JPH0677008B2 - Continuous reduction vaporizer for high sensitivity analysis - Google Patents

Continuous reduction vaporizer for high sensitivity analysis

Info

Publication number
JPH0677008B2
JPH0677008B2 JP1197114A JP19711489A JPH0677008B2 JP H0677008 B2 JPH0677008 B2 JP H0677008B2 JP 1197114 A JP1197114 A JP 1197114A JP 19711489 A JP19711489 A JP 19711489A JP H0677008 B2 JPH0677008 B2 JP H0677008B2
Authority
JP
Japan
Prior art keywords
gas
plasma
solution
tube
atomic mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1197114A
Other languages
Japanese (ja)
Other versions
JPH0359456A (en
Inventor
博明 田尾
章 宮崎
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP1197114A priority Critical patent/JPH0677008B2/en
Publication of JPH0359456A publication Critical patent/JPH0359456A/en
Publication of JPH0677008B2 publication Critical patent/JPH0677008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、還元反応により揮発性水素化物、或は原子状
水銀を生成する元素(As,Sb,Bi,Ge,Sn,Pb,Se,Te,Hgの9
元素)を、プラズマ発光分析装置やプラズマ質量分析装
置などの分析装置により分析する際の試料導入装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an element (As, Sb, Bi, Ge, Sn, Pb, Se, which produces a volatile hydride or atomic mercury by a reduction reaction. Te, Hg 9
The present invention relates to a sample introduction device when analyzing an element) by an analyzer such as a plasma emission spectrometer or a plasma mass spectrometer.

[従来の技術] 従来の連続還元気化装置では、還元反応の結果副生する
水素ガスが、揮発性水素化物や原子状水銀と同時にプラ
ズマに導入されている。
[Prior Art] In a conventional continuous reduction vaporizer, hydrogen gas by-produced as a result of a reduction reaction is introduced into plasma at the same time as volatile hydride and atomic mercury.

[発明が解決しようとする課題] プラズマに導入される水素ガスの量が多くなると、プラ
ズマが乱れ分析ノイズが大きくなる、或は揮発性水素化
物や原子状水銀を分析可能な高エネルギー状態にまで励
起する効率が低下する、或はプラズマのインピーダンス
が変化してプラズマが消えることがあるため、従来の連
続還元気化装置においては、水素ガスの発生量が少なく
なる緩やかな条件でのみ、反応を行っていた。このた
め、分析目的元素を揮発性水素化物、或は原子状水銀に
還元するための最適な酸濃度や還元剤濃度に調整できな
い、或は反応管に送入する還元剤溶液や試料溶液の流量
を多くできない、或はプラズマが消えないようプラズマ
出力を最適値より上げなければならないなどの理由によ
り検出限界が悪くなるという問題点があった。
[Problems to be Solved by the Invention] When the amount of hydrogen gas introduced into plasma increases, the plasma becomes turbulent and analysis noise increases, or even a high energy state is reached in which volatile hydrides and atomic mercury can be analyzed. Since the efficiency of excitation may decrease or the plasma impedance may change and the plasma may disappear, the conventional continuous reduction vaporizer performs the reaction only under mild conditions where the amount of hydrogen gas generated decreases. Was there. Therefore, it is not possible to adjust to the optimum acid concentration or reducing agent concentration for reducing the analysis target element to volatile hydride or atomic mercury, or the flow rate of the reducing agent solution or sample solution fed into the reaction tube. However, there is a problem that the detection limit becomes worse due to the reason that the plasma output cannot be increased or the plasma output has to be raised above the optimum value so that the plasma does not disappear.

本発明は、分析目的元素を還元するための最適な酸濃度
や還元剤濃度で反応させても、或は還元剤溶液や分析試
料溶液の流量を多くしても、或は低出力のプラズマに導
入しても、分析ノイズが増加したり、或はプラズマの励
起効率が落ちたり、消えたりすることがない高感度分析
用連続還元気化装置を得ることを目的としている。
The present invention provides a low-power plasma even when the reaction is carried out at the optimum acid concentration or reducing agent concentration for reducing the element to be analyzed, or when the flow rate of the reducing agent solution or the analysis sample solution is increased. The purpose of the present invention is to obtain a high-sensitivity continuous reduction vaporizer for analysis that does not increase analysis noise or reduce or eliminate plasma excitation efficiency even if introduced.

[課題を解決するための手段] 上記目的を達成するために、本発明の連続還元気化装置
においては、気液分離管の後に、水素ガスを選択的に透
過除去するためのポリイミド製中空糸状膜モジュールを
取り付け、また気液分離管から飛散してくる塩類を含む
液滴が膜モジュールに入ることを防ぐための石英ウール
と多孔性テフロンフィルターから成るトラップを取り付
けた。
[Means for Solving the Problems] In order to achieve the above object, in the continuous reduction vaporizer of the present invention, a polyimide hollow fiber membrane for selectively permeating and removing hydrogen gas is provided after a gas-liquid separation tube. The module was attached, and a trap consisting of quartz wool and a porous Teflon filter was attached to prevent the droplets containing salts that were scattered from the gas-liquid separation tube from entering the membrane module.

中空糸状膜モジュールにおいて水素ガスを選択的に透過
除去するためには、中空糸の内側に気液分離管から送ら
れてくる、揮発性水素化物、或は原子状水銀を含む不活
性ガス(キャリヤーガス)を通し、一方、中空糸の外側
を減圧にするか、或は水素ガスを全く含まない不活性ガ
スでパージするとよい。中空糸状膜としては、水素透過
性や酸蒸気に対する耐性が優れているポリイミド膜が効
果的である。
In order to selectively permeate and remove hydrogen gas in the hollow fiber membrane module, an inert gas containing volatile hydride or atomic mercury (carrier gas) sent from the gas-liquid separation tube inside the hollow fiber. Gas), while reducing the pressure on the outside of the hollow fiber, or purging with an inert gas containing no hydrogen gas. As the hollow fiber membrane, a polyimide membrane having excellent hydrogen permeability and acid vapor resistance is effective.

また、揮発性水素化物や原子状水銀は膜モジュールを通
過するとその一部が膜に溶解、或は吸着するが、その速
度が常温(25℃)では比較的遅いため、分析した場合の
シグナルは徐々に大きくなり一定値に達するまで時間が
かかるとか、或はブランク試料(分析目的元素を全く含
まない試料)に替えたとき膜に溶解、或は吸着していた
揮発性水素化物や原子状水銀が不活性ガス中に逆に溶け
出す(メモリー効果)などの問題があるが、これは膜モ
ジュールを加温(60〜120℃)することにより解決し
た。また、加温すると水素ガスの透過性も高くなるた
め、膜モジュールを小型化することができる。
When volatile hydrides and atomic mercury pass through the membrane module, some of them dissolve or are adsorbed on the membrane, but the rate is relatively slow at room temperature (25 ° C), so the signal when analyzed is Volatile hydride or atomic mercury that has gradually become larger and takes a certain amount of time to reach a certain value, or is dissolved or adsorbed in the film when replaced with a blank sample (sample that does not contain any analytical target element) However, there is a problem such as that it melts into the inert gas (memory effect), but this problem was solved by heating the membrane module (60 to 120 ℃). In addition, when heated, the permeability of hydrogen gas also increases, so that the membrane module can be downsized.

[作用] 上記のように構成された還元気化装置において、分析目
的元素(As,Sb,Bi,Ge,Sn,Pb,Se,Te,Hgの9元素)を含む
試料溶液を酸溶液(本発明では、塩酸溶液)及び還元剤
溶液(本発明では、水素化ホウ素ナトリウム溶液)と混
合すると、各元素は揮発性水素化物、或は原子状水銀に
還元される。また、この還元反応に伴って多量の水素ガ
スが副生される。これらの水素ガス、揮発性水素化物、
或は原子状水銀は気液分離管にて不活性ガスを吹き付け
ることにより反応溶液中から気体中に分離される。この
時発生する反応溶液の飛沫は、気液分離管の後に取り付
けた石英ウール及び多孔性テフロンフィルターにより除
去される。また、水素ガスは多孔性テフロンフィルター
の後に取り付けた中空糸状膜モジュール(本発明では、
ポリイミド膜)において、プラズマの励起効率を落とし
たり、或はプラズマを消したりすることがない濃度にま
で選択的に透過除去される。ポリイミド膜を用いた場合
には、水素ガスと同様に水蒸気も除去される。一方、揮
発性水素化物、或は原子状水銀は膜の透過速度が遅いた
め除去されることなくプラズマに導入される。
[Operation] In the reduction vaporizer configured as described above, a sample solution containing an analysis target element (9 elements of As, Sb, Bi, Ge, Sn, Pb, Se, Te, and Hg) is acid solution (the present invention). Then, when mixed with a hydrochloric acid solution) and a reducing agent solution (sodium borohydride solution in the present invention), each element is reduced to volatile hydride or atomic mercury. In addition, a large amount of hydrogen gas is produced as a by-product with this reduction reaction. These hydrogen gas, volatile hydride,
Alternatively, atomic mercury is separated from the reaction solution into gas by blowing an inert gas through a gas-liquid separation tube. Splashes of the reaction solution generated at this time are removed by quartz wool and a porous Teflon filter attached after the gas-liquid separation tube. Further, hydrogen gas is a hollow fiber membrane module attached after the porous Teflon filter (in the present invention,
Polyimide film) is selectively permeated and removed to a concentration at which plasma excitation efficiency is not reduced or plasma is not extinguished. When a polyimide film is used, water vapor is removed as well as hydrogen gas. On the other hand, volatile hydride or atomic mercury is introduced into the plasma without being removed because the permeation rate of the film is slow.

従来の方式では、プラズマに導入される揮発性水素化
物、或は原子状水銀の量を多くしようとすると副生する
水素ガスの量も多くなるため、プラズマの励起効率が落
ちる、或はプラズマが消えるなどの問題点があったが、
本方式によれば、水素ガスを選択的に除去できるため、
多量の揮発性水素化物、或は原子状水銀をプラズマに導
入可能となり、より高感度な分析が行える。
In the conventional method, when the amount of volatile hydride or atomic mercury introduced into the plasma is increased, the amount of hydrogen gas produced as a by-product also increases, so the excitation efficiency of the plasma decreases, or There were problems such as disappearing,
According to this method, since hydrogen gas can be selectively removed,
A large amount of volatile hydride or atomic mercury can be introduced into the plasma, and more sensitive analysis can be performed.

[実施例] 実施例について図面を参照して説明する。[Examples] Examples will be described with reference to the drawings.

第1図は本発明の構成図である。図の1は試料容器、2
は酸溶液容器、3は還元剤溶液容器、4はペリスタリッ
クポンプ、5,6は三方コネクター、7は反応管、8は気
液分離管、9は石英ウールトラップ、10は多孔性テフロ
ンフィルター、11は中空糸状水素ガス分離膜モジュー
ル、12は恒温そう、13,14はガスレギュレーター、15,16
はニードルバルブ付流量計、17はキャリヤーガス用チュ
ーブ、18はパージガス流入用チューブ、19,20はパージ
ガス排気用チューブ、21はキャリヤーガスをプラズマに
導入するためのチューブ、22はドレインタンク。
FIG. 1 is a block diagram of the present invention. 1 in the figure is a sample container, 2
Is an acid solution container, 3 is a reducing agent solution container, 4 is a peristaltic pump, 5 and 6 are three-way connectors, 7 is a reaction tube, 8 is a gas-liquid separation tube, 9 is a quartz wool trap, 10 is a porous Teflon filter, 11 is a hollow fiber hydrogen gas separation membrane module, 12 seems to be at a constant temperature, 13 and 14 are gas regulators, 15 and 16
Is a flow meter with a needle valve, 17 is a carrier gas tube, 18 is a purge gas inflow tube, 19 and 20 are purge gas exhaust tubes, 21 is a tube for introducing carrier gas into plasma, and 22 is a drain tank.

上記の実施例によれば、試料は試料容器1から、ペリス
タリックポンプ4により吸引され、同様に吸引された塩
酸溶液と三方コネクター5で混合され、引き続いて三方
コネクター6で水素化ホウ素ナトリウム溶液と混合さ
れ、反応管7に送られる。反応管7で、分析目的元素
(As,Sb,Bi,Ge,Sn,Pb,Se,Te,Hgの9元素)は各々揮発性
水素化物(AsH3,SbH3,BiH4,GeH4,SnH4,PbH4,H2Se,H2T
e)或は原子状水銀(Hg)に還元される。揮発性水素化
物、或は原子状水銀は、気液分離管8において、反応溶
液にチューブ17から出る不活性キャリヤーガス(本発明
ではAr或はHe)を吹きつけることにより、反応溶液中か
らキャリヤーガス中に分離する。キャリヤーガスを吹き
つけられた後の反応溶液はドレインタンク22に棄てられ
る。揮発性水素化物、或は原子状水銀を含むキャリヤー
ガスは石英ウールトラップ9及び多孔性テフロンフィル
ター10を通すことにより、キャリヤーガス中に含まれる
反応溶液の飛沫を取り除く。飛沫を取り除かれたキャリ
ヤーガスはポリイミド製中空糸状水素分離膜モジュール
11で水素ガス及び水蒸気を選択的に取り除いた後、チュ
ーブ21を通してプラズマに導入される。中空糸状水素分
離膜モジュール11では中空糸状チューブの内側にキャリ
ヤーガスを通し、外側をパージ用の不活性ガス(本発明
ではAr或はN2)を流す。或は外側は真空ポンプで吸引し
て減圧してもよい。また、水素分離膜モジュール11は分
析シグナルの応答性を速くするため、及びメモリー効果
(以前に分析した試料の影響)を小さくするため恒温そ
う12で60℃〜120℃に加熱する。分離された水素ガスを
含むパージガスは水素分離膜モジュール11を通過した
後、チューブ19により気液分離管8に導く。気液分離管
8のU字管部分に残った反応溶液からは水素ガスがしば
らく発生しているが、バージガスを通すことにより、チ
ューブ20からダクトに排気される。
According to the above example, the sample is sucked from the sample container 1 by the peristaltic pump 4, mixed with the hydrochloric acid solution sucked in the same way at the three-way connector 5, and then at the three-way connector 6 with the sodium borohydride solution. It is mixed and sent to the reaction tube 7. In the reaction tube 7, the analysis target elements (9 elements of As, Sb, Bi, Ge, Sn, Pb, Se, Te, and Hg) are volatile hydrides (AsH 3 , SbH 3 , BiH 4 , GeH 4 , SnH). 4 , PbH 4 , H 2 Se, H 2 T
e) Or reduced to atomic mercury (Hg). Volatile hydride or atomic mercury is used as a carrier from the reaction solution by blowing an inert carrier gas (Ar or He in the present invention) emitted from the tube 17 into the reaction solution in the gas-liquid separation tube 8. Separate in gas. The reaction solution after being sprayed with the carrier gas is discarded in the drain tank 22. The carrier gas containing volatile hydride or atomic mercury is passed through the quartz wool trap 9 and the porous Teflon filter 10 to remove the droplets of the reaction solution contained in the carrier gas. The carrier gas from which the droplets have been removed is a polyimide hollow fiber hydrogen separation membrane module.
After selectively removing hydrogen gas and water vapor at 11, it is introduced into the plasma through a tube 21. In the hollow fiber hydrogen separation membrane module 11, a carrier gas is passed through the inside of the hollow fiber tube and an inert gas (Ar or N 2 in the present invention) for purging is passed through the outside. Alternatively, the outside may be sucked with a vacuum pump to reduce the pressure. Further, the hydrogen separation membrane module 11 is heated to 60 ° C. to 120 ° C. in the thermostat 12 in order to speed up the response of the analysis signal and to reduce the memory effect (the influence of the sample analyzed previously). The purge gas containing the separated hydrogen gas passes through the hydrogen separation membrane module 11 and then is guided to the gas-liquid separation pipe 8 by the tube 19. Hydrogen gas is generated from the reaction solution remaining in the U-shaped tube portion of the gas-liquid separation tube 8 for a while, but the hydrogen gas is discharged from the tube 20 to the duct by passing the barge gas.

次に第1図に示した装置を用いてAsH3を分析した結果
と、従来の分離膜モジュールを用いない装置で分析した
結果の比較を示す。プラズマパワーは1kwと低くし、水
素化ホウ素ナトリウム及び試料溶液、塩酸溶液の流量
(本発明ではこれらの流量は同じで、同時に変化する)
を増加させた場合、表−1に示すように従来の装置では
流量が約6.5ml/min以上でプラズマが消えた。また、6.5
ml/min以下の場合でもシグナル強度は小さく、そのバラ
ツキ(10回繰り返し測定したときの相対標準偏差)は2
〜3%と高かった。一方、第1図に示した装置では流量
が14ml/minの場合でも、プラズマは消えることなく、シ
グナル強度も流量にほぼ比例して増加しており、水素ガ
スによる励起効率の低下は認められない。また、シグナ
ルのバラツキも約0.6%と低い値を示している。このよ
うにシグナル強度は増加し、かつそのバラツキが減少す
ることにより、検出限界は大きく向上する。
Next, a comparison of the results of AsH 3 analysis using the device shown in FIG. 1 and the results of analysis using a device that does not use a conventional separation membrane module is shown. The plasma power is set as low as 1 kw, and the flow rates of sodium borohydride, the sample solution, and the hydrochloric acid solution (these flow rates are the same in the present invention, and change at the same time).
As shown in Table 1, the plasma was extinguished at a flow rate of about 6.5 ml / min or more as shown in Table 1. Also 6.5
The signal intensity was small even at ml / min or less, and the variation (relative standard deviation after 10 repeated measurements) was 2
It was as high as ~ 3%. On the other hand, in the device shown in FIG. 1, even when the flow rate is 14 ml / min, the plasma does not disappear and the signal intensity increases almost in proportion to the flow rate, and no decrease in excitation efficiency due to hydrogen gas is observed. . Moreover, the variation of the signal is as low as about 0.6%. Thus, the detection limit is greatly improved by increasing the signal intensity and decreasing the variation.

[発明の効果] 本発明によれば、以上説明したように、水素ガスにより
プラズマの励起効率が低下したり、或は、プラズマが乱
れることによりノイズが増加したり、或はプラズマが消
えたりすることなく、多量の揮発性水素化物、或は原子
状水銀をプラズマに導入可能となり、その結果、より高
感度な分析が可能となる。
[Effects of the Invention] According to the present invention, as explained above, the excitation efficiency of plasma is reduced by hydrogen gas, or noise is increased or plasma is extinguished due to disturbance of plasma. It is possible to introduce a large amount of volatile hydrides or atomic mercury into the plasma without the result, and as a result, more sensitive analysis can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成図である。 1……試料容器 2……酸溶液容器 3……還元剤溶液容器 4……ペリスタリックポンプ 7……反応管 8……気液分離管 9……石英ウールトラップ 10……多孔性テフロンフィルター 11……中空糸状水素ガス分離膜モジュール 12……恒温そう 15……キャリヤーガス用流量計 16……パージガス用流量計 22……ドレインタンク FIG. 1 is a block diagram of the present invention. 1 ... Sample container 2 ... Acid solution container 3 ... Reducing agent solution container 4 ... Peristaltic pump 7 ... Reaction tube 8 ... Gas-liquid separation tube 9 ... Quartz wool trap 10 ... Porous Teflon filter 11 ...... Hollow fiber hydrogen gas separation membrane module 12 …… Constant temperature 15 …… Carrier gas flow meter 16 …… Purge gas flow meter 22 …… Drain tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料溶液を酸溶液、還元剤溶液と混合・反
応させて、分析目的元素を揮発性水素化物、或は原子状
水銀に還元するための反応管と、上記反応管から送られ
た反応溶液に不活性ガスを吹き付けることにより揮発性
水素化物、或は原子状水銀を反応溶液中から不活性ガス
中に分離するための気液分離管と、上記気液分離管から
送られた揮発性水素化物、或は原子状水銀を含む不活性
ガス中から水素ガスを選択的に透過除去するための中空
糸状膜モジュールを備えたことを特徴とする高感度分析
用連続還元気化装置。
1. A reaction tube for mixing and reacting a sample solution with an acid solution and a reducing agent solution to reduce an element to be analyzed to volatile hydride or atomic mercury, and a reaction tube sent from the reaction tube. A gas-liquid separation pipe for separating volatile hydride or atomic mercury from the reaction solution into an inert gas by spraying the reaction solution with an inert gas, and sent from the gas-liquid separation pipe. A continuous reduction vaporizer for high-sensitivity analysis, comprising a hollow fiber membrane module for selectively permeating and removing hydrogen gas from an inert gas containing volatile hydride or atomic mercury.
JP1197114A 1989-07-28 1989-07-28 Continuous reduction vaporizer for high sensitivity analysis Expired - Lifetime JPH0677008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197114A JPH0677008B2 (en) 1989-07-28 1989-07-28 Continuous reduction vaporizer for high sensitivity analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197114A JPH0677008B2 (en) 1989-07-28 1989-07-28 Continuous reduction vaporizer for high sensitivity analysis

Publications (2)

Publication Number Publication Date
JPH0359456A JPH0359456A (en) 1991-03-14
JPH0677008B2 true JPH0677008B2 (en) 1994-09-28

Family

ID=16368966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197114A Expired - Lifetime JPH0677008B2 (en) 1989-07-28 1989-07-28 Continuous reduction vaporizer for high sensitivity analysis

Country Status (1)

Country Link
JP (1) JPH0677008B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518870A (en) * 1991-07-12 1993-01-26 Kubota Corp Water quality indicator
WO2013005332A1 (en) * 2011-07-07 2013-01-10 三菱重工業株式会社 Hydrogen concentration measuring apparatus and hydrogen concentration measuring method
JP6597043B2 (en) * 2015-08-19 2019-10-30 東亜ディーケーケー株式会社 Reactor unit, gasifier, pretreatment device and mercury meter
CN106226252A (en) * 2016-07-15 2016-12-14 天津师范大学 The forming method of a kind of element evaporation thing and device

Also Published As

Publication number Publication date
JPH0359456A (en) 1991-03-14

Similar Documents

Publication Publication Date Title
CA2606733C (en) Method and apparatus for converting oxidized mercury into elemental mercury
US4551624A (en) Ion mobility spectrometer system with improved specificity
JP3045655B2 (en) Ion trap mobility spectrometer and operating method for strong detection of narcotics
US8080083B2 (en) Method and apparatus for converting oxidized mercury into elemental mercury
US7454952B2 (en) Method and apparatus for monitoring mercury in a gas sample
US8866075B2 (en) Apparatus preparing samples to be supplied to an ion mobility sensor
Pohl et al. Chemical vapor generation of noble metals for analytical spectrometry
US20090000484A1 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
Červený et al. Determination of mercury in water samples by electrochemical cold vapor generation coupled to microstrip microwave induced helium plasma optical emission spectrometry
CN107462569B (en) Method and device for measuring elements by generating volatile matters through elements
JPH0677008B2 (en) Continuous reduction vaporizer for high sensitivity analysis
US3960523A (en) Effluent gas monitor
Huang et al. Determination of Trace Antimony (III) in Water Samples with Single Drop Microextraction Using BPHA‐[C4mim][PF6] System Followed by Graphite Furnace Atomic Absorption Spectrometry
EP0544142B1 (en) Process and apparatus for elemental analysis of halogens,sulfur and phosphorus
CA2430009C (en) Multimode sample introduction system
Larsson et al. Species specific isotope dilution with on line derivatisation for determination of gaseous mercury species
Haraldsson et al. Determination of mercury isotope ratios in samples containing sub-nanogram amounts of mercury using inductively coupled plasma mass spectrometry
CN214174264U (en) Device for determining the isotopic ratio of carbon and/or nitrogen in an aqueous mobile phase containing a sample
Hersch Controlled addition of experimental pollutants to air
JP2002323485A (en) Method and device for detecting hydrocarbon in gas
Uggerud et al. Determination of arsenic by inductively coupled plasma mass spectrometry–comparison of sample introduction techniques
Narukawa et al. Determination of Total Arsenic in Environmental and Geological Samples by Electrothermal Atomic Absorption Spectrometry Using a Tungsten Furnace after Solvent Extraction and Cobalt (III) Oxide Collection.
Tesfalidet et al. Generation and enrichment of AsCl 3 for interference-free determination of trace levels of arsenic in steel by atomic absorption spectrometry
JP7234202B2 (en) Apparatus and method for continuous analysis of dissolved inorganic carbon (DIC) concentration and its isotopic carbon and oxygen composition
ANDERSON et al. Sampling and Analytical Methodology for Workplace Chemical Hazards: State of the Art and Future Trends

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term