JPH0674834A - Quartz oscillator for detecting temperature - Google Patents

Quartz oscillator for detecting temperature

Info

Publication number
JPH0674834A
JPH0674834A JP23020392A JP23020392A JPH0674834A JP H0674834 A JPH0674834 A JP H0674834A JP 23020392 A JP23020392 A JP 23020392A JP 23020392 A JP23020392 A JP 23020392A JP H0674834 A JPH0674834 A JP H0674834A
Authority
JP
Japan
Prior art keywords
crystal
axis
quartz
temperature
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23020392A
Other languages
Japanese (ja)
Other versions
JP3010922B2 (en
Inventor
Michiaki Takagi
道明 高木
Mitsuru Nagai
充 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4230203A priority Critical patent/JP3010922B2/en
Priority to US08/113,558 priority patent/US5325574A/en
Publication of JPH0674834A publication Critical patent/JPH0674834A/en
Priority to US08/268,406 priority patent/US5607236A/en
Application granted granted Critical
Publication of JP3010922B2 publication Critical patent/JP3010922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the equivalent series resonance resistance of a quartz oscillator small and the temperature characteristic thereof uniform, by extracting a specified directional part of alpha-quartz single crystal and forming a tuning fork-shaped quartz piece. CONSTITUTION:A plane formed by a quartz water 200 agrees with a plate surface obtained by rotating a Z-cut water plate composed of the electrical axis +X 201 and mechanical axis +Y 202 of an alpha-quartz single crystal clockwise by theta degree about the axis 201. A Y' axis 204 is in the position after the rotation of the axis 202 and forms a side of the wafer 200. The longitudinal direction of the arms 101 of a tuning fork-shaped quartz piece 205 is made about parallel to the axis 204. The plate thickness of the wafer 200 is in the range of 80 to 150mum. In the case producing the piece 205 as an oscillator, the ratio of width to length of each arm 101 is set as W/L=0.1-0.2 in the range of an angle theta=15-25 deg. so that the top temperature of temperature characteristic of an equivalent series resonance resistance value is in the range of 25+ or -15 deg.C. Thus, after the external shape working of the quartz piece 205 in made by reducing a fin with photoetching, a driving electrode is formed, and is supported and received within a heat resistant housing 100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、共振又は発振周波数の
変化で温度の検出を行う温度検出用水晶振動子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting crystal unit for detecting temperature by changing resonance or oscillation frequency.

【0002】[0002]

【従来の技術】従来の温度検出用水晶振動子としては、
例えば特公昭61−29652号公報とか特公平1−2
9089号公報をあげることができる。
2. Description of the Related Art As a conventional crystal oscillator for temperature detection,
For example, Japanese Patent Publication No. 61-29652 or Japanese Patent Publication 1-2.
No. 9089 can be cited.

【0003】[0003]

【発明が解決しようとする課題】しかし、前述の従来技
術ではいずれも水晶ウェハ方位の指定範囲が広く水晶振
動子の周波数温度特性の一次係数が大きいと言うだけ
で、実際に実用化するに際して考慮すべき諸特性が適切
であるかどうかについて述べられていない。前記の考慮
すべき諸特性としては、振動子の等価直列共振抵抗の値
(CI値)とその温度に対する変化特性、音叉形形状の
水晶片をフォトエッチングで外形加工する際に生ずるい
わゆるヒレと言われている残部による振動子の振動不安
定性の発生、さらに使用温度範囲内のある温度於て不要
振動モードと周波数が一致して特性異状をきたすスプリ
アス現象等があげられる。まず最初に前記CI値とCI
値の温度特性に関しては、特定の角度方位にあっては、
CI値が大きく又、CI値の温度変化が大きく存在し発
振回路を構成した際に例えば高温度での発振停止が発生
した。又前記ヒレについても大きく残存し、振動の安定
性を大きく損なう等の問題が生じた。さらには同じ屈曲
振動モードであっても高次振動モードを用いると前記ス
プリアス現象をもつものが時々発生し使用温度範囲にわ
たって厳密な周波数温度特性の検査を要する等の問題が
発生した。
However, in all of the above-mentioned prior arts, the fact that the designated range of the crystal wafer orientation is wide and the first-order coefficient of the frequency-temperature characteristic of the crystal unit is large is taken into consideration in practical application. There is no mention of whether the characteristics to be done are appropriate. The characteristics to be considered include the value of equivalent series resonance resistance (CI value) of the vibrator and its change characteristics with respect to temperature, and so-called fins generated when the tuning fork-shaped crystal piece is externally processed by photoetching. There are vibration instability of the oscillator due to the remaining part, and spurious phenomenon in which the characteristic is abnormal due to the frequency matching with the unnecessary vibration mode at a certain temperature within the operating temperature range. First, the CI value and the CI
Regarding the temperature characteristics of the value, for a specific angular orientation,
The CI value was large and the temperature change of the CI value was large, so that the oscillation was stopped at a high temperature when the oscillation circuit was constructed. Further, the fins also remained largely, and problems such as a great loss of vibration stability occurred. Further, even if the same bending vibration mode is used, if the higher order vibration mode is used, the one having the spurious phenomenon sometimes occurs, and there is a problem that a strict frequency temperature characteristic inspection is required over the operating temperature range.

【0004】そこで本発明は、前述の諸問題を解決する
もので、その目的とするところは、等価直列共振抵抗が
小さくかつ、その温度特性が平坦で変化が小さく、又振
動の安定性に優れ、スプリアス現象が発生しない優れた
温度検出用水晶振動子を安価に市場に提供して、高精度
で小型な温度計測システム装置の実現に役立てることに
ある。
Therefore, the present invention solves the above-mentioned problems, and its object is to have a small equivalent series resonance resistance, a flat temperature characteristic and a small change, and excellent vibration stability. , It is to provide an excellent temperature detecting crystal unit that does not cause a spurious phenomenon to the market at a low cost, and to help realize a highly accurate and compact temperature measuring system device.

【0005】[0005]

【課題を解決するための手段】本発明の温度検出用水晶
振動子は、(1)α水晶単結晶の電気軸+Xと機械軸+
Yの作る平面を主平面とするZカットウェハを、前記電
気軸+Xの回りに時計方向に電気機械結合係数がほぼ最
大となる範囲の角度である15から25度の範囲で回転
してできる板厚80から150μmの水晶ウェハから、
前記水晶ウェハの回転後の+Y軸であるY’軸に平行に
腕の長手方向を有する音叉型形状であって、かつ腕形状
の寸法の有する辺比が(腕幅/腕長)比が0.1から
0.2の水晶片をフォトエッチングによりヒレを減じて
外形加工した後、基本波振動モードにて振動可能なよう
に励振電極を形成して振動子の等価直列共振抵抗値の温
度特性の頂差温度がほぼ常温(25±15℃)として、
耐熱容器に支持し収納したこと、(2)(1)項記載の
音叉型形状を有する水晶片をフォトエッチングして外形
加工する際に発生するヒレの断面積を、水晶ウェハの板
厚を一辺として等価な腕幅の増分に換算した場合に、腕
幅に対する前記等価な腕幅の比率が5%以下であるこ
と、(3)(1)項記載の音叉型形状を有する水晶片の
一方の腕幅を他方より増減させて振動の安定性を向上さ
せたこと、(4)(1)項記載の耐熱容器を構成するケ
ースとステムの少なくとも1部に、pbsn半田であっ
てpbの成分が90wt%以上の耐熱性半田メッキ処理
をほどこすとともに、前記ステムを貫通するインナリー
ドの少なくとも1部にも同様な耐熱性半田メッキをほど
こして、音叉型形状を有する水晶片と前記インナリード
が前記半田メッキを介して固着され、かつ前記ケースと
前記ステムが前記半田を介して圧入結合されたことを特
徴とする。
The temperature detecting crystal unit according to the present invention comprises (1) an electric axis + X and a mechanical axis + of an α crystal single crystal.
A plate formed by rotating a Z-cut wafer whose main plane is a plane formed by Y in the range of 15 to 25 degrees, which is an angle in the range in which the electromechanical coupling coefficient is substantially maximum, in the clockwise direction around the electric axis + X. From a crystal wafer with a thickness of 80 to 150 μm,
It is a tuning-fork type having the longitudinal direction of the arm parallel to the Y ′ axis which is the + Y axis after rotation of the quartz wafer, and the side ratio of the arm shape dimensions is (arm width / arm length) ratio is 0. .The crystal characteristics of 1 to 0.2 crystal pieces were processed by photo-etching to reduce the fins, and then the external electrodes were formed so that they could vibrate in the fundamental vibration mode. Assuming that the temperature difference between the top and bottom of the
The fins are supported and housed in a heat-resistant container, and the cross-sectional area of the fins generated when the crystal forks having the tuning fork shape according to the item (1) are photo-etched to form the outer shape, When converted into an equivalent increment of the arm width, the ratio of the equivalent arm width to the arm width is 5% or less. (3) One of the crystal pieces having the tuning fork shape according to the item (1). By increasing or decreasing the arm width from the other to improve the vibration stability, at least a part of the case and the stem constituting the heat-resistant container according to (4) (1), the pbsn solder and the pb component are A heat-resistant solder plating treatment of 90 wt% or more is applied, and a similar heat-resistant solder plating is applied to at least a part of the inner lead penetrating the stem, so that the crystal fork having a tuning fork shape and the inner lead are Solder plating Is secured to, and wherein the said casing stem is press-fitted bonded via the solder.

【0006】[0006]

【実施例】図1は本発明の温度検出用水晶振動子の一実
施例が示す断面図である。まず最初に図1中の各部位の
名称を列記すると、100はケース、101は音叉型形
状を有する水晶片の腕部102は音叉型形状を有する水
晶片の基部、103はステム、104は前記ステムのイ
ンナリード、105は前記ステムのアウタリード、10
6は前記ステムの耐熱半田メッキ、107は前記水晶片
と前記インナリードを固着する半田、108と109は
前記ケースの表面にある耐熱半田メッキである。次に各
部位の各々につき詳細な説明を順に行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing an embodiment of a temperature detecting crystal unit according to the present invention. First, the names of the respective parts in FIG. 1 are listed, 100 is a case, 101 is a tuning-fork-shaped quartz piece arm portion 102 is a tuning-fork-shaped quartz piece base portion, 103 is a stem, and 104 is the aforementioned. The inner lead of the stem, 105 is the outer lead of the stem, 10
6 is heat resistant solder plating of the stem, 107 is solder for fixing the crystal piece and the inner lead, and 108 and 109 are heat resistant solder plating on the surface of the case. Next, a detailed description will be given in order for each of the parts.

【0007】まず最初、前記101と102で示した音
叉型形状を有する水晶片につき説明する。前記水晶片
は、α水晶単結晶より特定の方位をとって加工されるも
のである。図2にはその方位図を示す。図中200が前
記α水晶単結晶より作られる水晶ウェハであって、水晶
ウェハの作る平面は、前記α水晶単結晶の基本的結晶軸
の1つである電気軸+X(201)と機械軸+Y(20
2)が形成するZカット板ウェハを前記電気軸+X回り
にθ度時計方向に回転して得られる板面に一致する。2
04のY’軸は前記202のY軸を回転した後のもので
あって、回転後の水晶ウェハの一辺を形成している。又
203の+Z軸は前記α水晶単結晶の基本的結晶軸の一
つである光軸を示す。さらに205は水晶片であって、
それがもつ音叉型形状を形作る主平面は、前記200の
水晶ウェハの平面内にあって、かつ前記図1中の101
で示した水晶片の腕部の長手方向が前記Y’軸にほぼ平
行である、ほぼ平行の意味するところはY’軸とのなす
角度が数度以内にあれば良いことである。前記200の
水晶ウェハの板厚は80から150μmである。又前記
角度θは後述する理由から15度から25度の範囲をと
る。前記200の水晶ウェハは前述の方位と板厚をもっ
てα水晶単結晶より切り出された後、充分な表面研磨仕
上げがほどこされる。205の水晶片は、水晶ウェハ2
00の平面の表裏にCr下地としてAuの薄膜を蒸着又
はスパッタ等の手段で形成した後、レジストの塗布と露
光等の一連のフォトプロセスを経て、Cr+Au薄膜か
らなる音叉型形状の外形パターンを水晶ウェハ平面上に
形成する。しかる後に、フッ酸(AF)あるいはフッ酸
とフッ化アンモニウム(NH4 F)の混合液によって前
記Cr+Auの金属膜を外形マスクとして外形エッチン
グが行なわれ音叉型形状の水晶片が完成する。
First, the quartz piece having the tuning fork shape shown by 101 and 102 will be described. The crystal piece is processed in a specific orientation from the α crystal single crystal. FIG. 2 shows its azimuth diagram. In the figure, 200 is a crystal wafer made from the α-crystal single crystal, and the plane formed by the crystal wafer is one of the basic crystal axes of the α-crystal single crystal: electrical axis + X (201) and mechanical axis + Y. (20
The Z-cut plate wafer formed by 2) coincides with the plate surface obtained by rotating the Z-cut plate wafer clockwise about the electric axis + X by θ degrees. Two
The Y ′ axis of 04 is obtained by rotating the Y axis of 202, and forms one side of the rotated quartz wafer. The + Z axis of 203 indicates the optical axis which is one of the basic crystal axes of the α quartz single crystal. Further, 205 is a crystal piece,
The main plane forming the tuning fork type shape of the crystal is in the plane of the crystal wafer of 200, and is 101 in FIG.
The longitudinal direction of the arm portion of the crystal piece shown in (1) is substantially parallel to the Y ′ axis. The meaning of being substantially parallel is that the angle with the Y ′ axis is within a few degrees. The 200 crystal wafer has a plate thickness of 80 to 150 μm. The angle θ is in the range of 15 to 25 degrees for the reason described later. The 200 crystal wafer is cut out from the α crystal single crystal with the above-mentioned orientation and plate thickness, and is then subjected to sufficient surface polishing finish. The crystal piece 205 is a crystal wafer 2.
After forming a thin film of Au as a Cr underlayer on the front and back sides of the surface of No. 00 by means such as vapor deposition or sputtering, a series of photo processes such as resist coating and exposure are performed to form a tuning fork type outer shape pattern made of a Cr + Au thin film with a crystal. It is formed on the wafer plane. Thereafter, outer shape etching is performed with hydrofluoric acid (AF) or a mixed solution of hydrofluoric acid and ammonium fluoride (NH 4 F) using the metal film of Cr + Au as an outer shape mask to complete a tuning fork-shaped crystal piece.

【0008】次に前述の水晶ウェハの回転角θの設定理
由につき図3を用いて説明する。図中の横軸は、前記回
転角θであり、縦軸は左側のK2 は電気機械結合係数、
又右側のa(ppm/℃)は本発明の温度検出用水晶振
動子が有する周波数温度特性の一次温度係数の値を示
す。又図中の曲線300が前記K2 の変化を、301の
aが前記一次温度係数の変化を示す。温度検出用水晶振
動子に於いては、前記一次温度係数αの絶対値は大きい
程温度の分解精度が高くなるため好ましい。従って図3
よりθはプラスに大きい程良いことになる。一方、温度
検出用水晶振動子として重要な特性である等価直列共振
抵抗CIを考えると、前記CIは可能なかぎり小さく又
温度により変化せず安定な程好ましい。又前記CI値は
前述の電気機械結合係数K2 と関係しておりK2 が大き
い程CI値は小さくなる。
Next, the reason for setting the rotation angle θ of the quartz wafer will be described with reference to FIG. The horizontal axis in the figure is the rotation angle θ, the vertical axis is the left side K 2 is the electromechanical coupling coefficient,
Further, a (ppm / ° C.) on the right side shows the value of the primary temperature coefficient of the frequency temperature characteristic of the temperature detecting crystal resonator of the present invention. A curve 300 in the figure shows the change of K 2 and a of 301 shows the change of the primary temperature coefficient. In the temperature detecting crystal unit, the larger the absolute value of the primary temperature coefficient α, the higher the temperature decomposition accuracy, which is preferable. Therefore, FIG.
The larger θ becomes, the better. On the other hand, considering the equivalent series resonance resistance CI, which is an important characteristic as a temperature detecting crystal unit, the CI is preferably as small as possible and stable as it does not change with temperature. Further, the CI value is related to the electromechanical coupling coefficient K 2 described above, and the larger K 2 is, the smaller the CI value is.

【0009】図3中の300K2 の曲線はθ=−90か
ら+90゜の範囲に於てθ=15゜付近に於て唯一最大
となっている。従ってθとしては15゜の近く具体的数
値ではθ=15±10゜範囲であれば最小に近い良好な
CI値を得ることができる。温度検出用水晶振動子とし
ては、CI値と前記aの値を考慮して前記θを15から
25゜の範囲に一応設定することができる。このときa
は約−15から−33ppm/℃の値となった。ところ
で前述のK2 は次式に従うものであって、音叉型形状を
有する屈曲振動モードのCI値を決める要因となるもの
である。
The curve of 300 K 2 in FIG. 3 is the largest in the vicinity of θ = 15 ° in the range of θ = −90 to + 90 °. Therefore, when θ is close to 15 °, and a concrete numerical value is within the range of θ = 15 ± 10 °, a good CI value close to the minimum can be obtained. As the temperature detecting crystal unit, the θ can be set in the range of 15 to 25 ° in consideration of the CI value and the value of a. At this time a
Of about −15 to −33 ppm / ° C. By the way, the above-mentioned K 2 is in accordance with the following equation and is a factor that determines the CI value of the bending vibration mode having a tuning fork shape.

【0010】[0010]

【数1】 [Equation 1]

【0011】但しここで、d12、S22 E 、ε11 T 等は各
々α水晶単結晶の物質定数であって、d12は圧電律テン
ソルの成分、S22 E は弾性係数テンソルの成分、さらに
ε11 T は誘電率テンソルの成分である。θ=0゜に於け
るこれらの値はd12=6.88×10-8esu、S22 E
=12.7759×10-13 cm2 /dyne、ε11 T
=4.5の値をとる。
Here, d 12 , S 22 E , ε 11 T, etc. are each material constants of α quartz single crystal, d 12 is a component of piezoelectric coefficient tensor, S 22 E is a component of elastic coefficient tensor, Furthermore, ε 11 T is a component of the dielectric constant tensor. These values at θ = 0 ° are d 12 = 6.88 × 10 -8 esu, S 22 E
= 12.7759 × 10 −13 cm 2 / dyne, ε 11 T
= 4.5.

【0012】次に前述のフォトプロセスを用いた水晶の
外形エッチング、即ちフォトエッチングに関して図4か
ら図6を用いて説明する。まず最初に図4を説明する。
図4は、前述の図1中の音叉型形状を有する水晶片の腕
部101の左右1対の断面を示す図であって、図中各部
位の名称は、400と401は前記音叉型形状を有する
水晶片の直角四辺形断面を持つ腕部、402と403は
前述のフォトエッチングの際に生じた断面三角形状のヒ
レ部である。さらに、406、407、408、409
等は前記水晶片腕部周囲に形成されたCr下地Auの金
属膜からなる励振電極であって、前記腕部長手方向にそ
って同一配置で形成されている。又各電極は図4の様に
前記水晶片上に形成されたCr+Auの金属膜により接
続されて404の信号源により励振することができる。
Next, the outer shape etching of the crystal using the above-mentioned photo process, that is, the photo etching will be described with reference to FIGS. First, FIG. 4 will be described.
FIG. 4 is a view showing a pair of left and right cross-sections of the arm portion 101 of the crystal fork having the tuning fork shape shown in FIG. 1 mentioned above. The arm portions having a right-angled quadrilateral cross section of the crystal piece having the reference numerals 402 and 403 are fin portions having a triangular cross-section formed during the above-described photoetching. Furthermore, 406, 407, 408, 409
And the like are excitation electrodes made of a metal film of a Cr underlayer Au formed around the one arm portion of the quartz crystal, and are formed in the same arrangement along the longitudinal direction of the arm portion. The electrodes are connected by a metal film of Cr + Au formed on the crystal piece as shown in FIG. 4 and can be excited by a signal source 404.

【0013】図4の電極配置によって前記水晶片は、基
本波屈曲振動モード(図10参照)で共振する。このよ
うにして得られた前記水晶片を前述の図1の完成体の温
度検出用水晶振動子とした上で、前述の等価直列共振抵
抗CI値を測定してみると前記温度検出用水晶振動子を
回路基板に固定する方法によってCI値に変動が生じ
た。このCI値の変動は、いわゆる振動漏れと言われる
現象と考えられ、これは、前述図1の音叉型形状を有す
る水晶片の基部に生じている振動時の変位が、ステムの
インナリード(図1の104)を介してステム及びケー
ス(図1の100)を漏れ来てゆり動かすために、前記
ケースの回路基板への固定の仕方によって温度検出用水
晶振動子のエネルギー損失の程度が変化して生じてい
る。
With the electrode arrangement shown in FIG. 4, the crystal element resonates in the fundamental bending vibration mode (see FIG. 10). The crystal piece thus obtained is used as the temperature detecting crystal resonator of the completed body of FIG. 1, and the equivalent series resonance resistance CI value is measured. The CI value fluctuated depending on the method of fixing the child to the circuit board. This fluctuation of the CI value is considered to be a so-called vibration leakage phenomenon. This is because the displacement of the stem at the base of the crystal fork having the tuning fork shape shown in FIG. In order to leak and swing the stem and the case (100 in FIG. 1) through 104 of No. 1), the degree of energy loss of the temperature detecting crystal unit changes depending on how the case is fixed to the circuit board. Has occurred.

【0014】この現象について種々のフォトエッチング
に於ける前記水晶片のエッチング加工時間とCI値の変
動特性の関係を実験的に検討した結果、図5に見られる
ような結果を得た。同図中の横軸は前記ヒレを腕幅に等
価換算した量ΔWμmに大して本来あるべき腕幅寸法W
の比率を%で表わしたものであり、又縦軸は前述のCI
値の変動量を%で表示したものである。前記ΔWは次の
様に計算する。図4のヒレ部402と403はほぼ同一
の断面積Sを有しているので、このSを水晶ウェハの板
厚tとして、ΔW≒2S/tより求める。
Regarding this phenomenon, the relationship between the etching processing time of the quartz piece and the fluctuation characteristics of the CI value in various photo-etching was experimentally examined, and the result as shown in FIG. 5 was obtained. The horizontal axis in the figure is the arm width dimension W which should be as large as the amount ΔW μm equivalently converted from the fin to the arm width.
Is expressed as a percentage, and the vertical axis indicates the above-mentioned CI.
The amount of change in value is expressed in%. The ΔW is calculated as follows. Since the fin portions 402 and 403 in FIG. 4 have substantially the same cross-sectional area S, this S is determined as ΔT≈2S / t as the plate thickness t of the crystal wafer.

【0015】図5の特性500をみる限りに於て、ΔW
/Wは5%以内、さらには好ましくは4%以内にヒレの
残量を減じることが必要であることがわかる。さらに実
験と有限要素法との計算で解析を行って次の事実をみい
出すことができた。図6にその結果を示す。図6中の横
軸は、図4中のεで示す量で、水晶片の1対の腕幅の寸
法差を示す。又図6中の縦軸は前記音叉型形状を有する
基部(図1の102)の幅方向(図4の+X軸方向)度
位Ux を示した特性図である。直線600は前述のヒレ
の等価換算幅ΔW/Wが4.3%の場合について計算し
たもので、ε=+2μmに於てUx =0となっており論
理上振動漏れによるCI値の変動は無くなることにな
る。そこで、このような寸法をとって水晶片を試作して
みたところ良い結果が得られた。
As far as the characteristic 500 of FIG. 5 is concerned, ΔW
It is understood that it is necessary to reduce the remaining amount of fins within 5% / W, and more preferably within 4%. Furthermore, we were able to find the following facts by conducting an analysis by experiments and calculations by the finite element method. The results are shown in FIG. The horizontal axis in FIG. 6 is the amount indicated by ε in FIG. 4, and represents the dimensional difference between the pair of arm widths of the crystal piece. The vertical axis in FIG. 6 is a characteristic diagram showing the degree Ux in the width direction (+ X axis direction in FIG. 4) of the base (102 in FIG. 1) having the tuning fork shape. The straight line 600 is calculated for the case where the equivalent conversion width ΔW / W of the fin is 4.3%, and Ux = 0 at ε = + 2 μm, which theoretically eliminates the fluctuation of the CI value due to vibration leakage. It will be. Therefore, when a crystal piece was made as a prototype with such dimensions, good results were obtained.

【0016】以上今までに述べた水晶ウェハ切断方位、
水晶片のフォトエッチング加工条件のもとに、前記水晶
片の音叉形状寸法を次に設定した。この際に注目した特
性図を図7と図8に示した。まず最初に図7は、いわゆ
るモードチャートと言われるものの1部であって、特定
の寸法条件に於て、音叉型形状の水晶片が有する基本波
屈曲振動モードの固有共振周波数f0 を基準にして他の
振動モードの周波数比f/f0 を縦軸にして示したもの
である。図中の丸印は、種々の振動モードが示す相対周
波数位置を示しており、上から700が水晶片の主平面
に垂直な変位Uz を有する2次の同相の屈曲振動、70
1は前記設計の目標である基本波屈曲振動(変位Ux を
もつ図10のような振動)、又702は左右一対の腕が
同一方向に同期して振動する振動モード、703は70
0のようにZ方向に左右の腕部が逆向きに変位する振動
モード、又704は703とは逆に左右の腕が同一のZ
方向へ同期して振動する振動モードである。図中のZ−
FS−1からZ−FS−2の記号は右に対応して図示し
た以上の振動モードを識別するために記入した。
The crystal wafer cutting direction described above is as follows:
The tuning fork shape dimension of the crystal piece was set next under the photo-etching processing condition of the crystal piece. The characteristic diagrams of interest in this case are shown in FIGS. 7 and 8. First, FIG. 7 is a part of what is called a so-called mode chart, which is based on the natural resonance frequency f 0 of the fundamental bending vibration mode of the tuning fork-shaped crystal piece under specific dimensional conditions. The frequency ratio f / f 0 of other vibration modes is shown on the vertical axis. Circles in the figure indicate relative frequency positions indicated by various vibration modes, and 700 is a second-order in-phase bending vibration having a displacement Uz perpendicular to the principal plane of the quartz piece,
Reference numeral 1 is a fundamental wave bending vibration (vibration as shown in FIG. 10 having a displacement Ux) which is a target of the above design, 702 is a vibration mode in which a pair of left and right arms vibrates in synchronization in the same direction, and 703 is 70
A vibration mode in which the left and right arms are displaced in the opposite direction in the Z direction, such as 0, and 704 is a Z mode in which the left and right arms are the same as 703
It is a vibration mode that vibrates in synchronization with the direction. Z- in the figure
The symbols FS-1 to Z-FS-2 correspond to the right and are entered to identify the above vibration modes.

【0017】図7で大切な点は、温度検出用水晶振動子
が通常使われる温度範囲−50から100℃に於て、最
大の一次温度係数a=−33ppm/℃をとっていても
決して他の振動モードと周波数が一致しないことであ
る。これは高次モードでなく基本波屈曲振動モードを選
択したことに起因する。図7の701と702の周波数
差は10%も離れており前述の周波数の温度変化を計算
しても充分離れている。図7のモードチャートは音叉型
状を有する水晶片の板厚が80から150μm、又1対
の腕部の板厚t対wの比t/wが0.24から0.6の
間さらに腕間距離c対wの比c/wが0.3から0.6
の間であれば充分成立関係である。この関係にあれば、
最近接の振動モードも8%以上周波数が離れていること
を確かめることができる。従って、温度計測中にいわゆ
るスプリアスモードとぶつかって異状現象を呈すること
は生じない。次に以上の寸法条件のもとに、前記CI値
の温度特性につき検討した。
The important point in FIG. 7 is that even if the maximum first-order temperature coefficient a = −33 ppm / ° C. is taken in the temperature range of −50 to 100 ° C. where the temperature detecting crystal unit is normally used, it is never the case. That is, the vibration mode and frequency do not match. This is because the fundamental bending vibration mode was selected instead of the higher order mode. The frequency difference between 701 and 702 in FIG. 7 is as far as 10% apart, and is sufficiently far apart even if the temperature change of the above-mentioned frequency is calculated. The mode chart of FIG. 7 shows that the thickness of the tuning fork-shaped crystal element is 80 to 150 μm, and the ratio t / w of the thickness t to w of the pair of arms is 0.24 to 0.6. Ratio c / w of distance c to w is 0.3 to 0.6
If it is between, it is a sufficient relationship. If you have this relationship,
It can be confirmed that the frequencies of the nearest vibration modes are separated by 8% or more. Therefore, it does not occur that a strange phenomenon occurs due to collision with a so-called spurious mode during temperature measurement. Next, the temperature characteristics of the CI value were examined under the above dimensional conditions.

【0018】図8には具体的に製作した温度検出用水晶
振動子のIC値の温度特性及び共振周波数の温度特性に
つき図示した。図中、横軸は周囲温度T(℃)であり縦
軸の左側は周波数温度特性を周波数変化率Δf/fO
表示したもの、また右側はCI値(KΩ)である。図中
の800の曲線が周波数温度特性を又801がCI値の
温度特性を示している。さらに曲線801は上に凸の放
物線を描きその最小値を示す頂点温度802に於てほぼ
左右対称となっている。この頂点温度を種々の水晶ウェ
ハ方位及び前記水晶片の腕部形状特に幅寸法Wと腕長さ
L(図1のL)の比率W/Lに対して検討したところ、
前記頂点温度が25±15℃となる条件範囲として、前
述の水晶ウェハの切断方位θ=15から25゜の範囲
で、W/L=0.1から0.2の範囲であればほぼ達成
できることがわかった。ちなみにCI地のもつ2次温度
係数を求めたところ40.8ppm/℃2 であった(2
5℃と95℃間のCI値の増加が20%と少ない)。さ
らに図1に用いた前記水晶片のサイズは、前記L=25
20μm、W=324μm、t=130μm、c=17
6μmであることを付け加える。
FIG. 8 shows the temperature characteristic of the IC value and the temperature characteristic of the resonance frequency of the specifically manufactured temperature detecting crystal unit. In the figure, the horizontal axis is the ambient temperature T (° C.), the left side of the vertical axis is the frequency-temperature characteristic represented by the frequency change rate Δf / f O , and the right side is the CI value (KΩ). In the figure, the curve 800 indicates the frequency temperature characteristic, and the curve 801 indicates the temperature characteristic of the CI value. Furthermore, the curve 801 is a parabola having an upward convex shape, and is substantially symmetrical with respect to the apex temperature 802 showing the minimum value. This peak temperature was examined with respect to various crystal wafer orientations and the arm shape of the crystal piece, in particular, the ratio W / L of the width dimension W and the arm length L (L in FIG. 1).
As the condition range in which the apex temperature is 25 ± 15 ° C., the cutting orientation θ of the quartz wafer described above can be substantially achieved within the range of θ = 15 to 25 ° and W / L = 0.1 to 0.2. I understood. By the way, the secondary temperature coefficient of CI ground was calculated to be 40.8ppm / ℃ 2 (2
The increase in CI value between 5 ° C and 95 ° C is as small as 20%). Further, the size of the crystal piece used in FIG. 1 is L = 25.
20 μm, W = 324 μm, t = 130 μm, c = 17
Add 6 μm.

【0019】以上で図1の水晶片の詳細な説明は全て終
わったので、次に本発明の温度検出用水晶振動子の残り
の構成部位の説明を以下に行う。
Since the detailed description of the crystal piece of FIG. 1 has been completed, the remaining components of the temperature detecting crystal resonator of the present invention will be described below.

【0020】前記水晶片の収納容器はケース100とス
テム103からなる。まず最初ステムは、ほぼ円筒形の
側面をコバール等の金属で構成し円筒の内部は2本の同
じくコバール材からなるリード線部材を平行に配置し
て、さらにその内部を気密性のあるガラス部材で溶融固
着して気密性をもたせていったん構成される。又ケース
100は、CuとNi合金からなる洋白平板をプレスに
て深しぼり成形して作られる。この上でさらに本発明に
あっては、前記ケースにはNiメッキかさらにその上に
耐熱性半田メッキ処理をほどこし、前記ステムには、イ
ンナリード及びアウタリードを含めて、CuまたはNi
の下地メッキをほどこした上に前記耐熱半田メッキ処理
をほどこす。
The container for storing the crystal piece comprises a case 100 and a stem 103. First, the stem has a substantially cylindrical side surface made of metal such as Kovar. Inside the cylinder, two lead wire members made of the same Kovar material are arranged in parallel, and the inside of the stem is made of an airtight glass member. Once melted and fixed, it is made airtight. The case 100 is made by deep-pressing a nickel-white plate made of Cu and Ni alloy with a press. Further, in the present invention, the case is plated with Ni or heat-resistant solder is further plated thereon, and the stem is made of Cu or Ni including inner leads and outer leads.
The above heat resistant solder plating treatment is applied on the base plating.

【0021】前記耐熱半田メッキの特性を図9で説明す
る。図9は横軸に半田の組成であるpbsnの成分比率
(重量%)をとり、縦軸には温度(℃)をとって表わし
た合金の状態図である。本発明の温度検出用水晶振動子
に使用している耐熱半田はpb成分が90wt%以上、
従ってSnは10wt%以下の領域を使うものである。
従ってその溶融温度は260℃と高く充分に温度検出用
水晶振動子の使用温度範囲をカバーできる性能を有す
る。さらに前記温度検出用水晶振動子の組立手順を示す
と、まず前記水晶片のCr+Auの電極膜と前記ステム
のインナリード(図1の104)を接触させた状態で約
327℃以上に加熱して固着させる。
The characteristics of the heat resistant solder plating will be described with reference to FIG. FIG. 9 is a state diagram of an alloy in which the abscissa represents the component ratio (wt%) of pbsn, which is the composition of solder, and the ordinate represents the temperature (° C.). The heat-resistant solder used in the temperature detecting crystal unit of the present invention has a pb component of 90 wt% or more,
Therefore, Sn uses a region of 10 wt% or less.
Therefore, its melting temperature is as high as 260 ° C., and it has a performance capable of sufficiently covering the operating temperature range of the temperature detecting crystal resonator. The procedure for assembling the temperature detecting crystal unit is as follows. First, in a state where the Cr + Au electrode film of the crystal piece and the inner lead (104 in FIG. 1) of the stem are in contact with each other, the temperature is raised to about 327 ° C. or higher. Fix it.

【0022】次に前記水晶片を固着したステムと前記ケ
ースを10-5から10-6Torvの高真空兼高温度状態
(図9の900で示す斜線部温度)に放置して前記耐熱
半田メッキを半溶融状態として、半田メッキ内部に存在
するガスを放出せしめた後、温度を降下てケースとステ
ムを圧力をかけて圧入して気密容器内に水晶片を収納す
る。このようにして完成した温度検出用水晶振動子は、
容器内部の残留ガスが少なく極めて安定性の高い周波数
精度が維持できる。最後に前記ケースとステムからなる
耐熱容器のサイズについてふれると、そのサイズは、直
径2mm×長さ6mmとか、さらには直径1.5mm×
長さ4mm程度の小型サイズが可能である。
Next, the stem to which the crystal piece is fixed and the case are left in a high vacuum and high temperature state of 10 −5 to 10 −6 Torv (the temperature of the hatched portion shown by 900 in FIG. 9) and the heat resistant solder plating is performed. In the semi-molten state, the gas existing inside the solder plating is released, and then the temperature is lowered to press the case and the stem under pressure to insert the crystal piece in an airtight container. The crystal unit for temperature detection completed in this way is
There is little residual gas inside the container, and extremely stable frequency accuracy can be maintained. Finally, when I touched on the size of the heat-resistant container consisting of the case and the stem, the size was 2 mm in diameter x 6 mm in length, or even 1.5 mm in diameter.
A small size with a length of about 4 mm is possible.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、水晶
ウェハの切断方位と音叉型形状を有する水晶片の形状寸
法を適切に設定した上で、基本波屈曲振動モードで励振
する電極を形成したこにより、温度検出用水晶振動子の
等価直列共振抵抗値CIが小さくかつその温度に対する
変化が小さく押えられる他スプリアスによる周波数及び
前記CIのデップ現象が発生しない。さらに又、音叉型
形状を有する水晶片をフォトエッチングにより外形加工
した際に発生するヒレの程度を充分に減少させるか又は
一方の腕幅を増減させて前記水晶片基部の振動変位を低
減させることにより、前記CI値の実装状態による変動
を小さく押えて安定度の高い温度検出用水晶振動子を提
供できる。
As described above, according to the present invention, after the cutting direction of the crystal wafer and the shape and size of the crystal piece having the tuning fork shape are appropriately set, the electrode for exciting in the fundamental bending vibration mode is set. Due to the formation, the equivalent series resonance resistance value CI of the temperature detecting crystal resonator is small and its change with respect to temperature is suppressed, and the frequency and the CI depp phenomenon due to spurious do not occur. Furthermore, the degree of fins generated when the crystal piece having a tuning fork shape is externally processed by photo-etching is sufficiently reduced, or one arm width is increased or decreased to reduce the vibration displacement of the crystal piece base. As a result, it is possible to provide a crystal oscillator for temperature detection with a high degree of stability while suppressing the fluctuation of the CI value due to the mounting state.

【0024】又さらには、耐熱性半田メッキを用いて高
温処理中で高真空封止することにより、使用温度範囲が
広く、周波数精度の高い、高精度な温度検出用水晶振動
子が市場に提供できる。
Further, by providing high vacuum sealing in a high temperature process using heat resistant solder plating in a high temperature treatment, a highly accurate temperature detecting crystal unit having a wide operating temperature range and high frequency accuracy is provided to the market. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の温度検出用水晶振動子の一実施例の
断面的構造を示す断面図。
FIG. 1 is a cross-sectional view showing a cross-sectional structure of an embodiment of a temperature detecting crystal resonator of the present invention.

【図2】 本発明の温度検出用水晶振動子の水晶片を形
成する水晶ウェハの切断方位を示す図。
FIG. 2 is a view showing a cutting direction of a crystal wafer forming a crystal piece of the temperature detecting crystal resonator of the present invention.

【図3】 本発明の温度検出用水晶振動子が示すK2
aの特性図。
FIG. 3 is a characteristic diagram of K 2 and a shown by the temperature detecting crystal unit of the present invention.

【図4】 本発明の構成部材である水晶片の腕部断面の
構造を示す断面図。
FIG. 4 is a cross-sectional view showing a structure of an arm section of a crystal piece which is a constituent member of the present invention.

【図5】 ヒレが示す特性図。FIG. 5 is a characteristic diagram showing fins.

【図6】 ヒレが示す他の特性図。FIG. 6 is another characteristic diagram showing fins.

【図7】 本発明の温度検出用水晶振動子が示すモード
チャート。
FIG. 7 is a mode chart showing the temperature detecting crystal unit of the present invention.

【図8】 本発明の温度検出用水晶振動子が示す等価直
列共振抵抗と周波数の温度特性を示す特性図。
FIG. 8 is a characteristic diagram showing the temperature characteristics of the equivalent series resonance resistance and the frequency, which the crystal unit for temperature detection of the present invention shows.

【図9】 本発明の構成部材である耐熱性半田メッキの
有する合金の状態図。
FIG. 9 is a state diagram of an alloy contained in heat resistant solder plating which is a constituent member of the present invention.

【図10】 本発明の構成部材である水晶片が示す振動
モードを示す図。
FIG. 10 is a diagram showing a vibration mode shown by a crystal piece which is a constituent member of the present invention.

【符号の説明】[Explanation of symbols]

100・・・ケース 101・・・音叉型形状を有する水晶片の腕部 103・・・ステム 100 ... Case 101 ... Arm part of crystal piece having tuning fork shape 103 ... Stem

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 α水晶単結晶の電気軸+Xと機械軸+Y
の作る平面を主平面とするZカットウェハを、前記電気
軸+Xの回りに時計方向に電気機械結合係数がほぼ最大
となる範囲の角度である15から25゜の範囲で回転し
てできる板厚80から150μmの水晶ウェハから、前
記水晶ウェハの回転後の+Y軸であるY’軸に平行に腕
の長手方向を有する音叉型形状であって、かつ腕形状の
寸法の有する辺比が(腕幅/腕長)比が0.1から0.
2の水晶片をフォトエッチングによりヒレを減じて外形
加工した後、基本波振動モードにて振動可能なように励
振電極を形成して振動子の等価直列共振抵抗値の温度特
性の頂点温度がほぼ常温(25±15℃)として、耐熱
容器に支持し収納したことを特徴とする温度検出用水晶
振動子。
1. An electric axis + X and a mechanical axis + Y of an α quartz single crystal.
A plate thickness formed by rotating a Z-cut wafer whose main plane is the plane created by the above in the range of 15 to 25 °, which is an angle in the range in which the electromechanical coupling coefficient is substantially maximum, in the clockwise direction around the electric axis + X. From a quartz wafer having a diameter of 80 to 150 μm, a tuning fork type shape having a longitudinal direction of the arm parallel to the Y ′ axis which is the + Y axis after the rotation of the quartz wafer, and the side ratio of the dimension of the arm shape is (arm The width / arm length ratio is 0.1 to 0.
After the fin of crystal No. 2 was processed by photo-etching to reduce the fin shape, the excitation electrode was formed so that it could vibrate in the fundamental vibration mode, and the peak temperature of the temperature characteristic of the equivalent series resonance resistance of the vibrator was almost the same. A temperature detecting crystal unit, which is supported and stored in a heat-resistant container at room temperature (25 ± 15 ° C.).
【請求項2】 音叉型形状を有する水晶片をフォトエッ
チングして外形加工する際に発生するヒレの断面積を、
水晶ウェハの板厚を一辺として等価な腕幅の増分に換算
した場合に、腕幅に対する前記等価な腕幅の比率が5%
以下であることを特徴とする請求項1記載の温度検出用
水晶振動子。
2. A cross-sectional area of a fin generated when a quartz piece having a tuning fork shape is photo-etched for outer shape processing,
When the plate thickness of the quartz wafer is converted into an increment of the arm width equivalent to one side, the ratio of the arm width equivalent to the arm width is 5%.
The crystal resonator for temperature detection according to claim 1, wherein:
【請求項3】 音叉型形状を有する水晶片の一方の腕幅
を他方より増減させて振動の安定性を向上させたことを
特徴とする請求項1記載の温度検出用水晶振動子。
3. The crystal resonator for temperature detection according to claim 1, wherein one arm width of the crystal piece having a tuning fork shape is increased or decreased as compared with the other arm to improve vibration stability.
【請求項4】 耐熱容器を構成するケースとステムの少
なくとも1部に、pbsn半田であってpbの成分が9
0wt%以上の耐熱性半田メッキ処理をほどこすととも
に、前記ステムを貫通するインナリードの少なくとも1
部にも同様な耐熱性半田メッキをほどこして、音叉型形
状を有する水晶片と前記インナリードが前記半田を介し
て固着され、かつ前記ケースと前記ステムが前記半田を
介して圧入結合されたことを特徴とする請求項1記載の
温度検出用水晶振動子。
4. A pbsn solder containing 9 parts of pb in at least a part of a case and a stem constituting a heat-resistant container.
At least one of inner leads penetrating the stem while being subjected to heat-resistant solder plating treatment of 0 wt% or more
The same heat-resistant solder plating is also applied to the portion, the crystal fork having a tuning fork shape and the inner lead are fixed via the solder, and the case and the stem are press-fitted and coupled via the solder. The crystal resonator for temperature detection according to claim 1.
JP4230203A 1987-02-27 1992-08-28 Crystal resonator for temperature detection and method of manufacturing the same Expired - Lifetime JP3010922B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4230203A JP3010922B2 (en) 1992-08-28 1992-08-28 Crystal resonator for temperature detection and method of manufacturing the same
US08/113,558 US5325574A (en) 1987-02-27 1993-08-27 Method of forming a quartz oscillator temperature sensor
US08/268,406 US5607236A (en) 1987-02-27 1994-06-30 Quartz oscillator temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4230203A JP3010922B2 (en) 1992-08-28 1992-08-28 Crystal resonator for temperature detection and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0674834A true JPH0674834A (en) 1994-03-18
JP3010922B2 JP3010922B2 (en) 2000-02-21

Family

ID=16904196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4230203A Expired - Lifetime JP3010922B2 (en) 1987-02-27 1992-08-28 Crystal resonator for temperature detection and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3010922B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023028A1 (en) * 1996-11-19 1998-05-28 Miyota Co., Ltd. Piezoelectric vibrator
WO2007011070A1 (en) * 2005-07-22 2007-01-25 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrator and temperature sensor
WO2016043205A1 (en) * 2014-09-19 2016-03-24 株式会社村田製作所 Resonator and resonance device
CN116735023A (en) * 2023-08-15 2023-09-12 河北远东通信系统工程有限公司 Self-calibration thermometer based on crystal dual-mode resonant frequency

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293413B2 (en) * 2009-06-02 2013-09-18 セイコーエプソン株式会社 Pressure sensor and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023028A1 (en) * 1996-11-19 1998-05-28 Miyota Co., Ltd. Piezoelectric vibrator
US6194816B1 (en) 1996-11-19 2001-02-27 Miyota Co., Ltd. Piezoelectric vibrator
WO2007011070A1 (en) * 2005-07-22 2007-01-25 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrator and temperature sensor
WO2016043205A1 (en) * 2014-09-19 2016-03-24 株式会社村田製作所 Resonator and resonance device
US10715106B2 (en) 2014-09-19 2020-07-14 Murata Manufacturing Co., Ltd. Resonator and resonance device
CN116735023A (en) * 2023-08-15 2023-09-12 河北远东通信系统工程有限公司 Self-calibration thermometer based on crystal dual-mode resonant frequency
CN116735023B (en) * 2023-08-15 2023-10-13 河北远东通信系统工程有限公司 Self-calibration thermometer based on crystal dual-mode resonant frequency

Also Published As

Publication number Publication date
JP3010922B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US7982374B2 (en) Piezoelectric vibrating piece with extended supporting arms
JP5059399B2 (en) Method for manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
US7368861B2 (en) Piezoelectric resonator element and piezoelectric device
JP4594412B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5216288B2 (en) Method for manufacturing piezoelectric vibrating piece, method for manufacturing piezoelectric device
JP4714770B2 (en) Tuning fork type piezoelectric vibrating piece and method for manufacturing tuning fork type piezoelectric vibrating piece
JP5062784B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP2006311088A (en) Piezoelectric resonator element and piezoelectric device
US20160028370A1 (en) Resonator element, manufacturing method for resonator element, resonator, electronic device, and moving object
JP2006311090A (en) Piezoelectric resonator element and piezoelectric device
JP3322153B2 (en) Tuning fork type crystal vibrating piece
JPH0352249B2 (en)
US20070228897A1 (en) Quartz resonator, quartz resonator package, and quartz oscillator
JP5088664B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2010010734A (en) Piezoelectric vibration chip and piezoelectric device
JP2004350015A (en) Crystal oscillating piece and manufacturing method thereof, crystal device utilizing the same, cellular telephone device utilizing crystal device, and electronic equipment utilizing crystal device
JPH0674834A (en) Quartz oscillator for detecting temperature
JP2009152988A (en) Piezoelectric vibration chip, piezoelectric device and manufacturing methods for them
JP5154977B2 (en) Piezoelectric vibrating piece, piezoelectric device, and tuning fork type piezoelectric vibrator frequency adjusting method
JP4680449B2 (en) Piezoelectric device and manufacturing method thereof
JP2010283805A (en) Manufacturing method of manufacturing tuning fork type piezoelectric vibration piece, tuning fork type piezoelectric vibration piece, and piezoelectric vibration device
JP2004304577A (en) Piezoelectric device and gyro sensor, method of manufacturing piezoelectric vibration reed and piezoelectric device, mobile phone using piezoelectric device, and electronic equipment using piezoelectric device
JP5042597B2 (en) Method for manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
JPH06112761A (en) Tortion crystal vibrator
JP2003273703A (en) Quartz vibrator and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121210

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13