JPH0676655B2 - Heat resistant and corrosion resistant member and its manufacturing method - Google Patents

Heat resistant and corrosion resistant member and its manufacturing method

Info

Publication number
JPH0676655B2
JPH0676655B2 JP61099790A JP9979086A JPH0676655B2 JP H0676655 B2 JPH0676655 B2 JP H0676655B2 JP 61099790 A JP61099790 A JP 61099790A JP 9979086 A JP9979086 A JP 9979086A JP H0676655 B2 JPH0676655 B2 JP H0676655B2
Authority
JP
Japan
Prior art keywords
layer
boron
permeation
heat
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61099790A
Other languages
Japanese (ja)
Other versions
JPS62256958A (en
Inventor
良夫 原田
久孝 河合
明 耕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61099790A priority Critical patent/JPH0676655B2/en
Publication of JPS62256958A publication Critical patent/JPS62256958A/en
Publication of JPH0676655B2 publication Critical patent/JPH0676655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,火力発電プラント及び原子力発電プラント用
蒸気タービンのノズルの表面硬化法として利用可能な耐
熱耐エロージョン部材とその製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a heat-resistant erosion resistant member that can be used as a surface hardening method for a nozzle of a steam turbine for a thermal power plant and a nuclear power plant, and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

火力発電所用蒸気タービンノズルは,ボイラから送られ
てくる過熱蒸気中に酸化スケールの微粉(ボイラチュー
ブか過熱蒸気によって酸化されたもの)が混入してお
り,長期間の運転中にタービンノズル部が酸化スケール
によってエロージョンを受ける事例が多い。
In steam turbine nozzles for thermal power plants, fine powder of oxide scale (boiler tubes or those that have been oxidized by superheated steam) is mixed in the superheated steam sent from the boiler. There are many cases where erosion is caused by the oxide scale.

これらの対策として部材表面を硬化させる方法がとられ
る。
As a countermeasure against these, a method of hardening the surface of the member is adopted.

鉄鋼表面を硬化して耐摩耗性を向上させる手段として,
浸炭,窒化,焼入,硬質金属の肉盛,セラミックスの溶
射などが知られているが,本発明でいう硼素化合物を拡
散浸透させる方法も従来からよく知られた処理法の一つ
である。
As a means to harden the steel surface and improve wear resistance,
Carburizing, nitriding, quenching, hard metal overlaying, and ceramics thermal spraying are known, and the method of diffusing and permeating the boron compound referred to in the present invention is also one of the well-known processing methods.

硼素拡散浸透法(以下硼素浸漬法という)には,種々の
方法が知られており処理剤の状態から,粉末法,液体
法,気体法,溶融塩法,溶融塩中における電解法などに
分類されている。現在のところ,いずれの方法によって
ももろい硼素浸透層が知られているが,処理コスト,大
量生産,大型部材への適用性などの点から粉末法が最も
適している。
Various methods are known for the boron diffusion and permeation method (hereinafter referred to as “boron dipping method”), and are classified into powder method, liquid method, gas method, molten salt method, electrolytic method in molten salt, etc. according to the state of the treating agent. Has been done. At present, a fragile boron permeation layer is known by any of the methods, but the powder method is most suitable from the viewpoints of processing cost, mass production, applicability to large parts.

粉末法による処理では,硼素化合物を含む粉末状の浸透
剤を被処理体の表面に被覆させるか,又は浸透剤中に被
処理体を埋没させ,高温状態例えば900〜1050℃の状態
で,アルゴン気流や水素気流中で加熱することによって
得られる。
In the treatment by the powder method, a powdery penetrant containing a boron compound is coated on the surface of the object to be treated, or the object to be treated is immersed in the penetrant, and is heated at a high temperature state, for example, 900 to 1050 ° C, and argon gas is applied. It is obtained by heating in a stream of air or hydrogen.

一般の鉄鋼材料に生成する硼素浸透層はFe2B及びFeBの
2層から構成され,ビッカース硬さで1700以上を有する
ため,耐摩耗性が向上する。しかし,Fe2B,FeB層を有す
る浸透層は非常に脆く,又,伸びが小さいため硼素浸透
処理時の降温過程において,屡々浸透層中に大小さまざ
まなクラックが発生する。これは被処理体である鉄鋼材
料の線膨張係数が硼素浸透層と甚しく異なるため,拡散
処理後の降温時に両者間に大きな応力が発生し,硬くて
脆い硼素浸透層が応力に耐えられなくなるためである。
The boron permeation layer formed in general steel materials is composed of two layers, Fe 2 B and FeB, and has a Vickers hardness of 1700 or more, which improves wear resistance. However, the permeation layer with Fe 2 B and FeB layers is very brittle and its elongation is small, so cracks of various sizes often occur in the permeation layer during the cooling process during boron permeation treatment. This is because the steel material that is the object to be processed has a very different coefficient of linear expansion from the boron infiltration layer, so a large stress occurs between the two when the temperature is lowered after the diffusion treatment, and the hard and brittle boron infiltration layer cannot withstand the stress. This is because.

一方,硼素浸透処理を施した鉄鋼材料は,高温状態で長
時間保持される上,その後の降温過程においても比較的
緩やかな温度勾配で冷却される結果,鉄鋼材料は焼なま
しの状態となり,機械的強度が劣化するのが普通であ
る。このため,処理後焼入れを行って強度を回復させる
が,この場合においても急激な被処理体の冷却は,硼素
浸透層の割れを誘発する。これを防止するには緩やかに
冷却すれば良いが,これでは被処理体の金属組織がマル
テンサイト化せず,強度の回復が期待できない。
On the other hand, the steel material that has been subjected to the boron infiltration treatment is kept at a high temperature for a long time, and is also cooled with a relatively gentle temperature gradient during the subsequent temperature lowering process, resulting in an annealed state of the steel material. Mechanical strength usually deteriorates. Therefore, although quenching is performed after the treatment to recover the strength, rapid cooling of the object to be treated in this case also causes cracking of the boron-penetrated layer. To prevent this, gentle cooling may be used, but with this, the metallic structure of the object to be processed does not become martensite, and recovery of strength cannot be expected.

このようなことから,テストピースや小さな被処理体の
硼素浸透処理は比較的容易にできるが,大型部材の処理
は,実用上極めて困難な状況にある。
For this reason, it is relatively easy to infiltrate a test piece or a small object to be treated with boron, but it is practically difficult to treat a large member.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来法は前述したように次の問題点がある。 The conventional method has the following problems as described above.

(1)硬質で脆弱な硼素浸透層を被処理体に形成させる
場合,Fe2B,FeBを主成物とする浸透層中,被処理体との
線膨張係数の相違によって大小多数のクラックが発生す
る。
(1) When a hard and fragile boron permeation layer is formed on an object to be treated, a large number of large and small cracks are generated in the permeation layer mainly composed of Fe 2 B and FeB due to the difference in coefficient of linear expansion from the object to be treated. Occur.

(2)硼素浸透層処理後の被処理体は,浸透層を形成さ
せるために高温状態で長時間保持されるため“焼なま
し”状態となり,機械的強度が劣化する。このため再熱
処理を施すこととなるが,この処理は一般に高温状態か
ら急冷する必要がある。このとき(1)の項と同じ理由
で,硼素浸透層に多数のクラックが発生して剥離しやす
くなり,耐摩耗性能が低下する。
(2) Since the object to be treated after the boron permeation layer treatment is kept at a high temperature for a long time to form the permeation layer, it is in an "annealed" state and the mechanical strength deteriorates. For this reason, reheat treatment is performed, but this treatment generally requires rapid cooling from a high temperature state. At this time, for the same reason as in the item (1), a large number of cracks are generated in the boron permeation layer, and the boron penetration layer is easily peeled off, resulting in deterioration of wear resistance performance.

(3)又硼素浸透層は外層にFeB層,内層にFe2B層が生
成するが,このうちFeB層は非常に硬く優れた耐摩耗性
を有しているが,最もクラックが発生しやすく,この層
で発生したクラックが浸透処理やその後の熱処理工程に
おいて,成長し内層のFe2B層のクラック発生を促すこと
となる。したがって,浸透処理時にFeB層を生成させな
いか,又生成されたとしても極めて薄い層厚となるよう
な条件を選定する必要がある。
(3) In the boron permeation layer, the FeB layer is formed on the outer layer and the Fe 2 B layer is formed on the inner layer. Of these, the FeB layer is very hard and has excellent wear resistance, but cracks are most likely to occur. The cracks generated in this layer grow during the infiltration treatment and the subsequent heat treatment process, and promote the generation of cracks in the inner Fe 2 B layer. Therefore, it is necessary to select the conditions such that the FeB layer is not formed during the permeation treatment, or even if it is formed, the layer thickness is extremely thin.

本発明は,上記従来法の問題点に鑑みてなされたもの
で,基材の強度を充分保ちながら,しかもクラックが発
生しにくく被覆部が剥離しにくい耐熱耐エロージョン部
材とその製造法の提供を目的とする。
The present invention has been made in view of the above problems of the conventional method, and provides a heat-resistant erosion-resistant member and a method for manufacturing the same, while sufficiently maintaining the strength of the base material, moreover, cracking is less likely to occur and the coating portion is less likely to peel off. To aim.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は次の構成とした。 Therefore, the present invention has the following configuration.

(1)耐熱鋼を基材とし,該耐熱鋼の表面近傍がマルテ
ンサイト組織であって,該マルテンサイト組織層の表面
に表面層として実質的にFe2Bからなる拡散浸透層が形成
されてなる事を特徴とする耐熱耐エロージョン部材。
(1) A heat-resistant steel is used as a base material, the vicinity of the surface of the heat-resistant steel has a martensite structure, and a diffusion and penetration layer consisting essentially of Fe 2 B is formed as a surface layer on the surface of the martensite structure layer. A heat-resistant and erosion resistant member characterized by

(2)マルテンサイト系耐熱鋼製の被処理体の表面をSi
C粉末で覆い,SiC粉末の覆いの外側に硼素供給源としてB
4C及びKBF4を複合したものを配して,加熱冷却する硼素
拡散浸透処理を行い,その後非酸化性ガスにより20℃/m
in以上の冷却速度となるよう焼き入れを行う事を特徴と
する耐熱耐エロージョン部材の製造法。
(2) Si is applied to the surface of the object to be processed made of heat-resistant martensitic steel.
Cover with C powder, and use B as a boron source on the outside of the SiC powder cover.
A composite of 4 C and KBF 4 is placed and subjected to a boron diffusion and infiltration treatment by heating and cooling, and then at 20 ° C / m 2 with a non-oxidizing gas.
A method for producing a heat-resistant and erosion resistant member, which comprises quenching at a cooling rate of not less than in.

〔作用〕[Action]

粉末法による硼素浸透処理を行う場合,硼素供給源とし
て非晶質ボロン(B),フェロボロン(Fe−B),炭化
ボロン(B4C),硼弗化ボロン塩(MBF4但しMはNa又は
K),硼砂(Na2B2O7)などがある。通常これに浸透促
進剤として塩化アンモン(NH4Cl),食塩(NaCl)など
と共にアルミナ(Al2O3)を増量剤として添加したもの
を用いている。
When performing the boron infiltration treatment by the powder method, as a boron source, amorphous boron (B), ferroboron (Fe-B), boron carbide (B 4 C), borofluoride boron salt (MBF 4 where M is Na or K), borax (Na 2 B 2 O 7 ) and the like. Usually, a mixture of ammonium chloride (NH 4 Cl), sodium chloride (NaCl) and alumina (Al 2 O 3 ) as a bulking agent is used as a penetration enhancer.

本発明では硼素供給源としてB4CとKBF4を用い,増量剤
として,炭素珪素(SiC)を用いたが硼素供給源剤は,
必要最小量とした。一例を次に示す。
In the present invention, B 4 C and KBF 4 were used as the boron source and carbon silicon (SiC) was used as the extender, but the boron source agent is
The minimum amount required. An example is shown below.

このように硼素供給源を少なくすることによって,被処
理体表面における硼素濃度の分布を均一化させると共に
硼素濃度が薄いため,脆く,クラックの発生しやすいFe
B層の生成を抑制することとした。
By reducing the boron supply source in this way, the distribution of boron concentration on the surface of the object to be treated is made uniform, and since the boron concentration is low, it is brittle and easily cracks.
It was decided to suppress the formation of layer B.

さらに大型部材に硼素浸透処理を施す場合には,SiC粉末
を被処理体表面に塗布し,その周囲に前記浸透剤を置き
処理を行うことによって,大型部材に生成しやすい温度
分布の不均一に伴う浸透層厚さの不均一性を補うことが
できた。(硼素濃度が希薄であるので,局部的に温度が
上昇しても浸透速度が早くならず,均一な浸透層が得ら
れる。) さらに所定の温度で硼素浸透処理を施した後,降温速度
を25℃/h以下とすることによって,浸透層と被処理体の
線膨張係数の相違(FeB:23×10-6/℃,13Cr系鋼材:11.5
×10-6/℃,Fe2B:7.8×10-6/℃)によって,両者間に
発生する応力を少なくし,浸透層(FeB)に発生するク
ラックを防止することに成功した。
Furthermore, when a large-sized member is subjected to boron infiltration treatment, SiC powder is applied to the surface of the object to be treated, and the above penetrant is placed around it to perform non-uniform temperature distribution, which tends to occur in large-sized members. The non-uniformity of the permeation layer thickness that accompanies it could be compensated. (Because the boron concentration is low, the permeation rate does not increase even if the temperature rises locally, and a uniform permeation layer can be obtained.) Further, after performing the boron permeation treatment at a predetermined temperature, the rate of temperature decrease is set. The difference in linear expansion coefficient between the permeation layer and the object to be treated was set to 25 ° C / h or less (FeB: 23 × 10 -6 / ° C, 13Cr steel: 11.5
× 10 -6 / ° C, Fe 2 B: 7.8 × 10 -6 / ° C) has succeeded in reducing the stress generated between the two and preventing cracks in the permeation layer (FeB).

浸透処理後の被処理体の強度を回復させるための焼入法
として真空中で950〜980℃に2時間加熱した後,同容器
中に窒素ガス,ヘリウムガス,アルゴンガス,水素ガス
の何れかを用いて浸透処理層直下20mmの位置における冷
却速度を1分間当り15℃±5℃以上となるように設定し
た。さらにその後焼戻し条件として640〜680℃×2hの加
熱を行ない,前記ガスによって同条件の冷却を行った
が,この場合の冷却速度は焼入れ条件ほど早くする必要
がないので,“焼入れ”時の適正冷却速度を求めること
によって目的を達成した。
As a quenching method for recovering the strength of the object to be treated after the permeation treatment, after heating in a vacuum at 950 to 980 ℃ for 2 hours, nitrogen gas, helium gas, argon gas, or hydrogen gas is placed in the same container. Was used to set the cooling rate at a position of 20 mm just below the permeation treatment layer to be 15 ° C. ± 5 ° C. or more per minute. Further, after that, as a tempering condition, heating was performed at 640 to 680 ° C. for 2 hours, and cooling was performed under the same conditions with the gas described above. However, since the cooling rate in this case does not need to be as fast as the quenching condition, it is appropriate for “quenching”. The objective was achieved by determining the cooling rate.

以上の加熱条件及び冷却速度を守ることによって,硼素
浸透層は酸化消耗やクラックの発生がなく,又被処理体
の組織はマルテンサイト化し,機械的強度を回復させる
ことに成功した。
By maintaining the above heating conditions and cooling rate, the boron permeation layer was free from oxidation consumption and cracks, and the microstructure of the object to be treated became martensite and succeeded in recovering the mechanical strength.

〔実施例〕〔Example〕

実施例(その1)浸透剤中に占める硼素化合物の適正量
の検討 浸透剤としてB4CとKBF4を用いる残りをSiCとしたものを
使用し,浸透剤に占める硼素化合物の適正量を調査し
た。被処理体として第1表に示すような13Cr鋼材料4種
をそれぞれ直径40mm,長さ100mmの形状寸法(小型試験片
と称する)に仕上げたこの試験片を用い,KBF4の含有量
を3%一定とし,B4Cの含有量を1〜7%に変化させた
場合の硼素浸透層の厚さと,浸透層を形成させるFeB層
とFe2B層の割合いを調べた。尚,浸透処理の条件は900
℃×2hで雰囲気はアルゴンガスである。
Example (Part 1) Examination of appropriate amount of boron compound in penetrant Examining proper amount of boron compound in penetrant using B 4 C and KBF 4 as the penetrant with the remainder being SiC did. As the object to be treated, four kinds of 13Cr steel materials as shown in Table 1 were finished to the shape dimensions (called small test pieces) of 40 mm in diameter and 100 mm in length, and the content of KBF 4 was 3 % constant and then, examined the thickness of the boron penetration layer in the case of changing the content of B 4 C 1 to 7%, the proportion physicians FeB layer and Fe 2 B layers to form a permeation layer. The conditions for permeation treatment are 900
The atmosphere is argon gas at ℃ × 2h.

第1図はこの結果を示したもので,浸透層はB4C濃度が
1%から7%迄変化しても殆んどかわらず一定であるば
かりか,Fe2BとFeB層の割合いも余り変化がなく,Fe2B
の占める割合は40〜45μmで残り15〜20μmはFeB層で
あった。又供試した試験片の浸透層厚さとFe2Bの割合も
大きな相違は認められなかったが,これは,供試材の化
学成分,特にCr含有量がほぼ同等である影響があらわれ
ているものと考えられる。
Figure 1 shows this result, and the permeation layer is almost constant even when the B 4 C concentration changes from 1% to 7%, and the ratio of Fe 2 B and FeB layers Fe 2 B with little change
The ratio was 40 to 45 μm, and the remaining 15 to 20 μm was the FeB layer. Also, no significant difference was observed in the penetration layer thickness and Fe 2 B ratio of the tested specimens, but this has the effect that the chemical compositions of the tested materials, especially the Cr content, are almost the same. It is considered to be a thing.

次にB4Cを3%一定とし,KBF4量を1〜7%に変化させ
た浸透剤で前述と同条件で処理を行った。第2図はこの
結果を示したもので,第1図とほぼ同じような結果が得
られる。
Next, B 4 C was kept constant at 3%, and treatment was performed under the same conditions as above with a penetrant in which the amount of KBF 4 was changed to 1 to 7%. FIG. 2 shows this result, and almost the same result as in FIG. 1 is obtained.

第1図及び第2図の結果から明らかなように,硼素化合
物としてB4C及びKBF4単独では硼素浸透処理は不十分で
あり,両化合物が共存する必要のあることが判明した。
As is clear from the results shown in FIGS. 1 and 2, it was found that boron infiltration treatment was insufficient with B 4 C and KBF 4 alone as boron compounds, and that both compounds must coexist.

ただこの方法で得られた浸透層は,硬質で脆いFeB層の
生成量が大なるため非常にクラックの発生が多く,この
ままでは実用に供せないことがうかがえる。
However, in the permeation layer obtained by this method, the amount of hard and brittle FeB layer generated is large, so there are many cracks, which suggests that it cannot be put to practical use as it is.

尚,第1図及び第2図においては,全浸透層FeB層の厚
さ図示しているが,Fe2B層の厚さは全浸透層からFeB層
の厚さを差引いたものである。FeB層の硬さはビッカー
ス硬さで1800以上,Fe2B層で1600〜1790の範囲にあるの
で,FeB層の生成がなくてもFe2B層だけでも十分な耐摩耗
性が期待できるものである。
1 and 2, the total permeation layer FeB layer thickness is shown, but the thickness of the Fe 2 B layer is the total permeation layer minus the thickness of the FeB layer. Hardness of FeB layer in Vickers hardness 1800 or more, Fe 2 since B layer is in the range of 1600 to 1790, what can be expected sufficient abrasion resistance alone Fe 2 B layers without generation of FeB layer Is.

実施例(その2)FeB層が少なくクラックの発生のない
浸透層の生成 実施例(その1)の実験によって,硼素浸透層は得られ
るもののFeB層の生成に伴ってクラックが多数に発生し
たので,ここではFeB層の生成が少なく,クラックのな
い浸透層を得るための実験を行った。(その1)の実験
によって第1表の供試体であればいずれもほぼ同等の浸
透挙動を示すことが明らかとなったので,本実施例では
SUS403を使用し,アルゴン雰囲気中で900℃と5hの加熱
を行った。ただ浸透剤の組成及び被処理体に対する接触
方法を次のように変化させた。
Example (Part 2) Generation of Penetration Layer with FeB Layer and No Crack Generation According to the experiment of Example (Part 1), although a boron penetration layer was obtained, many cracks were generated with the formation of the FeB layer. , Here, an experiment was conducted to obtain a crack-free permeation layer with less FeB layer formation. From the experiment of (No. 1), it was revealed that all the specimens shown in Table 1 exhibit almost the same permeation behavior. Therefore, in this example,
SUS403 was used and heated at 900 ° C for 5 hours in an argon atmosphere. However, the composition of the penetrant and the method of contact with the object to be treated were changed as follows.

(1)B4C3%,KBF43%,SiC94%を混合したものの中
に被処理体を埋没させた。
(1) The object to be treated was immersed in a mixture of B 4 C 3%, KBF 4 3% and SiC 94%.

(2)SiC100%粉末を被処理表面に2〜3mm厚に覆い,
その周囲を(1)の組成のもので10mm厚に覆った。
(2) Cover 100% SiC powder on the surface to be treated to a thickness of 2-3 mm,
The periphery thereof was covered with the composition of (1) to a thickness of 10 mm.

又,900℃×5hの処理を行った後の降温速度を1時間当り
80℃±7℃,50℃±6℃,25℃±5℃,15℃±5℃(以
下,中心値により表示する)に調節した。
In addition, the temperature decrease rate per hour after the treatment at 900 ℃ × 5h
The temperature was adjusted to 80 ° C ± 7 ° C, 50 ° C ± 6 ° C, 25 ° C ± 5 ° C, 15 ° C ± 5 ° C (hereinafter indicated by the center value).

第2表は本実施例によって得られた被処理体浸透部の断
面のミクロ組織観察及び硬さ測定結果を示したものであ
る。(1)の組成の浸透剤を用いたものは硬くて脆いFe
B層の生成が多いが,(2)の組成の浸透剤では、最表
層部に数ミクロン厚さのFeB層を有するFe2B層が50〜60
ミクロン厚さ生成していた。しかし,この組成のもので
も,冷却速度が1時間当り80℃,50℃のものにはクラッ
クの発生が認められた。これに対し1時間当り25℃,10
℃の冷却速度ではクラックは全く認められず,良好な浸
透層が得られた。
Table 2 shows the microstructure observation and hardness measurement results of the cross section of the permeation part of the object to be treated obtained in this example. The one using the penetrant having the composition of (1) is hard and brittle.
Although the B layer is often generated, in the penetrant having the composition of (2), the Fe 2 B layer having the FeB layer having a thickness of several microns at the outermost layer is 50 to 60.
Had produced a micron thickness. However, even with this composition, cracks were observed at cooling rates of 80 ° C and 50 ° C per hour. On the other hand, 25 ℃ per hour, 10
No cracks were observed at the cooling rate of ℃, and a good permeation layer was obtained.

この原因は,(1)と同組成の浸透剤を使用している
が,被処理体表面を被覆しているSiCの膜に妨げられ
て,浸透作用を行う硼素化合物の被処理体表面への到達
が遅れた結果,硼素の被処理体内部への拡散速度の方が
早くなり,FeBよりB含有量が少なく,その分延性のよい
Fe2B層が生成しやすくなったものと考えられる。
The reason for this is that the same penetrant as in (1) is used, but the boron compound that permeates the surface of the object to be treated is blocked by the SiC film coating the surface of the object to be treated. As a result of the delayed arrival, the diffusion rate of boron into the object to be processed becomes faster, the B content is lower than that of FeB, and the ductility is good.
It is considered that the Fe 2 B layer was easily generated.

第3図及び第4図はともに浸透処理後の冷却速度を20℃
/hに制御して得られた浸透層の断面ミクロ組織写真を示
したものである。写真1は被処理体表面にあらかじめSi
C粉末を被覆させた本発明の効果により浸透層中にはク
ラックの発生は認められない。これに対し,写真2の方
は同じ冷却速度でありながら多数のクラックが発生し,
部分的には剥落している様子が見られる。
Figures 3 and 4 both show a cooling rate of 20 ° C after the infiltration treatment.
It is a cross-sectional microstructure photograph of the permeation layer obtained by controlling to / h. Photo 1 shows Si on the surface of the object to be processed in advance.
Due to the effect of the present invention coated with C powder, no crack is found in the permeation layer. On the other hand, in Photo 2, a large number of cracks occurred at the same cooling rate,
It can be seen that it has partially peeled off.

このような理由から推定すると,浸透剤中のB4C,KBF4
のような硼素化合物量を少なくしたものでも,(2)と
同様な結果が得られる可能性があるが,被処理体が大型
化してくると硼素化合物含有量の少ない浸透剤では,硼
素源が欠乏して均一な浸透層が得られない。この点,硼
素源の比較的多い浸透剤を周囲に配置し,SiCを硼素化合
物侵入の拡散障壁としておれば大型部材でも,又長時間
の浸透処理においても,常に十分な硼素源を有している
ので,品質の安定した処理層が得られる利点がある。
From this reason, it is estimated that B 4 C and KBF 4 in the penetrant are
Even if the amount of boron compound is reduced, the same result as in (2) may be obtained. However, when the size of the object to be treated becomes large, the source of boron is reduced in the penetrant with a low content of boron compound. It lacks and cannot obtain a uniform penetration layer. In this respect, if a penetrant with a relatively large amount of boron source is placed around it and SiC is used as a diffusion barrier for the penetration of boron compounds, it will always have a sufficient boron source even for large-scale members and for long-term infiltration treatment. Therefore, there is an advantage that a processed layer with stable quality can be obtained.

実施例(その3)浸透剤中の最小硼素化合物量の検討 実施例(その2)の(2)の方法によれば,大型の被処
理体に対しても,クラックのないFe2B層の多い津透層が
得られることが判明した。しかし,この種の浸透剤は繰
返し使用することが経済性の点で有利である。
Example (Part 3) Examination of Minimum Boron Compound Amount in Penetrant According to the method of Example (Part 2) (2), a Fe 2 B layer having no crack is formed even on a large object to be treated. It was found that a large number of Tsutomi layers can be obtained. However, it is economically advantageous to repeatedly use this type of penetrant.

実施例(その2)の(2)の方法では,被処理体表面に
SiC粉末の被覆を施しているため,浸透処理後これを取
り出す際SiCとその周囲に置いてあるB4C,KBF4などの硼
素化合物と混合状態となる。このため新しい被処理体を
施す際,再度SiC粉末をその表面に被覆させるとその周
囲に置くB4C,KBF4を含む浸透剤中の硼素含有量が少な
くなり,この方法で浸透処理を繰返えせば繰返すほど浸
透剤中の硼素含有量が少なくなる。
In the method of (2) of the embodiment (No. 2), the surface of the object to be treated is
Since it is coated with SiC powder, it is mixed with SiC and boron compounds such as B 4 C and KBF 4 placed around it when it is taken out after the permeation treatment. Therefore, when a new object to be treated is coated with SiC powder on the surface again, the content of boron in the penetrant containing B 4 C and KBF 4 placed around it is reduced, and the infiltration treatment is repeated by this method. The more it is returned, the lower the boron content in the penetrant.

そこで,被処理体周辺に詰める浸透剤中の最小硼素化合
物量を実験によって求めることとした。被処理体とし
て,実施例(その1)と同様な直径40mm.長さ100mmと縦
500mm,横500mm,巾300mmのSUS403(大型試験片と称す)
を用いた。浸透剤の組成とその使用法は次の通りであ
る。
Therefore, it was decided to experimentally determine the minimum amount of boron compound in the penetrant packed around the object to be treated. As the object to be processed, the diameter is 40 mm and the length is 100 mm, which is the same as that of the embodiment (No. 1).
500 mm, 500 mm wide, 300 mm wide SUS403 (referred to as large test piece)
Was used. The composition of the penetrant and its use are as follows.

(1)大きな被処理体表面にSiCを2〜3mm厚になるよう
に被覆し,その周囲にB4CとKBF4及びSiCの混合物を10mm
厚となるように被覆した。
(1) A large object surface is coated with SiC to a thickness of 2 to 3 mm, and a mixture of B 4 C, KBF 4 and SiC is 10 mm around it.
Coated to be thick.

(2)小型試験についてはSiCを2〜3mm厚に被覆するも
のと,直接硼素化合物(B4C+KBF4)中に埋没させるも
のに区分し,(1),(2)とも950℃×5hアルゴンガ
ス中で加熱した。
(2) For small size tests, SiC is coated in a thickness of 2 to 3 mm, and one that is directly immersed in a boron compound (B 4 C + KBF 4 ) is categorized into (1) and (2) 950 ° C × 5 h argon. Heated in gas.

処理後の評価は,外観の目視観察,浸透層断面のミクロ
観察によるクラック発生の有無によって行った。
The evaluation after the treatment was carried out by visual observation of the appearance and presence or absence of cracks by microscopic observation of the cross section of the permeation layer.

第3表はこの結果をとり纏めたもので,被処理体が大型
のものを小型試験片とでは得られる浸透層の性状に相違
が認められる。すなわち,前者ではB4C,KBF4濃度が高
い場合,(A),(B)の組成ではSiCで表面を被覆し
ていないとFeBの生成が多く,表面断面ともにクラック
の発生が多い。又硼素化合物の濃度が薄くなれば比較的
良好な浸透層が得られるが,SiCの被覆がなければ(F)
組成のものでも若干のクラックの発生がある。これに対
し,SiCを被覆しておくと浸透層中に占めるFeB層の割合
が非常に少なくなると共に,浸透剤中の硼素化合物量が
少なくなっても〔(C),(D),(E)のように〕Fe
B層やクラック発生の少ない浸透層が得られた。又これ
らの諸条件においても浸透層厚層は大きな変化がなかっ
た。硼素化合物量が非常に少ない(F)及び(G)組成
の浸透剤の場合には,SiCによる被処理体への被覆効果が
認められなかったが,この条件では浸透層そのものが薄
く,(A),(B)のものに比較すると30%の厚さに過
ぎなかった。小試験片の場合は,SiC被覆の効果は
(D),(E),(F)の組成にまで及び(G)の組成
ではじめて被覆の効果が認められなくなった。
Table 3 summarizes these results, and there is a difference in the properties of the permeation layer obtained when a large test object and a small test piece are used. That is, in the former case, when the B 4 C and KBF 4 concentrations are high, FeB is often generated in the compositions (A) and (B) unless the surface is covered with SiC, and cracks are often generated on the surface cross section. If the concentration of the boron compound becomes thin, a relatively good permeation layer can be obtained, but if there is no SiC coating (F)
Even the composition has some cracks. On the other hand, when SiC is coated, the proportion of the FeB layer in the permeation layer is very small, and even if the amount of boron compound in the permeation agent is small [(C), (D), (E ) Like] Fe
A layer B and a permeation layer with few cracks were obtained. Under these various conditions, the permeation layer thickness did not change significantly. In the case of the penetrants of the compositions (F) and (G) having a very small amount of boron compound, the effect of covering the object to be treated with SiC was not recognized, but under these conditions, the permeation layer itself was thin and ) And (B), the thickness was only 30%. In the case of the small test piece, the effect of the SiC coating extends to the compositions of (D), (E) and (F), and the effect of the coating cannot be recognized until the composition of (G).

以上の実験結果から大型被処理体に対しては,SiC被覆の
効果は硼素浸透剤(B4F+KBF4=1.5%)以上の濃度に認
められ,小型試験片では1%以上のB4F+KBF4混合浸透
剤に効果があることが判明した。
From the above experimental results, the effect of SiC coating on large-sized objects was confirmed at a concentration of boron penetrant (B 4 F + KBF 4 = 1.5%) or higher, and for small test pieces, B 4 F + KBF 4 of 1% or higher. It has been found to be effective for mixed penetrants.

実施例(その4)硼素浸透処理後の適正熱処理条件の選
定 実施例(その2)の(2)の方法によって,浸透処理を
施したSUS403の縦500mm,横500mm,高さ300mmの被処理体
について,その母材強度を回復させるための条件を母材
の硬さを測定することによって得た。硼素浸透層そのも
のは,耐高温酸化性に乏しいため,本実施例はすべて真
空容器中で実施したが,その条件は次の通りである。
Example (Part 4) Selection of appropriate heat treatment conditions after boron permeation treatment An object to be permeated by SUS403 having a length of 500 mm, a width of 500 mm and a height of 300 mm by the method of (2) of Example (Part 2) The conditions for recovering the strength of the base metal were obtained by measuring the hardness of the base metal. Since the boron permeation layer itself is poor in high temperature oxidation resistance, all of the present examples were carried out in a vacuum vessel, and the conditions are as follows.

(1)真空容器中に被処理体を設置した後,容器内の圧
力を10-4torrとし960℃×5hの加熱を行い,その後次の
ような冷却方法によって母材のマルテンサイト化をはか
り,強度の回復を行った。しかし,被処理体の寸法が大
きいため,浸透処理層直下20mmの位置に熱電対を挿入
し,油中への投入を除きこの位置における冷却速度を1
分間当り50℃となるように冷却した。
(1) After the object to be treated is placed in a vacuum container, the pressure inside the container is set to 10 -4 torr, heating is performed at 960 ° C for 5 hours, and then the base material is converted to martensite by the following cooling method. , Strength was recovered. However, because the size of the object to be treated is large, a thermocouple was inserted 20 mm below the permeation treatment layer, and the cooling rate at this position was 1
It was cooled to 50 ° C. per minute.

油中へ投入(いわゆる油焼入れ) 水素気流を容器内に大量に導入して冷却 ヘリウムガスを容器内に大量に導入して冷却 窒素ガスを容器内に大量に導入して冷却 アルゴンガスを容器内に大量に導入して冷却 以上の熱処理を行った被処理体について,目視観察によ
る浸透層表面のクラック発生の有無,浸透層断面におけ
るクラック発生の有無及び母材の硬さ測定結果から最適
熱処理条件を求めた。
Put into oil (so-called oil quenching) Introduce a large amount of hydrogen gas into the container and cool it. Introduce a large amount of helium gas into the container and cool it. Introduce a large amount of nitrogen gas into the container and cool it. Argon gas in the container. The optimum heat treatment conditions were determined from the presence or absence of cracks on the surface of the permeation layer by visual observation, the presence of cracks on the cross section of the permeation layer, and the hardness measurement results of the base metal for the object to be treated that had been introduced into I asked.

第4表は以上の調査結果を示したもので,油焼入れでは
母材の硬度が高く,マルテンサイト化は十分得られるも
のの浸透層の表面,断面ともに無数のクラックが発生し
た。これに対しガス冷却を用いたものは,浸透層のクラ
ックは発生せず,又発生したとしても極めて微小であっ
たが一般に硬さが低くマルテンサイト化が不十分で強度
の回復に問題があり,高強度が要求される個所への利用
には適さないことが明らかとなった。
Table 4 shows the results of the above investigations. In oil quenching, the hardness of the base metal was high and martensite was sufficiently obtained, but numerous cracks occurred on the surface and cross section of the permeation layer. On the other hand, in the case of using gas cooling, cracks in the permeation layer did not occur, and even if they did occur, they were extremely small, but generally had low hardness and insufficient martensite formation, and there was a problem in strength recovery. , It became clear that it is not suitable for use in places where high strength is required.

そこで,水素,ヘリウム,窒素及びアルゴンによる冷却
条件をさらに明らかにするため,この4種類のガスを用
いて冷却条件を次のように変化して前記同様な調査を行
った。本実験における冷却速度の測定位置焼入れ要領,
調査項目などはすべて前記同様であるが,被処理体は第
1表の4種類のものを用い(1)〜(3)の鋼種は960
℃,(4)の鋼種は1020℃でそれぞれ5h維持した。冷却
速度は25℃/minと15℃/minの2種とした。第5表は浸透
層の性状,第6表は母材の硬さ測定値を示したもので,
冷却速度が15℃/minの場合は浸透層にクラックは発生し
ないが,母材のマルテンサイト化が不十分となり,硬さ
が低く,強度の回復が十分でないことが判明した。
Therefore, in order to further clarify the cooling conditions with hydrogen, helium, nitrogen, and argon, the same investigation was performed by changing the cooling conditions using these four kinds of gases as follows. Measurement position quenching procedure of cooling rate in this experiment,
All the survey items are the same as above, but the types of steel to be treated are the four types shown in Table 1 and the steel types (1) to (3) are 960.
The steel grades of ℃ and (4) were maintained at 1020 ℃ for 5 hours each. The cooling rate was 25 ° C / min and 15 ° C / min. Table 5 shows the properties of the permeation layer, and Table 6 shows the measured hardness of the base metal.
It was found that when the cooling rate was 15 ° C / min, cracks did not occur in the permeation layer, but the martensite of the base material was insufficient, the hardness was low, and the strength was not sufficiently recovered.

これに対し,25℃/minの冷却速度のものは,浸透層に殆
んどクラックはなく,又,発生したものでも極めて微小
でその数も少ない。その上母材の硬さが強く組織のマル
テンサイト化が十分行われていることが確認された。
On the other hand, with a cooling rate of 25 ° C / min, there are almost no cracks in the permeation layer, and the generated ones are extremely small and the number is small. Moreover, it was confirmed that the hardness of the base material was strong and the structure was sufficiently transformed into martensite.

尚,本実施例における冷却速度を浸透層直下20mmの位置
における温度変化とし,又この位置における母材の硬さ
測定を行ったのは次の理由による。すなわち,本実施例
で使用した被処理体のような本きな鋼材では,たとえ油
焼入れのような冷却性能の大きなものを用いても,中心
部の冷却速度は遅く,マルテンサイト化は行なわれな
い。硼素浸透処理による硬化現象は,被処理体の表面
(50〜100μm)で起るものであり,これを支持する母
材は,処理面から20mm位置でマルテンサイト化しておれ
ば十分実用化できると判断したからである。
The cooling rate in this example was set as the temperature change at a position 20 mm immediately below the permeation layer, and the hardness of the base material was measured at this position for the following reason. That is, in the case of a normal steel material such as the object to be processed used in this example, the cooling rate of the central portion is slow and martensite formation is performed even if a material having a large cooling performance such as oil quenching is used. Absent. The hardening phenomenon caused by the boron permeation treatment occurs on the surface of the object to be treated (50 to 100 μm), and the base material that supports it can be sufficiently put into practical use if it is made into martensite at 20 mm from the treated surface. This is because I made a decision.

又“焼入れ”後の“焼なまし”用の熱処理も真空容器中
で第1表の(1),(2),(3)の被処理体は,JISG4
304(ステンレス鋼棒),(3)の被処理体はJISG4311
耐熱鋼棒記載の条件で加熱し,次いで水素,ヘリウム,
窒素,アルゴンの各ガスで冷却したが,“焼入れ”状態
で良好な性状を示した浸透層は“焼なまし”を行っても
全く変化はなかった。
Also, the heat treatment for "annealing" after "quenching" is performed in a vacuum container in accordance with JIS G4 for the objects to be treated (1), (2) and (3) in Table 1.
The object to be processed of 304 (stainless steel bar), (3) is JIS G4311
Heat-resistant steel bar Heated under the conditions described, then hydrogen, helium,
Although cooled with nitrogen and argon gases, the permeation layer, which showed good properties in the "quenched" state, did not change at all when "annealed".

〔発明の効果〕 本発明法によれば,クラックの少ない又脆弱なFeB層の
生成の少なく耐摩耗性にすぐれた硼素浸透層を備え,し
かも母材強度も十分な部材を得ることができ,この結果
得られた部材は耐熱耐エロージョン性において極めてす
ぐれた性質をしめすので,たとえば蒸気タービンのノズ
ルなどに用いることにより機器の寿命を大幅にのばすこ
とができる。
[Effect of the Invention] According to the method of the present invention, it is possible to obtain a member having a boron-penetrating layer with few cracks and less fragile FeB layer generation and excellent wear resistance, and having sufficient base metal strength. The resulting member exhibits excellent heat and erosion resistance, so that the life of the device can be greatly extended by using it, for example, in the nozzle of a steam turbine.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図は本発明による浸透層の厚さの実験結果
を示す線図,第3図は本発明の一実施例にかかる耐熱耐
エロージョン部材の断面の顕微鏡金属組織写真,第4図
は比較例に係る部材の断面の顕微鏡金属組織写真であ
る。
1 and 2 are diagrams showing the experimental results of the thickness of the permeation layer according to the present invention, and FIG. 3 is a microscopic photograph of the microstructure of the heat-resistant erosion-resistant member according to one embodiment of the present invention. The figure is a microscopic metallographic photograph of a cross section of a member according to a comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】耐熱鋼を基材とし,該耐熱鋼の表面近傍が
マルテンサイト組織であって、該マルテンサイト組織層
の表面に表面層として実質的にFe2Bからなる拡散浸透層
が形成されてなる事を特徴とする耐熱耐エロージョン部
材。
1. A heat-resistant steel as a base material, the vicinity of the surface of the heat-resistant steel has a martensite structure, and a diffusion and penetration layer consisting essentially of Fe 2 B is formed as a surface layer on the surface of the martensite structure layer. A heat and erosion resistant member characterized by being formed.
【請求項2】マルテンサイト系耐熱鋼製の被処理体の表
面をSiC粉末で覆い、SiC粉末の覆いの外側に硼素供給源
としてB4C及びKBF4を複合したものを配して加熱冷却す
る硼素拡散浸透処理を行い、その後非酸化性ガスにより
20℃/min以上の冷却速度となるよう焼き入れを行う事を
特徴とする耐熱用エローション部材の製造法。
2. A surface of an object to be treated made of heat-resistant martensitic steel is covered with SiC powder, and a composite of B 4 C and KBF 4 as a boron source is placed outside the cover of SiC powder and heated and cooled. Boron diffusion permeation treatment is performed and then non-oxidizing gas is used.
A method for producing a heat-resistant erosion member, which comprises quenching at a cooling rate of 20 ° C / min or more.
JP61099790A 1986-04-30 1986-04-30 Heat resistant and corrosion resistant member and its manufacturing method Expired - Lifetime JPH0676655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099790A JPH0676655B2 (en) 1986-04-30 1986-04-30 Heat resistant and corrosion resistant member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099790A JPH0676655B2 (en) 1986-04-30 1986-04-30 Heat resistant and corrosion resistant member and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS62256958A JPS62256958A (en) 1987-11-09
JPH0676655B2 true JPH0676655B2 (en) 1994-09-28

Family

ID=14256718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099790A Expired - Lifetime JPH0676655B2 (en) 1986-04-30 1986-04-30 Heat resistant and corrosion resistant member and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0676655B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629272A1 (en) * 1996-07-19 1998-01-22 Abb Patent Gmbh Method for improving the resistance to crack growth of components made of nickel-based and iron-based materials
CN109023226B (en) * 2018-07-24 2020-09-22 华南理工大学 Flexible boronizing solid boronizing agent and preparation of single-phase Fe2Method for B boronizing layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616242A (en) * 1984-06-20 1986-01-11 Toyota Motor Corp Fiber reinforced metallic composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616242A (en) * 1984-06-20 1986-01-11 Toyota Motor Corp Fiber reinforced metallic composite material

Also Published As

Publication number Publication date
JPS62256958A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
KR100591362B1 (en) Stainless steel and stainless steel pipe having resistance to carburization and coking
KR100325671B1 (en) Carburizing Treatment for Austenitic Metals
US5792282A (en) Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
Taniguchi Oxidation of intermetallics–Japanese activity
NO300553B1 (en) Amorphous coatings resistant to abrasion and corrosion and coating process
Billon et al. Nitriding of Stainless Steelin Ammonia: I Phase Distribution and Microstructure
KR101589008B1 (en) Cr-containing austenite alloy pipe and production method for same
US6037061A (en) Method of forming passive oxide film based on chromium oxide, and stainless steel
US4141759A (en) Process for the formation of an anticorrosive, oxide layer on maraging steels
JP3976599B2 (en) Heat resistant Ti alloy material excellent in high temperature corrosion resistance and oxidation resistance and method for producing the same
KR20020077105A (en) High temperature gaseous oxidation for passivation of austenitic alloys
Forcey et al. The use of aluminising on 317 austenitic and 1.4914 martensitic steels for the reduction of tritium leakage from the net blanket
JP3213254B2 (en) High corrosion resistant metal products and their manufacturing method
Voisey et al. Inhibition of metal dusting using thermal spray coatings and laser treatment
WO2005075698A1 (en) Metal dusting resistant stable-carbide forming alloy surfaces
EP0570219A2 (en) Use of a molten zinc resistant alloy
JPH0676655B2 (en) Heat resistant and corrosion resistant member and its manufacturing method
White et al. Influence of surface treatment on the metal dusting behavior of alloy 699 XA
Grzesik et al. The behavior of valve materials utilized in Diesel engines under thermal shock conditions
US4588450A (en) Nitriding of super alloys for enhancing physical properties
JP2002371383A (en) Heat resistant coated member
US6277214B1 (en) Protective iron oxide scale on heat-treated irons and steels
JP3064909B2 (en) Carburized hardware and its manufacturing method
Saaedi et al. Corrosion resistance of Ni‐50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere
Bedford et al. The influence of oxygen and nitrogen on the growth of intermediate phases during the bonding of iron to aluminium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term