JPH0674967A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH0674967A
JPH0674967A JP22986092A JP22986092A JPH0674967A JP H0674967 A JPH0674967 A JP H0674967A JP 22986092 A JP22986092 A JP 22986092A JP 22986092 A JP22986092 A JP 22986092A JP H0674967 A JPH0674967 A JP H0674967A
Authority
JP
Japan
Prior art keywords
acceleration
acceleration sensor
magnetic
magnet
magnetic yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22986092A
Other languages
Japanese (ja)
Inventor
Shinichi Kawanishi
慎一 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP22986092A priority Critical patent/JPH0674967A/en
Publication of JPH0674967A publication Critical patent/JPH0674967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide an acceleration sensor allowing simple and inexpensive constitution, and capable of detecting acceleration from a DC zone. CONSTITUTION:A ring type magnetic yoke 4 is externally coupled to the outer surface of a hollow cylindrical body 1 of nonmagnetic material, and the internal space of the body 1 is filled with damper oil 2. Also, a cylindrical magnet 3 is retained in such a way as slidable and coming to the predetermined position due to a magnetic attraction force for the yoke 4 in acceleration-free state. Furthermore, magnetic resistance elements 5a and 5b are fixed to both edges of the body 1, and connected to each other in series. Then, an output line Lo is led from the connection point of the elements 5a and 5b, while a power line Lv and a grounding line Lg are respectively led from the terminals of the elements 5a and 5b not at the side of the connection point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、加速度センサに関
し、さらに詳しくは、簡単な構造で安価に構成でき、さ
らにDC領域から加速度を検出できる加速度センサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to an acceleration sensor which has a simple structure and can be constructed at a low cost and which can detect acceleration in a DC region.

【0002】[0002]

【従来の技術】加速度センサは、物体の加速度,振動,
衝撃を検出するのに用いられる。図3は、従来の加速度
センサの一例の要部断面図である。この加速度センサ3
00では、ベース303に立設した支柱304の両側面
に2個の圧電体301が固着され、さらに、各圧電体3
01には、重り302が固着されている。ベース303
に加速度が加わると、重り302の慣性により、2個の
圧電体301の一方に正圧が加わり,他方に負圧が加わ
る。そこで、2個の圧電体301の出力電圧の差をとれ
ば、加速度を検出できる。
2. Description of the Related Art Accelerometers are used for acceleration, vibration,
Used to detect shock. FIG. 3 is a sectional view of a main part of an example of a conventional acceleration sensor. This acceleration sensor 3
In 00, the two piezoelectric bodies 301 are fixed to both side surfaces of the pillar 304 standing upright on the base 303.
A weight 302 is fixed to 01. Base 303
When an acceleration is applied to, the positive pressure is applied to one of the two piezoelectric bodies 301 and the negative pressure is applied to the other due to the inertia of the weight 302. Therefore, the acceleration can be detected by taking the difference between the output voltages of the two piezoelectric bodies 301.

【0003】図4は、従来の加速度センサの他例の要部
断面図である。この加速度センサ400では、箱体40
4の内部上面から垂設された梁402の両側面に2個の
歪ゲージ401が固着され、さらに、梁402の下端に
は、重り402が固着されている。箱体404に加速度
が加わると、重り403の慣性により、梁402が撓
み、2個の歪ゲージ401の一方が圧縮され,他方が伸
張される。そこで、2個の歪ゲージ401の出力電圧の
差をとれば、加速度を検出できる。
FIG. 4 is a sectional view of the main part of another example of a conventional acceleration sensor. In this acceleration sensor 400, the box 40
Two strain gauges 401 are fixed to both side surfaces of a beam 402 vertically extending from the inner upper surface of the beam No. 4, and a weight 402 is fixed to the lower end of the beam 402. When acceleration is applied to the box body 404, the beam 402 is bent by the inertia of the weight 403, and one of the two strain gauges 401 is compressed and the other is stretched. Therefore, the acceleration can be detected by taking the difference between the output voltages of the two strain gauges 401.

【0004】[0004]

【発明が解決しようとする課題】上記従来の加速度セン
サ300では、圧電体301を用いているため、チャー
ジアンプを必要とし、低価格化が難しい問題点がある。
また、DC領域および超低周波領域の加速度を検出でき
ない問題点がある。一方、上記従来の加速度センサ40
0では、歪ゲージ401の出力が小さいため、アンプを
必要とし、低価格化が難しい問題点がある。そこで、こ
の発明の目的は、簡単な構造で安価に構成でき、さらに
DC領域から加速度を検出できる加速度センサを提供す
ることにある。
In the conventional acceleration sensor 300, since the piezoelectric body 301 is used, a charge amplifier is required, and it is difficult to reduce the cost.
Further, there is a problem that accelerations in the DC region and the ultra low frequency region cannot be detected. On the other hand, the above conventional acceleration sensor 40
At 0, since the output of the strain gauge 401 is small, an amplifier is required, and there is a problem that it is difficult to reduce the cost. Therefore, an object of the present invention is to provide an acceleration sensor which has a simple structure and can be inexpensively constructed, and further can detect acceleration from a DC region.

【0005】[0005]

【課題を解決するための手段】この発明の加速度センサ
は、マグネットと磁性ヨークのいずれか一方に対して他
方を移動可能に且つ無加速度状態になったときに両者の
磁気吸引力により所定の位置に落ち着くように保持し、
さらに、両者の位置関係の変化を磁気的に検出して電気
信号を出力する磁電変換素子を設けたことを構成上の特
徴とするものである。
SUMMARY OF THE INVENTION An acceleration sensor according to the present invention is capable of moving one of a magnet and a magnetic yoke with respect to the other, and when a non-acceleration state occurs, a predetermined position is obtained by a magnetic attraction force between the two. Hold so as to calm down,
Further, the structure is characterized in that a magnetoelectric conversion element that magnetically detects a change in the positional relationship between the two and outputs an electric signal is provided.

【0006】[0006]

【作用】この発明の加速度センサでは、無加速度状態の
時、マグネットと磁性ヨークは、両者の磁気吸引力によ
り、所定の安定な位置関係に落ち着いている。加速度が
加わると、慣性によりマグネットと磁性ヨークの位置関
係が変化する。この変化は、磁電変換素子により磁気的
に検出され、電気信号として出力される。ここで、磁電
変換素子からは大きな出力が得られるから、アンプなし
でもよく、構成が簡単になると共に低価格化が可能にな
る。さらに、DC領域の加速度でもマグネットと磁性ヨ
ークの位置関係が変化し、その変化を磁電変換素子によ
り検出できるから、DC領域から加速度を検出可能とな
る。
In the acceleration sensor according to the present invention, in the non-acceleration state, the magnet and the magnetic yoke settle in a predetermined stable positional relationship by the magnetic attraction force of both. When acceleration is applied, the positional relationship between the magnet and the magnetic yoke changes due to inertia. This change is magnetically detected by the magnetoelectric conversion element and output as an electric signal. Here, since a large output can be obtained from the magnetoelectric conversion element, an amplifier may be omitted, and the configuration is simplified and the cost can be reduced. Further, the positional relationship between the magnet and the magnetic yoke changes even with the acceleration in the DC region, and the change can be detected by the magnetoelectric conversion element, so that the acceleration can be detected from the DC region.

【0007】[0007]

【実施例】以下、図に示す実施例によりこの発明をさら
に詳細に説明する。なお、これによりこの発明が限定さ
れるものではない。図1は、この発明の加速度センサの
一実施例の構成図である。この加速度センサ100にお
いて、両端面を封止した非磁性体の中空円筒1の内部に
は、ダンパオイル3が充填されると共に、円柱体のマグ
ネット3が摺動可能に入れられている。また、中空円筒
1の外周には、リング状の磁性ヨーク4が固設されてい
る。さらに、中空円筒1の両端面には、それぞれ磁気抵
抗素子5a,5bが固着されている。磁気抵抗素子5
a,5bは、直列に接続され、その接続点から出力線L
oが導出されている。さらに、両磁気抵抗素子5a,5
bの接続点側でない端子からそれぞれ電源線Lvおよび
接地線Lgが導出され、電池Bに接続されている。中空
円筒1の大きさは、例えば直径12mm×長さ12mm程度
である。
The present invention will be described in more detail with reference to the embodiments shown in the drawings. The present invention is not limited to this. FIG. 1 is a block diagram of an embodiment of the acceleration sensor of the present invention. In this acceleration sensor 100, a damper oil 3 is filled inside a non-magnetic hollow cylinder 1 whose both end surfaces are sealed, and a cylindrical magnet 3 is slidably inserted. A ring-shaped magnetic yoke 4 is fixedly provided on the outer circumference of the hollow cylinder 1. Further, magnetoresistive elements 5a and 5b are fixed to both end surfaces of the hollow cylinder 1, respectively. Magnetoresistive element 5
a and 5b are connected in series, and the output line L is connected from the connection point.
o has been derived. Furthermore, both magnetoresistive elements 5a, 5
A power supply line Lv and a ground line Lg are respectively derived from terminals not on the connection point side of b and are connected to the battery B. The size of the hollow cylinder 1 is, for example, about 12 mm in diameter × 12 mm in length.

【0008】次に、この加速度センサ100の動作につ
いて説明する。図2は、無加速度状態の時のマグネット
3と磁性ヨーク4の位置関係の説明図である。マグネッ
ト3と磁性ヨーク4の磁気吸引力により、マグネット1
の一方の磁極が磁性ヨーク4に近付いた位置で安定して
いる。この時、両者の間の磁気的なポテンシャルエネル
ギーは、最も低くなっている。
Next, the operation of the acceleration sensor 100 will be described. FIG. 2 is an explanatory diagram of the positional relationship between the magnet 3 and the magnetic yoke 4 in the non-acceleration state. Due to the magnetic attraction of the magnet 3 and the magnetic yoke 4, the magnet 1
One of the magnetic poles is stable at a position close to the magnetic yoke 4. At this time, the magnetic potential energy between the two is the lowest.

【0009】加速度が加わった場合、慣性により、マグ
ネット3と磁性ヨーク4の位置関係が図1に示すように
変化し、両者の間の磁気的なポテンシャルエネルギーが
増加する。そして、加速度により生じたマグネット3と
磁性ヨーク4に加わる力の差を打ち消すポテンシャルエ
ネルギーの位置で安定する。
When acceleration is applied, the positional relationship between the magnet 3 and the magnetic yoke 4 changes due to inertia, as shown in FIG. 1, and the magnetic potential energy between them increases. Then, the potential is stabilized at the position of potential energy that cancels the difference in the force applied to the magnet 3 and the magnetic yoke 4 caused by the acceleration.

【0010】すなわち、加速度に応じてマグネット3が
移動する。DC領域の加速度でもマグネット3が移動す
る。すると、マグネット3が磁気抵抗素子5a,5bの
一方に近付き,他方から遠ざかるので、磁気抵抗素子5
a,5bの抵抗値は一方で増加し,他方で減少する。こ
のように差動的に磁気抵抗素子5a,5bの抵抗値が変
化するから、アンプがなくても、出力線Loから大きな
出力が得られる。
That is, the magnet 3 moves according to the acceleration. The magnet 3 also moves with acceleration in the DC region. Then, since the magnet 3 approaches one of the magnetoresistive elements 5a and 5b and moves away from the other, the magnetoresistive element 5
The resistance values of a and 5b increase on the one hand and decrease on the other hand. Since the resistance values of the magnetoresistive elements 5a and 5b are differentially changed in this way, a large output can be obtained from the output line Lo without an amplifier.

【0011】なお、ダンパオイル2は、マグネット3の
動きを適当に抑制する。最大検出可能加速度は、マグネ
ット3の磁力の強さや大きさ,磁性ヨーク4の透磁率や
大きさ,磁気抵抗素子5a,5bの間隔などにより、自
由に設計することが出来る。
The damper oil 2 appropriately suppresses the movement of the magnet 3. The maximum detectable acceleration can be freely designed depending on the strength and size of the magnetic force of the magnet 3, the magnetic permeability and size of the magnetic yoke 4, the distance between the magnetoresistive elements 5a and 5b, and the like.

【0012】[0012]

【発明の効果】この発明の加速度センサによれば、アン
プがなくても大きな出力が得られるから、構成を簡単化
できると共に低価格化できる。また、DC領域や超低周
波領域の加速度でも検出できるようになる。
According to the acceleration sensor of the present invention, a large output can be obtained without an amplifier, so that the structure can be simplified and the cost can be reduced. Further, it becomes possible to detect even acceleration in the DC region and the ultra-low frequency region.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の加速度センサの一実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of an acceleration sensor according to the present invention.

【図2】無加速度状態におけるマグネット3と磁性ヨー
ク4の位置関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a positional relationship between a magnet 3 and a magnetic yoke 4 in a non-accelerated state.

【図3】従来の加速度センサの一例の要部断面図であ
る。
FIG. 3 is a cross-sectional view of a main part of an example of a conventional acceleration sensor.

【図4】従来の加速度センサの他例の要部断面図であ
る。
FIG. 4 is a sectional view of a main part of another example of a conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

100 加速度センサ 1 中空円筒 2 ダンパオイル 3 マグネット 4 磁性ヨーク 5a,5b 磁気抵抗素子 Lo 出力線 Lv 電源線 Lg 接地線 B 電池 100 Accelerometer 1 Hollow cylinder 2 Damper oil 3 Magnet 4 Magnetic yoke 5a, 5b Magnetoresistive element Lo Output line Lv Power line Lg Ground line B Battery

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マグネットと磁性ヨークのいずれか一方
に対して他方を移動可能に且つ無加速度状態になったと
きに両者の磁気吸引力により所定の位置に落ち着くよう
に保持し、さらに、両者の位置関係の変化を磁気的に検
出して電気信号を出力する磁電変換素子を設けたことを
特徴とする加速度センサ。
1. A magnet and a magnetic yoke, one of which is movable and the other of which is held so as to be settled at a predetermined position by a magnetic attraction force of both when it is in a non-acceleration state. An acceleration sensor comprising a magnetoelectric conversion element that magnetically detects a change in positional relationship and outputs an electric signal.
【請求項2】 両端面を封止した非磁性体の中空筒体の
外周に、リング状の磁性ヨークを装着し、前記筒体の内
部に、ダンパオイルを充填すると共に、柱体のマグネッ
トを摺動可能に且つ前記筒体が無加速度状態になったと
きに前記磁性ヨークに対する磁気吸引力により所定の位
置に戻るように保持し、さらに、前記筒体の両端面に、
磁気抵抗素子をそれぞれ固設し、それら磁気抵抗素子を
直列接続し、その接続点から出力線を導出し、両磁気抵
抗素子の接続点側でない端子からそれぞれ電源線および
接地線を導出したことを特徴とする加速度センサ。
2. A ring-shaped magnetic yoke is attached to the outer periphery of a non-magnetic hollow cylinder whose both end faces are sealed, and a damper oil is filled in the inside of the cylinder, and a magnet for a column is attached. It is held so as to be slidable and returned to a predetermined position by a magnetic attraction force to the magnetic yoke when the tubular body is in an unaccelerated state, and further, on both end faces of the tubular body,
Magneto-resistive elements were fixed, the magneto-resistive elements were connected in series, the output line was derived from the connection point, and the power supply line and the ground line were derived from the terminals not on the connection point side of both magneto-resistive elements. Characteristic acceleration sensor.
JP22986092A 1992-08-28 1992-08-28 Acceleration sensor Pending JPH0674967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22986092A JPH0674967A (en) 1992-08-28 1992-08-28 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22986092A JPH0674967A (en) 1992-08-28 1992-08-28 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH0674967A true JPH0674967A (en) 1994-03-18

Family

ID=16898832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22986092A Pending JPH0674967A (en) 1992-08-28 1992-08-28 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0674967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8131481B2 (en) 2007-05-03 2012-03-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Database supported nanocrystal structure identification by lattice-fringe fingerprinting with structure factor extraction
KR101348573B1 (en) * 2011-12-20 2014-01-08 현대다이모스(주) Acceleration and deceleration detecting apparatus and safety drive system having therefore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8131481B2 (en) 2007-05-03 2012-03-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Database supported nanocrystal structure identification by lattice-fringe fingerprinting with structure factor extraction
KR101348573B1 (en) * 2011-12-20 2014-01-08 현대다이모스(주) Acceleration and deceleration detecting apparatus and safety drive system having therefore

Similar Documents

Publication Publication Date Title
EP0293784B1 (en) Acceleration sensor
CN101592678B (en) Flexible pendulous accelerometer
JP4865980B2 (en) Vibration detector
US7305882B1 (en) Accelerometer using magnetic transducer technology
GB923299A (en) Transducer
JPH04266633A (en) Sensor for measuring relative speed and relative position between buffering cylinder and buffering piston moved within said buffering cylinder
EP0707195A1 (en) Magnetically controlled detection of the movement of a mobile part with respect to a fixed part
JPH03176217A (en) Speed transducer for vehicle suspension device
CN100432677C (en) Acceleration sensor
US7308975B2 (en) Velocity sensing system for a damper
JP3404624B2 (en) Magnetic sensor
JPH0674967A (en) Acceleration sensor
CN111103039B (en) Oil tank level sensor
JPH05209644A (en) Sensor for vibration damper of car
JPH0666830A (en) Electrodymanic acceleration sensor
JP3190978B2 (en) Accelerometer
CN214702114U (en) Small-size differential transformer type displacement sensor
JP3029313U (en) Vibration detector
JPH0694404A (en) Height sensor with built-in shock absorber
JPH0783698A (en) Moving amount detector
SU666483A1 (en) Two degree-of-freedom accelerometer
CN2159572Y (en) Geophone for earthquake
JP3016262B2 (en) Electromagnetic suspension device
JPH06160008A (en) Two-dimensional angle-of-inclination detector
RU2167426C1 (en) Inertial information converter