JPH0673717B2 - Hollow billet casting method - Google Patents

Hollow billet casting method

Info

Publication number
JPH0673717B2
JPH0673717B2 JP62249382A JP24938287A JPH0673717B2 JP H0673717 B2 JPH0673717 B2 JP H0673717B2 JP 62249382 A JP62249382 A JP 62249382A JP 24938287 A JP24938287 A JP 24938287A JP H0673717 B2 JPH0673717 B2 JP H0673717B2
Authority
JP
Japan
Prior art keywords
hollow
casting
hollow billet
core
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62249382A
Other languages
Japanese (ja)
Other versions
JPH0191947A (en
Inventor
進 名和田
勝三 市川
栄吉 鷺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP62249382A priority Critical patent/JPH0673717B2/en
Publication of JPH0191947A publication Critical patent/JPH0191947A/en
Publication of JPH0673717B2 publication Critical patent/JPH0673717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は中空ビレットの鋳造方法に係わり、特に中空ビ
レットの中空部内壁面が平滑で、且つ中空部内壁面に割
れの発生しない長尺の中空ビレットの連続鋳造方法に関
する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for casting a hollow billet, and particularly to continuous casting of a long hollow billet in which the inner wall surface of the hollow billet is smooth and no cracks occur in the inner wall surface of the hollow billet. Regarding the method.

従来技術 水冷中子又は水冷中子に黒鉛鋳型を直接に配置した中子
を用いる中空ビレットの連続鋳造方法は公知である。
2. Description of the Related Art A continuous casting method for hollow billets using a water-cooled core or a core in which a graphite mold is directly arranged on the water-cooled core is known.

このような方法は、溶湯が水冷中子又は水冷中子に直接
に配置した黒鉛鋳型により強制的に冷却されるため、中
空ビレットの中空部内壁面に鋳造方向に平行な割れを発
生したり、又一旦凝固した部分がエアーギャップによっ
て断熱状態となり、再溶解して表面が凹凸状態になっ
て、平滑な内壁部を得られない欠点があった。
In such a method, since the molten metal is forcibly cooled by the water-cooled core or the graphite mold directly arranged in the water-cooled core, cracks parallel to the casting direction are generated on the inner wall surface of the hollow part of the hollow billet, or The once solidified portion becomes an adiabatic state due to the air gap, is redissolved and the surface becomes uneven, and there is a drawback that a smooth inner wall portion cannot be obtained.

本発明者等は、上述の欠点を排除する為に中子のキャス
ト面を黒鉛又は炭素質材料によって形成し、このような
材料で形成されたキャスト面部体を、中子に設けた水冷
鋳型に断熱材を介して取付けるか、又はこのような水冷
鋳型を用いないで、前述のキャスト面部体を非強制冷却
型とした中子を用いて中空ビレットを鋳造する鋳造方法
を提案した(特開昭61−135452号公報、実開昭60−4693
7号公報参照)。
The present inventors have formed a cast surface of a core by graphite or a carbonaceous material in order to eliminate the above-mentioned defects, and a cast surface member formed of such a material is used as a water-cooled mold provided in the core. A casting method has been proposed in which a hollow billet is cast using a core in which the above-mentioned cast surface body is not forcedly cooled, without being mounted via a heat insulating material or using such a water-cooled mold (Japanese Patent Laid-open No. Sho-61-200). 61-135452 gazette, Shokai 60-4693
(See publication 7).

上述のような非強制冷却型とした中子を用いて中空ビレ
ットを鋳造する鋳造方法による場合には、中子のキャス
ト面に於ける溶湯は中子から強制的に急激な冷却を受け
ることがない為に、中空ビレットの中空部内壁面に鋳造
方向に平行な割れを発生することがなく、又所謂エアー
ギャップの形成による鋳塊の復熱作用がないので、凝固
部の再溶解による表面の凹凸が発生せず、中空部内壁面
の平滑な中空ビレットを得ることが出来る。
When the hollow billet is cast by using the non-forced cooling type core as described above, the molten metal on the casting surface of the core may be forcibly and rapidly cooled by the core. Since there are no cracks parallel to the casting direction on the inner wall surface of the hollow billet, and there is no reheating action of the ingot due to the formation of the so-called air gap, the surface irregularities due to remelting of the solidified portion It is possible to obtain a hollow billet in which the inner wall surface of the hollow portion is smooth without causing

ところが、このような非強制冷却型の中子を用いる鋳造
方法に於ては、鋳込み長さが5−6m程度の長尺中空ビレ
ットを複数本鋳造した場合、その内の幾つかに鋳込み長
さが2−3mを経過した頃からその内壁面に長さが2〜10
0mmの鋳造方向に直角な割れが発生することが見出ださ
れ、このような直角割れを生じた中空ビレットを鋳造し
た中子を観察すると、その中子のキャスト面に溶湯の著
しい付着が観察されて、キャスト面に付着した溶湯が前
述の直角割れを生ずる原因をなすのではないかと考えら
れる新たな問題点が生じたのである。
However, in the casting method using such a non-forced cooling type core, when a plurality of long hollow billets having a casting length of about 5-6 m are cast, the casting length is set to some of them. From 2 to 3m, the length of the inner wall is 2 to 10
It was found that a right-angle crack was generated in the casting direction of 0 mm, and when observing the core cast from the hollow billet with such a right-angle crack, remarkable adhesion of molten metal was observed on the cast surface of the core. As a result, there is a new problem that the molten metal adhering to the cast surface may cause the above-mentioned right-angled crack.

このような現象を本発明者等の知見に基づいて更に説明
すると、溶湯の凝固開始点に於けるキャスト面には、溶
湯の組成、キャスト面部体の材質、キャスト面の表面状
態等によってその作用力の大きさは異なるけれども溶湯
がキャスト面に付着しようとする作用力が働く。
To further explain such a phenomenon based on the findings of the present inventors, the cast surface at the solidification start point of the molten metal, its action depending on the composition of the molten metal, the material of the cast surface member, the surface state of the cast surface, etc. Although the magnitude of the force is different, the action force that the molten metal tries to adhere to the cast surface works.

しかしながら、強制冷却される中子のキャスト面に接触
した溶湯の凝固開始点に於ける冷却速度は大きいので、
中空ビレットの中空部内壁面には上述の作用力よりも大
なる強固な凝固層が直ちに形成されるので、キャスト面
に付着した付着物は鋳造体と共に下方に導出されて行く
が、一方強制冷却されない非強制冷却型の中子のキャス
ト面に接触した溶湯の凝固開始点に於ける冷却速度は遅
く、凝固初期に於ける凝固部の強度が小さいので、この
強度よりもキャスト面に対する付着作用力の方が勝り易
く、キャスト面に付着する溶湯の付着量が増加する傾向
がある。このような付着量がある限度の量を超過する
と、下方に導出される鋳造体との間に発生する剪断力に
対して凝固初期に於ける凝固部の強度が対抗しきれず、
キャスト面に付着する為に下方に導出される鋳造体から
離隔し、鋳造方向に直角な割れが発生するものと考えら
れる。
However, since the cooling rate at the solidification start point of the molten metal that is in contact with the cast surface of the core that is forcibly cooled is high,
Since a strong solidified layer larger than the above-mentioned acting force is immediately formed on the inner wall surface of the hollow billet, the deposit adhered to the cast surface is discharged downward together with the cast body, but is not forcedly cooled. The cooling rate at the solidification start point of the molten metal in contact with the cast surface of the non-forced cooling type core is slow, and the strength of the solidification part at the early stage of solidification is small. It is easier to win, and the amount of molten metal that adheres to the cast surface tends to increase. When the amount of such adhesion exceeds a certain limit amount, the strength of the solidified portion in the early stage of solidification cannot fully oppose the shearing force generated between the cast body and the cast body which is guided downward.
It is considered that, because it adheres to the casting surface, it separates from the cast body that is led out downward, and cracks that are perpendicular to the casting direction occur.

特にこのような現象は、アルミニウム、マグネシウム又
はそれらの合金に著しく発生するものであった。
In particular, such a phenomenon remarkably occurs in aluminum, magnesium or alloys thereof.

本発明者等は中空ビレットの中空部内壁面に発生する上
述のような直角な割れを防止する為に種々検討した結
果、キャスト面に及ぼす溶湯の作用力に対して鋳造中の
凝固開始点に於ける雰囲気が大きく影響しているとの知
見を得、この雰囲気を不活性ガス又は不活性ガスの富化
されたものとすることによって、上述の作用力を極めて
小さくすることが出来、溶湯の付着物発生量を可及的少
量に出来、その結果中空ビレットの中空部内壁面に上述
のような直角割れが発生することが未然に防止出来るこ
とを見出だして、本発明を完成したものである。
As a result of various studies by the present inventors to prevent the above-mentioned right-angled cracks generated on the inner wall surface of the hollow part of the hollow billet, the inventors have found that at the solidification start point during casting with respect to the acting force of the molten metal on the cast surface. It has been found that the atmosphere in which the gas flows is greatly affected, and by making this atmosphere an inert gas or enriched with an inert gas, the above-mentioned action force can be made extremely small, and The present invention has been completed by finding that the amount of kimono generated can be made as small as possible, and as a result, the above-described right-angle cracks can be prevented from occurring on the inner wall surface of the hollow portion of the hollow billet.

発明の目的 従って、本発明の目的は、中空ビレットの中空部内壁面
が平滑で、しかも鋳造方向に平行な割れが発生しないの
みならず、鋳造方向に直角な割れも発生し難い新規な鋳
造方法を提供することである。
Therefore, an object of the present invention is to provide a novel casting method in which not only cracks parallel to the casting direction do not occur even if the inner wall surface of the hollow part of the hollow billet is smooth, and cracks perpendicular to the casting direction do not easily occur. Is to provide.

発明の概要 上述の目的を達成する為に本発明は、上下端開放の鋳型
の中空部の内部に、黒鉛又は炭素質材料から成り、且つ
非強制冷却状態になされたキャスト面部材を含む中子を
配置し、溶湯の凝固開始点を前記キャスト面部体のキャ
スト面上にほぼ一定に維持して中空ビレットを鋳造して
導出するようになす中空ビレットの鋳造方法に於て、前
記中空ビレットの中空部に不活性ガスを供給して不活性
ガス又は不活性ガスの富化された雰囲気となして鋳造を
行うようになしたことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a core including a cast surface member made of graphite or a carbonaceous material inside a hollow portion of a mold having upper and lower ends opened and in a non-forced cooling state. In the method for casting a hollow billet, wherein the solidification start point of the molten metal is cast and led out while maintaining the solidification start point of the molten metal on the casting surface of the casting surface member substantially constant, It is characterized in that an inert gas is supplied to the portion to form an inert gas or an atmosphere enriched with the inert gas, and casting is performed.

こゝで、不活性ガスを中空ビレットの中空部に供給する
には不活性ガスのみを用いて供給するばかりでなく、空
気等のガス体に不活性ガスを富化し、このガスを用いる
ことにより不活性ガスを供給することも出来る。
Here, in order to supply the inert gas to the hollow part of the hollow billet, not only the inert gas is supplied, but the gas body such as air is enriched with the inert gas, and this gas is used. It is also possible to supply an inert gas.

本発明に於ては、前記中空ビレットの中空部内の不活性
ガス富化雰囲気の不活性ガス富化率を空気20容積%に対
し80容積%以上になすのが有利である。
In the present invention, it is advantageous that the inert gas enrichment ratio of the inert gas enriched atmosphere in the hollow portion of the hollow billet is 80% by volume or more with respect to 20% by volume of air.

更に本発明に於ては、前記中空ビレットの中空部内に導
入される不活性ガスの供給を、前記中空ビレットの下端
がピット内水面に到達し、該中空ビレットと前記中子と
前記ピット内水面によって境界される空間が密閉状態に
なった後、該密閉空間と外気圧との差が前記溶湯の静水
圧を超える前に停止させるようになすことが出来る。
Further, in the present invention, the supply of the inert gas introduced into the hollow portion of the hollow billet, the lower end of the hollow billet reaches the water surface in the pit, the hollow billet, the core and the water surface in the pit. After the space bounded by is closed, it can be stopped before the difference between the closed space and the external pressure exceeds the hydrostatic pressure of the molten metal.

更に又本発明に於ては、前記中子に前記中空ビレットの
中空部内の雰囲気を排出する排気孔と、該中子又は中空
ビレットの受台に前記不活性ガスの供給管を設け、前記
中空ビレットの中空部内と外気との圧力差が前記溶湯の
静水圧を超えないような流量で前記不活性ガスを連続的
に前記中空部内に供給することも可能である。
Furthermore, in the present invention, the core is provided with an exhaust hole for discharging the atmosphere in the hollow part of the hollow billet, and a support pipe for the inert gas is provided in a support of the core or the hollow billet, It is also possible to continuously supply the inert gas into the hollow portion at a flow rate such that the pressure difference between the hollow portion of the billet and the outside air does not exceed the hydrostatic pressure of the molten metal.

上述のように本発明に於ては、強制冷却を受けない黒鉛
又は炭素質材料から成るキャスト面部材のキャスト面上
の溶湯凝固開始点(キャスト面部体を取り囲む線状にな
る)を不活性ガス又は不活性ガスの富化された雰囲気と
なすことによって、中空ビレットの中空部内壁面が平滑
で、しかも鋳込み長さが2−3m以上の長い長尺中空ビレ
ットを、その中空部内壁面に鋳造方向に直角な割れを発
生し難い状態で中空ビレットを鋳造することが出来るの
である。
As described above, in the present invention, the starting point of molten metal solidification on the cast surface of the cast surface member made of graphite or carbonaceous material (which becomes a linear shape surrounding the cast surface member) which is not subjected to forced cooling is set to an inert gas. Alternatively, by forming an atmosphere enriched with an inert gas, a long hollow billet with a smooth inner wall surface of the hollow billet and a casting length of 2 to 3 m or more is formed on the inner wall surface of the hollow portion in the casting direction. It is possible to cast a hollow billet in a state where it is difficult to generate a right-angled crack.

ところで、上述の鋳造方向に直角な割れは、非強制冷却
型の中子を用いた場合にアルミニウム、マグネシウム、
又はそれらの合金に顕著に発生するものであって、この
ような溶湯を用いる鋳造に対して、不活性ガスの富化量
を少量であっても増加して行けば、直角割れ防止の効果
は認められるけれども、その富化量を前述のように空気
20容積%に対して80容積%以上になすことによって前述
の直角割れ防止の効果が顕著に生ずるようになるのであ
る。
By the way, the above-mentioned cracks perpendicular to the casting direction are aluminum, magnesium, when a non-forced cooling type core is used,
Or, it occurs remarkably in those alloys, and for casting using such a molten metal, if the amount of inert gas enrichment is increased even if it is small, the effect of preventing right-angle cracking is not Although it is recognized, the enriched amount is
By making the amount 80% by volume or more with respect to 20% by volume, the above-mentioned effect of preventing the right-angled crack becomes remarkable.

又、電解地金の他、溶湯の凝固組織の微細化、或いは脱
滓、脱ガス、マグネシウムの酸化防止等の目的で行われ
る各種溶湯処理の結果、フラックス又は母合金から僅か
ではあるがNaやBeが含有されることがあるが、このよう
なNaやBeが含有されると、キャスト面部材のキャスト面
に溶湯が付着しようとする作用力を助長するので、Na、
Be等のアルミニウム又はマグネシウムよりも酸化し易い
金属を含有する溶湯に対しては、上述した不活性ガス富
化量を前述の80容積%より多くしたガスを使用するのが
望ましい。
Also, in addition to electrolytic metal, as a result of various molten metal treatments for the purpose of refining the solidification structure of the molten metal, or descaling, degassing, and preventing the oxidation of magnesium, Na and Be may be contained, but when such a Na or Be is contained, it promotes the action force of the molten metal to adhere to the cast surface of the cast surface member, so Na,
For a molten metal containing a metal such as Be that is more easily oxidized than aluminum or magnesium, it is desirable to use a gas in which the above-mentioned amount of enriched inert gas is more than 80% by volume.

上述の不活性ガスとはアルミニウム又はマグネシウム、
ナトリウム、ベリリウム等の金属に対して不活性なガス
であればよく、例えばアルゴンガス、窒素ガス、炭酸ガ
ス等を使用することが出来る。
The above-mentioned inert gas is aluminum or magnesium,
Any gas that is inert to metals such as sodium and beryllium may be used, and for example, argon gas, nitrogen gas, carbon dioxide gas, etc. can be used.

以下に添付図面を参照して本発明の方法を詳述する。Hereinafter, the method of the present invention will be described in detail with reference to the accompanying drawings.

第1図は中空ビレットの鋳造に用いる鋳型装置の断面図
で、符号1は円筒形の中空状の上下端開放の水冷鋳型、
20は水冷鋳型1の中空部内に配置され、この水冷鋳型1
に取付けた支持杆15によって支持される中子装置、2は
鋳造方向に直角な方向の断面形状が円形の中子水冷鋳型
で、その上部外周面を断熱材3が包囲している。4は断
熱材3の下方部分の外周面を包囲するように配置された
黒鉛又は炭素質材料から成るキャスト面部体で、中子水
冷鋳型2によって強制冷却を受けないように構成され、
定常状態に於て溶湯の凝固開始点(第2図に符号28で示
す)が来るような位置に配置されている。この凝固開始
点28をキャスト面部材4のキャスト面(第2図に符号25
で示す)上に位置させるには、予備実験により予じめ鋳
造条件を定めておくか、常法により鋳造後湯面6からの
凝固開始点28の深さを測定し、この深さがキャスト面か
ら外れている場合には冷却水量、鋳込み速度等の鋳造条
件を調節することによって容易にキャスト面上に位置さ
せることが出来る。
FIG. 1 is a cross-sectional view of a mold device used for casting a hollow billet, and reference numeral 1 is a cylindrical water-cooled mold with open upper and lower ends,
20 is placed in the hollow part of the water-cooled mold 1,
The core device 2 supported by the support rod 15 attached to the core is a core water-cooled mold having a circular cross-section in the direction perpendicular to the casting direction, and the heat insulating material 3 surrounds the upper outer peripheral surface thereof. Reference numeral 4 is a cast surface member made of graphite or a carbonaceous material arranged so as to surround the outer peripheral surface of the lower portion of the heat insulating material 3, and is configured so as not to be forcibly cooled by the core water-cooled mold 2.
It is arranged at a position where the solidification start point of the molten metal (indicated by reference numeral 28 in FIG. 2) comes in the steady state. The solidification starting point 28 is the casting surface of the casting surface member 4 (reference numeral 25 in FIG. 2).
In order to position it above, the casting conditions are set in advance by preliminary experiments, or the depth of the solidification starting point 28 from the molten metal surface 6 after casting is measured by the usual method, and this depth is the casting value. If it is off the surface, it can be easily positioned on the casting surface by adjusting the casting conditions such as the amount of cooling water and the casting speed.

32は溶湯の受台で、鋳造当初は中子装置20及び水冷鋳型
1によって境界される環状の鋳造路21の下端を閉塞する
位置にあり、鋳造路21に溶湯が注入されて水冷鋳型1及
び中子水冷鋳型2の下端部の外方に露出した冷却部5に
よって冷却されて凝固が進行した後、上述の受台32が順
次下方に下降されて鋳造が連続的に行われるのである。
7及び7′は水冷鋳型1及び中子水冷鋳型2の下方のス
リットより放出される冷却水である。9は不活性ガスの
供給管で、受台32と共に上下方向に運動可能になされて
いて、この供給管によって中空ビレットの中空部(第2
図に符号11で示す)内に前記ガスが導入され、中空部11
内を前記不活性ガス又は不活性ガス富化雰囲気になすの
である。23は鋳造路21に注入される溶湯27の湯面コント
ローラーで、ディップチューブ22及びフロート8によっ
て構成されている。不活性ガスの流れ方向は符号10によ
って示されている。
Reference numeral 32 is a pedestal for the molten metal, which is located at a position where the lower end of an annular casting path 21 bounded by the core device 20 and the water cooling mold 1 is closed at the beginning of casting, and the molten metal is injected into the casting path 21 to After being cooled by the cooling unit 5 exposed to the outside of the lower end of the core water-cooled mold 2 and solidification progresses, the above-described pedestal 32 is sequentially lowered downward to continuously perform casting.
Reference numerals 7 and 7 ′ are cooling water discharged from the slits below the water-cooled mold 1 and the core water-cooled mold 2. Reference numeral 9 denotes an inert gas supply pipe, which is movable in the vertical direction together with the pedestal 32, and by this supply pipe, the hollow portion of the hollow billet (second
The gas is introduced into the inside of the hollow portion 11
The inside is filled with the inert gas or the atmosphere enriched with the inert gas. Reference numeral 23 denotes a molten metal level controller for the molten metal 27 injected into the casting passage 21, which is composed of a dip tube 22 and a float 8. The flow direction of the inert gas is indicated by reference numeral 10.

第2図は第1図に示す中子装置20を用いて中空ビレット
12を鋳造している時の定常状態を示す説明図で、24は溶
湯の凝固開始線を示し、中子側の凝固開始点28がキャス
ト面部材4のキャスト面25上にある。
FIG. 2 shows a hollow billet using the core device 20 shown in FIG.
It is explanatory drawing which shows the steady state at the time of casting 12 and 24 shows the solidification start line of a molten metal, and the solidification start point 28 on the core side exists on the casting surface 25 of the casting surface member 4.

13はピット内冷却水の水面であって、中空ビレット12の
中空部11は、中子装置20と中空ビレット12とこの中空ビ
レット12の中空部内にある水面13′とによって閉塞され
ている。不活性ガスは供給管9を経て鋳造開始と共に中
空ビレット12の中空部11内に供給され、受台32の上端又
は中空ビレット12の下端がピット内水面13に到達し、中
空ビレット12の中空部11が密閉状態になるまでに中空部
11内の空気を不活性ガス又は不活性ガス富化雰囲気とす
るのである。密閉状態となった時点でガスの供給を停止
し、その侭鋳造を続ける。中空部11内は密閉状態にある
為に供給された前記ガスの雰囲気は鋳造の終了まで保持
される。これによってキャスト面上の凝固開始点近傍は
供給された不活性ガス又は不活性ガスを富化された雰囲
気にあり、キャスト面25に働く溶湯の作用力が低下し、
キャスト面25上に付着する付着物の量が減少し、上述し
た鋳造方向に直角な割れの発生が防止されるのである。
前記ガスの供給を、中空部11内の水面13′が少しく下降
し、僅かに正圧になるまで継続し続けることが出来る
が、中空部11内の圧力と外気圧との差が溶湯の静水圧を
超過すると、中空部11内のガスが鋳造路21内を上方に吹
き上がり、正常な鋳造を妨げるので中空部11内の正圧の
値は溶湯の静水圧以下に留める必要がある。
Reference numeral 13 denotes the water surface of the cooling water in the pit, and the hollow portion 11 of the hollow billet 12 is closed by the core device 20, the hollow billet 12, and the water surface 13 'in the hollow portion of the hollow billet 12. The inert gas is supplied into the hollow portion 11 of the hollow billet 12 through the supply pipe 9 at the start of casting, and the upper end of the pedestal 32 or the lower end of the hollow billet 12 reaches the water surface 13 in the pit and the hollow portion of the hollow billet 12 is reached. Hollow part before 11 is sealed
The air in 11 is made an inert gas or an atmosphere enriched with the inert gas. When the airtight state is reached, the gas supply is stopped and the samurai casting is continued. Since the inside of the hollow portion 11 is in a sealed state, the atmosphere of the gas supplied is maintained until the end of casting. As a result, the vicinity of the solidification start point on the cast surface is in the supplied inert gas or the atmosphere enriched with the inert gas, and the action force of the molten metal working on the cast surface 25 is reduced,
The amount of the deposits on the cast surface 25 is reduced, and the above-mentioned cracks perpendicular to the casting direction are prevented from occurring.
The supply of the gas can be continued until the water surface 13 'in the hollow portion 11 is slightly lowered and becomes slightly positive pressure. However, the difference between the pressure in the hollow portion 11 and the external pressure is the static of the molten metal. When the water pressure is exceeded, the gas in the hollow portion 11 blows upward in the casting passage 21 and hinders normal casting, so the value of the positive pressure in the hollow portion 11 must be kept below the hydrostatic pressure of the molten metal.

即ち上述の関係を式で示すと、 ΔHρ>Δhρ 但しこゝで ΔHは第2図に示す溶湯の深さ、 Δhはピット内水面13と中空部11内の水面13′との差、 ρは溶湯の比重、 ρはピット内冷却水の比重、 である。That is, the above-mentioned relation is expressed by an equation, ΔHρ M > Δhρ W, where ΔH is the depth of the molten metal shown in FIG. 2, Δh is the difference between the water surface 13 in the pit and the water surface 13 ′ in the hollow portion 11, ρ M is the specific gravity of the molten metal, and ρ W is the specific gravity of the cooling water in the pit.

第3図は中子水冷鋳型を用いない他の中子装置26を示す
もので、符号3′は断熱材で構成され、水冷鋳型1に取
付けられた支持杆15によって水冷鋳型1の中空部の内部
に支持される中子で、この中子3′の上部には溶湯受槽
29が形成されており、この溶湯受槽29内に湯面コントロ
ーラー23が配置出来るようになっている。16は中空ビレ
ット12の中空部11内の雰囲気排出孔で、中空部11内に導
入される前述の不活性ガスを排出する。このような排出
孔16を設けることによって供給管9より導入されたガス
は中空部11内を満たした後、排出孔16より外部に排出さ
れるので、鋳造の終了時まで連続してガスを供給するこ
とが出来る。勿論このような装置を用いた場合にも、中
空部11内の圧力は前述の関係に保つ必要があるが、第2
図に示された装置を使用する場合よりも供給ガス量の制
御幅を拡大出来る利点がある。
FIG. 3 shows another core device 26 which does not use a core water-cooled mold. Reference numeral 3 ′ is made of a heat insulating material, and a support rod 15 attached to the water-cooled mold 1 serves to fix the hollow part of the water-cooled mold 1. The core is supported inside, and the molten metal receiving tank is on the top of this core 3 '.
29 is formed, and the melt level controller 23 can be arranged in the melt receiving tank 29. Reference numeral 16 denotes an atmosphere discharge hole in the hollow portion 11 of the hollow billet 12, which discharges the above-mentioned inert gas introduced into the hollow portion 11. By providing such a discharge hole 16, the gas introduced from the supply pipe 9 fills the hollow portion 11 and is then discharged to the outside from the discharge hole 16, so that the gas is continuously supplied until the end of casting. You can do it. Of course, even when such a device is used, it is necessary to maintain the pressure in the hollow portion 11 in the above-mentioned relationship.
There is an advantage that the control range of the supply gas amount can be expanded as compared with the case of using the device shown in the figure.

第4図は中子装置に中空部11内雰囲気の排出孔16及びガ
ス供給管9′を設けた中子鋳型3″を含む他の中子装置
30を示す。このように供給管9′を中子装置30に設ける
ことによって装置全体の構造が簡単になる効果が得られ
る。
FIG. 4 shows another core device including a core mold 3 ″ provided with a discharge hole 16 for the atmosphere in the hollow portion 11 and a gas supply pipe 9 ′ in the core device.
Shows 30. By thus providing the core tube 30 with the supply pipe 9 ', the effect of simplifying the structure of the entire apparatus can be obtained.

第5図は断熱材を有しないで黒鉛又は炭素質材料から成
る中子鋳型3を含む他の中子装置の実施例を示す。こ
の中子装置3はガス供給管9′及び排出孔16を備えて
いる。非強制冷却型とする為に中子3の周壁の厚さは
薄くされた中空状部材とされている。第2図、第3図及
び第4図に示された中子装置のように断熱材との複雑な
組合せ構造を必要としないので、装置の製造が容易にな
る利点を有する。
FIG. 5 shows another embodiment of the core device including the core mold 3 made of graphite or carbonaceous material without heat insulating material. The core device 3 includes a gas supply pipe 9'and a discharge hole 16. In order to use the non-forced cooling type, the thickness of the peripheral wall of the core 3 is a hollow member. Since it does not require a complicated combination structure with a heat insulating material like the core device shown in FIGS. 2, 3, and 4, it has an advantage that the device can be easily manufactured.

上述の装置は本発明の方法を説明する為に開示した装置
であって、本発明を限定するものではなく、断面が楕円
形或いは角形等の異形の中空ビレットにも適用出来る。
要するに中子のキャスト面部体が非強制冷却型で構成さ
れており、しかも不活性ガスの供給手段又はこのような
供給手段とガスの排出手段とを備えておればよいことは
上述の説明より理解出来るところである。しかしながら
上述で開示した装置は夫々有利な特徴を有していて、本
発明の方法を実施するに当りこれらの開示装置を用いる
ことが望ましい。
The apparatus described above is an apparatus disclosed for explaining the method of the present invention, and is not intended to limit the present invention, and can be applied to a hollow billet having an irregular cross section such as an ellipse or a square.
In short, it is understood from the above description that the cast surface member of the core is constituted by a non-forced cooling type, and further, it may be provided with an inert gas supply means or such a supply means and a gas discharge means. This is where you can do it. However, the devices disclosed above each have advantageous features, and it is desirable to use these disclosed devices in performing the method of the present invention.

上述のキャスト面部体を形成する黒鉛又は炭素質材料
は、人造黒鉛又は天然黒鉛、或いは無定形炭素をバイン
ダーと共に成形硬化したもので、このような材料で成形
されたキャスト面部体はSiC、Si3N4等のセラミックスを
キャスト面部体として使用した場合に、これらのセラミ
ックス部材よりも耐熱衝撃性に優れ、又鋳肌を平滑にす
ることが出来るので、操業上望ましいものである。
The above-mentioned graphite or carbonaceous material forming the cast face body is artificial graphite or natural graphite, or amorphous carbon molded and cured with a binder, and the cast face body molded with such a material is SiC, Si 3 When ceramics such as N 4 is used as the cast surface member, it has better thermal shock resistance than these ceramic members and can smooth the casting surface, which is desirable in operation.

又、本発明に於ては、黒鉛又は炭素質材料によって形成
された前記キャスト面部体の表面は研磨後ボロンナイト
ライド粉、カーボン粉、カーボンブラック、二硫化モリ
ブデン等の粉末を塗布し、或いはワックス等と混合して
塗布することも出来、このようにすると、潤滑性が向上
して鋳造体の鋳肌を一層美麗なものになし得る効果が得
られる。
Further, in the present invention, the surface of the cast surface member formed of graphite or a carbonaceous material is polished and then coated with powder of boron nitride powder, carbon powder, carbon black, molybdenum disulfide, etc., or wax. It is also possible to apply it by mixing it with the like, and by doing so, the effect of improving the lubricity and making the casting surface of the casting more beautiful can be obtained.

又断熱材としては朝日石綿(株)で製造されているレセ
パル(商品名)、日アスで製造されているルミボード
(商品名)、東芝モノフラックス(株)で製造されてい
るマスロック、或いは比較的厚さの薄いフラックスペー
パー(商品名)等が使用出来るが、特にこれらのものに
限られるものではない。しかしながら、これらのものは
断熱性に優れていて望ましいものである。
As the heat insulating material, Recepal (trade name) manufactured by Asahi Asbestos Co., Lumiboard (trade name) manufactured by Nichias, Mass Rock manufactured by Toshiba Monoflux Co., Ltd., or comparison. Flux paper (trade name) having a thin thickness can be used, but the invention is not limited to these. However, these are desirable because they have excellent heat insulating properties.

発明の実施例 実施例1 第3図に示される鋳型装置を用い、この装置を冷却水の
通過する水冷ジャケット(図示せず)に12個配置して鋳
造を行った。鋳型装置は下記に示す寸法のものであっ
た。
Examples of the Invention Example 1 Using the mold apparatus shown in FIG. 3, 12 pieces of this apparatus were placed in a water cooling jacket (not shown) through which cooling water passed, and casting was performed. The mold equipment had the dimensions shown below.

水冷鋳型1の内径 270mmφ 水冷鋳型1の深さ 80mm キャスト面部体4の材質 黒鉛(表面をバフ研磨した) キャスト面部体4の高さ 40mm キャスト面部体4に於ける鋳造路の厚さ 30mm キャスト面部体4の上方の溶湯受槽部の高さ 60mm 中子を構成する断熱材 レセパル(朝日石綿(株)) 中子に設けたガス排出孔16の内径 10mmφ 上記のキャスト面部体を構成する黒鉛中子をバフ研磨し
て約200℃に加熱し、これに離型剤としてアクアダック
(商品名間隔をおかれたを吹き付け乾燥後した後、鋳造
を行った。
Inner diameter of water-cooled mold 1 270 mm φ Depth of water-cooled mold 1 80 mm Material of cast surface body 4 Graphite (buffed surface) Height of cast surface body 4 40 mm Thickness of casting path in cast surface body 4 30 mm Cast surface portion The height of the molten metal receiving part above the body 4 is 60mm. The heat insulating material that constitutes the core. RECEPAR (Asahi Asbestos Co., Ltd.) The inner diameter of the gas discharge hole 16 provided in the core is 10mmφ. The graphite core that constitutes the cast surface body. Was buffed and heated to about 200 ° C., and an aqua duck (with a product name interval) was sprayed on this as a release agent, dried, and then cast.

このような鋳型装置に於てA5454合金(組成:Mg2.8%、M
n0.5%、Cr0.15%、Al残部)にNa又はBeを含有させたも
の及び含有させないものを用いて鋳造した。
A5454 alloy (composition: Mg2.8%, M
n 0.5%, Cr 0.15%, the balance of Al) with or without Na or Be cast.

鋳造開始と同時に供給管9よりアルゴンガスを鋳型装置
1個当り7/分の割合で連続的に供給し、その侭鋳造
を完了した。
Simultaneously with the start of casting, argon gas was continuously supplied from the supply pipe 9 at a rate of 7 / min per one casting mold device, and the casting for the metal was completed.

鋳造条件を下記に示す。The casting conditions are shown below.

鋳造温度 680-700℃ 鋳造速度 150mm/分 冷却水量 100/分/鋳型 鋳込み長さ 6m このような条件で鋳造した中空ビレットの中空部内壁面
を目視観察した。その結果を第1表に示す。中空ビレッ
トは従来と同様に鋳造方向に平行な割れを生じないで、
且つ中空ビレットの中空部内壁面は平滑であった。
Casting temperature 680-700 ° C Casting speed 150 mm / min Cooling water amount 100 / min / Mold Casting length 6 m The hollow inner wall surface of the hollow billet cast under these conditions was visually observed. The results are shown in Table 1. The hollow billet does not cause cracks parallel to the casting direction as in the past,
Moreover, the inner wall surface of the hollow part of the hollow billet was smooth.

実施例2 第1図に示される鋳型装置を用い、この装置を冷却水の
通過する水冷ジャケット(図示せず)に4個配置して鋳
造を行った。鋳型装置は下記に示す寸法のものであっ
た。
Example 2 Using the casting mold device shown in FIG. 1, four casting devices were placed in a water cooling jacket (not shown) through which cooling water was passed. The mold equipment had the dimensions shown below.

水冷鋳型1の内径 489mmφ 水冷鋳型1の深さ 80mm キャスト面部体4の材質 黒鉛(表面をバフ研磨した) キャスト面部体4の高さ 40mm キャスト面部体4に於ける鋳造路の厚さ 86mm キャスト面部体4の上方の断熱材の高さ 80mm 中子を構成する断熱材 レセパル(朝日石綿(株)) 中子に排出孔無し このようなキャスト面部体を構成する黒鉛中子をバフ研
磨して約200℃に加熱し、離型剤としてアクアダック
(商品名)を吹き付け乾燥した後造を行った。使用した
合金はA60611合金(組成:Mg1.0%、Si0.67%、Fe0.18
%、Cu0.35%、Cr0.12%、Al残部)で、鋳造路へ給湯と
同時にアルゴンガスを鋳型装置1個当り15/分の割合
で供給し、鋳塊の下端がピット内水面に到達した時点で
アルゴンガスの供給を停止したものと、鋳造時にアルゴ
ンガスを供給しないものとの鋳造を行って比較した。
Inner diameter of water-cooled mold 1 489mm φ Depth of water-cooled mold 1 80mm Material of cast face body 4 Graphite (buffed surface) Height of cast face body 4 40mm Thickness of casting path in cast face body 4 86mm Cast face portion Insulation material above the body 4 height 80mm Insulation material that constitutes the core Recepal (Asahi Asbestos Co., Ltd.) No discharge holes in the core The graphite core that composes such cast surface body is buffed to approx. It was heated to 200 ° C, sprayed with Aquadac (trade name) as a release agent, dried, and then manufactured. The alloy used was A60611 alloy (composition: Mg1.0%, Si0.67%, Fe0.18
%, Cu 0.35%, Cr 0.12%, Al balance), argon gas is supplied to the casting channel at the same time as hot water is supplied at a rate of 15 / min per casting mold device, and the lower end of the ingot reaches the water surface in the pit. At that time, the one in which the supply of the argon gas was stopped and the one in which the argon gas was not supplied during the casting were cast and compared.

鋳造条件を下記に示す。The casting conditions are shown below.

鋳造温度 680-700℃ 鋳造速度 70mm/分 冷却水量 100/分/鋳型 鋳込み長さ 4.7m このような条件で鋳造した中空ビレットの中空部内壁面
を目視観察した。その結果、アルゴンガスを供給した中
空ビレットの内面は、鋳造方向に直角の割れ欠陥をまっ
たく生じなかったのに対して、アルゴンガスを供給しな
かったものは直角割れの欠陥を4本のビレットに生じ
た。尚中空ビレットは従来と同様に鋳造方向に平行な割
れを生じないで、且つ中空ビレットの中空部内壁面は平
滑であった。
Casting temperature 680-700 ° C Casting speed 70 mm / min Cooling water amount 100 / min / Mold Casting length 4.7 m The inner wall surface of the hollow part of the hollow billet cast under these conditions was visually observed. As a result, the inner surface of the hollow billet supplied with argon gas did not cause any cracking defects at right angles to the casting direction, whereas those not supplied with argon gas caused the defects of right angle cracking to four billets. occured. As in the conventional case, the hollow billet did not cause cracks parallel to the casting direction, and the inner wall surface of the hollow part of the hollow billet was smooth.

上述の結果より、本発明の方法による時は、従来と同様
に鋳造方向に平行な割れを生じないのみならず、中空ビ
レットの中空部内壁面が平滑なものが得られ、しかも鋳
造方向に直角な割れが発生しなかったことが判る。
From the above results, when the method of the present invention is used, not only cracks parallel to the casting direction do not occur as in the conventional case, but also the hollow inner wall surface of the hollow part of the billet is smooth, and it is perpendicular to the casting direction. It can be seen that no cracks occurred.

発明の効果 上述のように本発明の方法によれば、従来のように中空
ビレットの中空部内壁面に鋳造方向に平行な割れを生じ
ないのみならず、中空ビレットの中空部内壁面が平滑な
ものが得られ、しかも直角な方向の割れが発生しない優
れた効果が得られることが判る。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, not only does the conventional cracks parallel to the casting direction do not occur on the inner wall surface of the hollow billet, but the hollow billet has a smooth inner wall surface. It can be seen that an excellent effect is obtained in which cracks in the direction perpendicular to the surface are not generated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を実施する為の望ましい装置の鋳
造開始当初の状態を示す断面図。 第2図は第1図の装置の鋳造開始後の定常状態を示す断
面図。 第3図は中子水冷鋳型を用いない第1図の装置の変形実
施例を示す断面図。 第4図は第1図の装置の更に他の変形実施例を示す断面
図。 第5図は断熱材を使用しない第1図の装置の他の実施例
を示す断面図。 1……上下端開放の水冷鋳型 2……中子水冷鋳型 3、3″……断熱材 3′……断熱材で構成された中子 3……黒鉛又は炭素質材料の中子 4……キャスト面部体 6……溶湯面 7、7′……冷却水 8……フロート 9、9′……不活性ガス供給管 10……不活性ガスの流れ方向 11……中空ビレットの中空部 12……中空ビレット 13……ピット内水面 13′……中空部11内の水面 15……支持杆 16……排出孔 20……中子装置 21……鋳造路 22……ディップチューブ 23……湯面コントローラー 25……キャスト面 26……中子装置 27……溶湯 28……凝固開始点 29……溶湯受槽 32……受台
FIG. 1 is a cross-sectional view showing a desirable apparatus for carrying out the method of the present invention at the beginning of casting. FIG. 2 is a sectional view showing a steady state of the apparatus of FIG. 1 after the start of casting. FIG. 3 is a sectional view showing a modified embodiment of the apparatus shown in FIG. 1 which does not use a core water-cooled mold. FIG. 4 is a cross-sectional view showing still another modified embodiment of the apparatus shown in FIG. FIG. 5 is a sectional view showing another embodiment of the apparatus of FIG. 1 which does not use a heat insulating material. 1 ... Water-cooled mold with open upper and lower ends 2 ... Core water-cooled mold 3, 3 "... Heat insulating material 3 '... Core made of heat insulating material 3 ... Core of graphite or carbonaceous material 4 ... Cast surface body 6 …… Molten surface 7,7 ′ …… Cooling water 8 …… Float 9,9 ′ …… Inert gas supply pipe 10 …… Inert gas flow direction 11 …… Hollow part of hollow billet 12… … Hollow billet 13 …… Water surface in pit 13 ′ …… Water surface in hollow part 15 …… Support rod 16 …… Discharge hole 20 …… Core device 21 …… Casting path 22 …… Dip tube 23 …… Molten surface Controller 25 …… Cast surface 26 …… Core device 27 …… Molten metal 28 …… Solidification starting point 29 …… Molten metal receiving tank 32 …… Cage stand

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】上下端開放の鋳型の中空部の内部に、黒鉛
又は炭素質材料から成り、且つ非強制冷却状態になされ
たキャスト面部体を含む中子を配置し、 溶湯の凝固開始点を前記キャスト面部体のキャスト面上
にほぼ一定に維持して中空ビレットを鋳造して導出する
ようになす中空ビレットの鋳造方法に於て、 前記中空ビレットの中空部に不活性ガスを供給して不活
性ガス又は不活性ガス富化雰囲気となして鋳造を行う、 ことを特徴とする中空ビレットの半連続鋳造方法。
1. A core containing a cast face body made of graphite or a carbonaceous material and in a non-forced cooling state is disposed inside the hollow part of the mold with the upper and lower ends opened, and the solidification starting point of the molten metal is In a method for casting a hollow billet, in which a hollow billet is cast and led out while being kept substantially constant on the cast surface of the cast surface member, an inert gas is supplied to the hollow portion of the hollow billet to make it inert. A semi-continuous casting method for hollow billets, which comprises casting in an atmosphere enriched with an active gas or an inert gas.
【請求項2】前記中空ビレットの中空部内の不活性ガス
富化雰囲気が、空気20容積%に対して不活性ガスの富化
率を80容積%以上としたことを特徴とする特許請求の範
囲第1項記載の中空ビレットの鋳造方法。
2. The inert gas-enriched atmosphere in the hollow part of the hollow billet is characterized in that the enrichment ratio of the inert gas is 80% by volume or more with respect to 20% by volume of air. The method for casting a hollow billet according to item 1.
【請求項3】前記中空ビレットの中空部内に導入される
不活性ガスの供給を、前記中空ビレットの下端がピット
内水面に到達し、該中空ビレットと前記中子と前記ピッ
ト内水面によって境界される空間が密閉状態になった
後、該密閉空間と外気圧との差(Δh・ρ)が前記溶
湯の静水圧(ΔH・ρ)を超える前に停止させること
を特徴とする特許請求の範囲第1項又は第2項の何れか
1項に記載の中空ビレットの鋳造方法。
3. The supply of the inert gas introduced into the hollow part of the hollow billet is such that the lower end of the hollow billet reaches the water surface in the pit and is bounded by the hollow billet, the core and the water surface in the pit. After the space to be sealed is in a sealed state, it is stopped before the difference (Δh · ρ W ) between the sealed space and the external pressure exceeds the hydrostatic pressure (ΔH · ρ M ) of the molten metal. The method for casting a hollow billet according to any one of the first and second aspects.
【請求項4】前記中子に前記中空ビレットの中空部内の
雰囲気を排出する排気孔と、該中子又は中空ビレットの
受台に前記不活性ガスの供給管を設け、前記中空ビレッ
トの中空部内と外気との圧力差が前記溶湯の静水圧を超
えないような流量で前記不活性ガスを連続的に前記中空
部内に供給することを特徴とする特許請求の範囲第1項
又は第2項の何れか1項に記載の中空ビレットの鋳造方
法。
4. Inside the hollow part of the hollow billet, the core is provided with an exhaust hole for discharging the atmosphere in the hollow part of the hollow billet, and the pedestal of the core or the hollow billet provided with the inert gas supply pipe. 3. The inert gas is continuously supplied into the hollow portion at a flow rate such that the pressure difference between the molten metal and the outside air does not exceed the hydrostatic pressure of the molten metal, according to claim 1 or 2. The method for casting a hollow billet according to any one of claims 1.
JP62249382A 1987-10-02 1987-10-02 Hollow billet casting method Expired - Fee Related JPH0673717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249382A JPH0673717B2 (en) 1987-10-02 1987-10-02 Hollow billet casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249382A JPH0673717B2 (en) 1987-10-02 1987-10-02 Hollow billet casting method

Publications (2)

Publication Number Publication Date
JPH0191947A JPH0191947A (en) 1989-04-11
JPH0673717B2 true JPH0673717B2 (en) 1994-09-21

Family

ID=17192178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249382A Expired - Fee Related JPH0673717B2 (en) 1987-10-02 1987-10-02 Hollow billet casting method

Country Status (1)

Country Link
JP (1) JPH0673717B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747867B2 (en) * 2012-06-08 2015-07-15 新日鐵住金株式会社 Continuous casting method of hollow slab of steel alloy
CN104520030B (en) * 2013-02-04 2018-03-30 美国阿尔美有限公司 Method and apparatus for direct cold shock casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535055U (en) * 1976-06-29 1978-01-18
JPS6072645A (en) * 1983-09-29 1985-04-24 Nippon Light Metal Co Ltd Apparatus for producing hollow billet

Also Published As

Publication number Publication date
JPH0191947A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
US4515204A (en) Continuous metal casting
US7243701B2 (en) Treating molten metals by moving electric arc
JP3247265B2 (en) Metal casting method and apparatus
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
CA1139529A (en) Method for continuous casting of metallic strands at exceptionally high speeds
US3344840A (en) Methods and apparatus for producing metal ingots
US4736789A (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using an oscillating mold assembly
US1892044A (en) Method of casting ingots
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
JPH0673717B2 (en) Hollow billet casting method
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
JPH09220645A (en) Method for lubricating wall of metallic mold for continuous casting and mold therefor
US2060137A (en) Process of refining metals
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
EP0174766B1 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JPH0741389B2 (en) Semi-continuous casting method and casting equipment for ingots
US2759230A (en) Ingot molds provided with a hot-top
US2280833A (en) Treatment of cast metals
JPS5923898B2 (en) Continuous casting method for high silicon aluminum alloy
US3225399A (en) Casting process using borax-silica slag
FI69972B (en) METAL CONTAINER CONTAINER
JPS5829546A (en) Production of large sized steel ingot having no segregation
US20050034840A1 (en) Method and apparatus for stirring and treating continuous and semi continuous metal casting
EP0042995A1 (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using oscillating mold assembly

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees