an X-type cumulative film.
【図8】単分子膜のY型沈積において、基板を侵漬する
ばあいの概念図である。FIG. 8 is a conceptual diagram when a substrate is immersed in Y-type deposition of a monomolecular film.
【図9】単分子膜のY型沈積において、基板を引き上げ
るばあいの概念図である。FIG. 9 is a conceptual diagram when the substrate is pulled up in Y-type deposition of a monomolecular film.
【図10】Y型累積膜の概念図である。FIG. 10 is a conceptual diagram of a Y-type cumulative film.
【図11】単分子膜のZ型沈積において、基板を侵漬す
るばあいの概念図である。FIG. 11 is a conceptual diagram when dipping a substrate in Z-type deposition of a monomolecular film.
【図12】単分子膜のZ型沈積において、基板を引き上
げるばあいの概念図である。FIG. 12 is a conceptual diagram of pulling up a substrate in Z-type deposition of a monomolecular film.
【図13】Z型累積膜の概念図である。FIG. 13 is a conceptual diagram of a Z-type cumulative film.
2 機能性薄膜 11 無端ベルト 16 板状体 31 ノズル 41 展開液供給口 51 展開液面(静止) 53 展開液面(移動) 55 展開液膜 61 線状体 8 基板 9 分子 91 親水性部分 92 疎水性部分 2 Functional thin film 11 Endless belt 16 Plate 31 Nozzle 41 Developing liquid supply port 51 Developing liquid surface (stationary) 53 Developing liquid surface (moving) 55 Developing liquid film 61 Linear body 8 Substrate 9 Molecule 91 Hydrophilic portion 92 Hydrophobic Sex part
Claims (4)
続した単分子膜を有することを特徴とする単分子膜を両
面に有する機能性薄膜。1. A functional thin film having a monomolecular film on both sides, which has a continuous monomolecular film on each of both sides of the continuous functional thin film.
能性薄膜を、単分子膜形成用の第1の静止表面および第
2の静止液面の間に設け、第1の単分子膜形成物質の溶
剤溶液および第2の単分子膜形成物質の溶剤溶液をそれ
ぞれ前記第1の液面上および第2の液面上に相対する方
向に連続的に供給して第1の単分子膜および第2の単分
子膜を連続的に形成せしめ、該第1および第2の単分子
膜をそれぞれ前記上方または下方に移動する機能性薄膜
のそれぞれの面上に連続して移すことを特徴とする単分
子膜を両面に有する機能性薄膜の連続製造法。2. A first monomolecular film-forming substance, wherein a continuous functional thin film that can move upward or downward is provided between a first stationary surface and a second stationary liquid surface for forming a monomolecular film. Of the first monomolecular film and the second monomolecular film-forming substance are continuously supplied to the first liquid surface and the second liquid surface, respectively, in the opposite directions. 2 monolayers are continuously formed, and the first and second monolayers are successively transferred onto the respective surfaces of the functional thin film that moves upward or downward. Continuous production method of functional thin films with molecular films on both sides.
能性薄膜を、それぞれ相対する方向に移動する第1の液
面および第2の液面の間に設け、第1の単分子膜形成物
質の溶剤溶液および第2の単分子膜形成物質の溶剤溶液
をそれぞれ前記相対する方向に移動する第1の液面上お
よび第2の液面上に連続的に供給して第1の単分子膜お
よび第2の単分子膜を連続的に形成せしめ、該第1およ
び第2の単分子膜をそれぞれ前記上方または下方に移動
する機能性薄膜のそれぞれの面上に連続して移すことを
特徴とする単分子膜を両面に有する機能性薄膜の連続製
造法。3. A first monomolecular film-forming substance, wherein a continuous functional thin film that can move upward or downward is provided between a first liquid surface and a second liquid surface that move in opposite directions, respectively. And the second monomolecular film-forming substance solvent solution are continuously supplied to the first liquid surface and the second liquid surface, respectively, which move in the opposite directions to supply the first monomolecular film. And a second monomolecular film are continuously formed, and the first and second monomolecular films are continuously transferred onto respective surfaces of the functional thin film moving upward or downward. Continuous production method of functional thin film with monolayer on both sides.
る第1の液面および第2の液面が、それぞれ第1の無端
ベルト上に形成された液膜面および第2の無端ベルト上
に形成された液膜面である請求項3記載の単分子膜を両
面に有する機能性薄膜の連続製造法。4. The first liquid surface and the second liquid surface moving in opposite directions in claim 3 are respectively formed on the liquid film surface and the second endless belt formed on the first endless belt. The continuous method for producing a functional thin film having a monomolecular film on both sides, which is a formed liquid film surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17319692A JPH067736A (en) | 1992-06-30 | 1992-06-30 | Functional thin film with monomolecular film on both faces and continuous preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17319692A JPH067736A (en) | 1992-06-30 | 1992-06-30 | Functional thin film with monomolecular film on both faces and continuous preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH067736A true JPH067736A (en) | 1994-01-18 |
Family
ID=15955884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17319692A Pending JPH067736A (en) | 1992-06-30 | 1992-06-30 | Functional thin film with monomolecular film on both faces and continuous preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH067736A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI414541B (en) * | 2004-11-11 | 2013-11-11 | Arakawa Chem Ind | Gelling agent composition, organic solvent and / or grease, organic solvent and / or grease, and organic solvent and / or grease |
-
1992
- 1992-06-30 JP JP17319692A patent/JPH067736A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI414541B (en) * | 2004-11-11 | 2013-11-11 | Arakawa Chem Ind | Gelling agent composition, organic solvent and / or grease, organic solvent and / or grease, and organic solvent and / or grease |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy | |
Lu et al. | A Self‐Assembly Approach to the Fabrication of Patterned, Two‐Dimensional Arrays of Microlenses of Organic Polymers | |
Delorme et al. | Azobenzene-containing monolayer with photoswitchable wettability | |
US7033524B2 (en) | Polymer-based nanocomposite materials and methods of production thereof | |
Jang et al. | A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography | |
Dziomkina et al. | Colloidal crystal assembly on topologically patterned templates | |
Cong et al. | Colloidal crystallization induced by capillary force | |
Ghosh et al. | Spontaneous pattern formation by dip coating of colloidal suspensions on homogeneous surfaces | |
Gu et al. | Varying the optical stop band of a three-dimensional photonic crystal by refractive index control | |
CN109414874A (en) | Method and apparatus for manufacturing three-dimension object | |
US20070231498A1 (en) | Method and apparatus for two dimensional assembly of particles | |
Takizawa et al. | Self-Organization of soft hydrogel microspheres during the evaporation of aqueous droplets | |
TW201007305A (en) | Light-redirecting article | |
Agarwal | Langmuir‐Blodgett Films | |
Kim et al. | Use of minimal free energy and self-assembly to form shapes | |
JP3262472B2 (en) | Langmuir Blodgett film production equipment | |
CN102131594A (en) | Method for particulate coating | |
KR101654790B1 (en) | Fabrication Method for Multicompartmental Microparticles | |
MXPA04011172A (en) | Method and apparatus for two dimensional assembly of particles. | |
JPH067736A (en) | Functional thin film with monomolecular film on both faces and continuous preparation thereof | |
Hsu et al. | Janus and strawberry-like particles from azo molecular glass and polydimethylsiloxane oligomer | |
Li et al. | Heterogeneous Self-Assembly of a Single Type of Nanoparticle Modulated by Skin Formation | |
CA2400539A1 (en) | Polymer-based nanocomposite materials and methods of production thereof | |
JPH02215009A (en) | Organic conductive thin-film and its manufacture | |
Suresh et al. | Block copolymer self-assembly assisted fabrication of laterally organized-and stacked-nanoarrays |