JPH0673635B2 - Method for producing chitosan-based chelate molding - Google Patents

Method for producing chitosan-based chelate molding

Info

Publication number
JPH0673635B2
JPH0673635B2 JP1134082A JP13408289A JPH0673635B2 JP H0673635 B2 JPH0673635 B2 JP H0673635B2 JP 1134082 A JP1134082 A JP 1134082A JP 13408289 A JP13408289 A JP 13408289A JP H0673635 B2 JPH0673635 B2 JP H0673635B2
Authority
JP
Japan
Prior art keywords
chitosan
molded product
water
polyethyleneimine
reacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1134082A
Other languages
Japanese (ja)
Other versions
JPH03136A (en
Inventor
佳秀 川村
正樹 三橋
Original Assignee
富士紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士紡績株式会社 filed Critical 富士紡績株式会社
Priority to JP1134082A priority Critical patent/JPH0673635B2/en
Publication of JPH03136A publication Critical patent/JPH03136A/en
Publication of JPH0673635B2 publication Critical patent/JPH0673635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質キトサン成形物に分岐ポリエチレンイ
ミンを導入しイオン交換容量を向上させた後、金属配位
基としてのイミノジ酢酸を導入することにより得られる
キトサン系キレート成形物の製造方法に関するものであ
る。本発明で得られるキトサン系キレート成形物は汎用
性キレート樹脂として各種金属の吸着,回収に利用する
のに好適なもので、特に使用pHが低い酸性域でも各種金
属に対する吸着親和性が大きく、キレート能力に優れた
キレート成形物である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention introduces branched polyethyleneimine into a porous chitosan molded article to improve the ion exchange capacity, and then introduces iminodiacetic acid as a metal coordinating group. The present invention relates to a method for producing a chitosan-based chelate molded product obtained by the method. The chitosan-based chelate molded product obtained in the present invention is suitable for use as a versatile chelate resin for adsorption and recovery of various metals, and has a large adsorption affinity for various metals even in an acidic region where the pH is low, It is a chelate molded product with excellent ability.

〔従来の技術〕[Conventional technology]

本出願人は、特願昭63-198613号(特開平2-48044号)で
多孔質キトサン成形物に脂肪族ポリアルコールのグリシ
ジルエーテルを反応させ、更にポリエチレンイミンを導
入させることにより、極めて高いイオン交換容量を有す
る陰イオン交換キトサン成形物を製造する方法を提案し
た。該成形物は陰イオン交換能のみならず金属捕集能に
優れ、極めて高能率に金属を吸着回収できるものであ
る。更に金属との錯体を形成する一級,二級,三級アミ
ンを多数具備しているので、一度吸着した金属が酸性水
溶液中で容易に溶離し、従ってpHの調整による金属の分
離精製用成形物として好適である。
The applicant of the present invention has disclosed that, in Japanese Patent Application No. 63-198613 (Japanese Patent Laid-Open No. 2-48044), a porous chitosan molded product is reacted with a glycidyl ether of an aliphatic polyalcohol, and then polyethyleneimine is introduced to obtain an extremely high ion content. A method for producing anion exchange chitosan moldings with exchange capacity was proposed. The molded product is excellent not only in anion exchange capacity but also in metal collection capacity, and is capable of adsorbing and recovering metal with extremely high efficiency. Furthermore, since it has a large number of primary, secondary, and tertiary amines that form a complex with a metal, the once adsorbed metal easily elutes in an acidic aqueous solution, and therefore a molded article for separation and purification of the metal by adjusting the pH. Is suitable as

又、本出願人は、特願平1-51089号(特開平2-229830
号)と特願平1-51090号(特開平2-229831号)において
上述の如くして得られたキトサン成形物を極性溶媒中で
芳香族ポリカルボン酸の酸無水物を反応させるか、更に
これに無水酢酸を反応させることによりイットリウム,
インジュム等の稀少金属を吸着するキトサン系キレート
樹脂の製造方法を開示した。
In addition, the present applicant has filed Japanese Patent Application No. 1-51089 (Japanese Patent Laid-Open No. 2-229830).
No. 1) and Japanese Patent Application No. 1-51090 (JP-A No. 2-229831), the chitosan molded product obtained as described above is reacted with an acid anhydride of an aromatic polycarboxylic acid in a polar solvent, or By reacting this with acetic anhydride, yttrium,
A method for producing a chitosan-based chelate resin that adsorbs a rare metal such as indium has been disclosed.

しかしながら、上記の何れの方法で得られたキトサン系
成形物も弱酸性水溶液により容易に金属を溶離し、分離
精製用としては好適であるが、更に強い酸性水溶液中の
金属イオンを吸着,回収することを目的として使用する
のには不適なものであった。
However, the chitosan-based molded product obtained by any of the above methods easily elutes a metal with a weak acidic aqueous solution and is suitable for separation and purification, but adsorbs and recovers metal ions in a stronger acidic aqueous solution. It was unsuitable for use for that purpose.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、多孔質キトサン成形物に分岐ポリエチレンイ
ミンを導入し交換容量を向上せしめた後、金属イオンと
強固な錯体を形成するイミノジ酢酸を金属配位基として
導入することにより、使用pHが低い領域でも各種金属に
対する吸着親和性を大きくし、強い酸性条件下でも各種
金属イオンの吸着,回収に優れた能力を発揮するような
されるものである。
The present invention, after introducing a branched polyethyleneimine into the porous chitosan molded article to improve the exchange capacity, by introducing iminodiacetic acid that forms a strong complex with a metal ion as a metal coordination group, the use pH is low. Even in the range, it has a large adsorption affinity for various metals, and exhibits excellent ability to adsorb and recover various metal ions even under strong acidic conditions.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、多孔質キトサン成形物に脂肪族ポリアルコー
ルのグリシジルエーテルを反応させ、エピクロロヒドリ
ンを反応させるか或いは反応させずに、次いでポリエチ
レンイミンを反応後、エピクロロヒドリンを反応させ、
更にイミノジ酢酸と反応後、無水酢酸を反応させてキト
サン系キレート成形物を製造する方法である。
The present invention, a porous chitosan molded article is reacted with a glycidyl ether of an aliphatic polyalcohol, with or without reaction with epichlorohydrin, then with polyethyleneimine, then with epichlorohydrin,
Further, it is a method for producing a chitosan-based chelate molded product by reacting with iminodiacetic acid and then with acetic anhydride.

本発明において多孔質キトサン成形物に脂肪族ポリアル
コールのグリシジルエーテルを反応させた後、ポリエチ
レンイミンを反応させる場合、ポリエチレンイミンとの
反応前にエピクロロヒドリンを反応させることは必ずし
も必要ではないが、この工程を加えることによりイオン
交換容量を、より増加させることができる。
After reacting the glycidyl ether of the aliphatic polyalcohol with the porous chitosan molded product in the present invention, when reacting with polyethyleneimine, it is not always necessary to react with epichlorohydrin before the reaction with polyethyleneimine. The ion exchange capacity can be further increased by adding this step.

本発明に用いる多孔質キトサン成形物の製造には、平均
分子量に10,000〜230,000の低分子量キトサンが用いら
れる。該低分子量キトサンを酢酸,ジクロル酢酸,蟻酸
の単独又は混合物の水溶液に溶解させ、キトサン酸性水
溶液とする。キトサン酸性水溶液中のキトサンの濃度は
2〜20%(重量%)で取り扱い易い範囲で自由に選択さ
れる。キトサンを再生して多孔質キトサン成形物を得る
ためには、例えば孔径0.1〜0.25mmφのノズルより圧力
下で塩基性凝固浴中に該キトサン酸性水溶液を一定量づ
つ落下させることにより多孔質粒状キトサンが得られ、
又、キトサン酸性水溶液を孔径0.1〜0.25mmφのノズル
より定量ポンプで塩基性凝固浴中に押し出し、紡出させ
て再生させればキトサン繊維が、また、塩基性凝固浴中
にフィルム状に押し出し再生させると、キトサンフィル
ムのキトサン成形物が得られる。塩基性凝固浴中に加え
られる塩基性物質としては、水酸化ナトリウム,水酸化
カリウム,炭酸ナトリウム,炭酸カリウム,アンモニ
ア,エチレンジアミン等が用いられ、塩基性溶液とする
には水、又はメチノール,エタノール等の極性を有する
アルコール類、又は水とアルコールの混合物を上述の塩
基性物質に加えて使用する。上記の如くして得られたキ
トサン成形物は、多数の細孔を具備する細孔質キトサン
成形体である。
The low molecular weight chitosan having an average molecular weight of 10,000 to 230,000 is used for producing the porous chitosan molded product used in the present invention. The low molecular weight chitosan is dissolved in an aqueous solution of acetic acid, dichloroacetic acid, formic acid alone or in a mixture to obtain a chitosan acidic aqueous solution. The concentration of chitosan in the chitosan acidic aqueous solution is 2 to 20% (wt%), and can be freely selected within a range that is easy to handle. In order to regenerate chitosan to obtain a porous chitosan molded article, for example, porous granular chitosan is prepared by dropping the chitosan acidic aqueous solution into the basic coagulation bath under pressure from a nozzle having a pore size of 0.1 to 0.25 mmφ. Is obtained,
Also, chitosan acidic aqueous solution is extruded from a nozzle with a pore size of 0.1 to 0.25 mmφ into a basic coagulation bath with a metering pump, spun and regenerated to produce chitosan fibers, and also extruded into a film in the basic coagulation bath for regeneration. Then, a chitosan molded product of a chitosan film is obtained. As the basic substance added to the basic coagulation bath, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, ethylenediamine or the like is used, and water, methinol, ethanol or the like is used as a basic solution. The polar alcohols or the mixture of water and alcohol are used in addition to the above-mentioned basic substance. The chitosan molded product obtained as described above is a porous chitosan molded product having a large number of pores.

本発明方法においては、前述の如くして得られた多孔質
キトサン成形物に、先ず、ポリエチレンイミンを導入す
る。該導入方法として、多孔質キトサン成形物のアミノ
基に対し脂肪族ポリアルコールのグリシジルエーテルを
反応させ、キトサン分子間に架橋反応を行なうと同時に
キトサンのアミノ基にエポキシ基を導入し活性化を行な
う。次いでポリエチレンイミンを反応させるが、上記の
ようにイオン交換容量を増加させるために、脂肪族ポリ
アルコールのグリシジルエーテルとの反応後、エピクロ
ロヒドリンと反応させた後にポリエチレンイミンを反応
させてもよい。
In the method of the present invention, polyethyleneimine is first introduced into the porous chitosan molded product obtained as described above. As the introduction method, a glycidyl ether of an aliphatic polyalcohol is reacted with an amino group of a porous chitosan molded product to carry out a cross-linking reaction between chitosan molecules and at the same time introduce an epoxy group into the amino group of chitosan for activation. . Polyethyleneimine is then reacted, but in order to increase the ion-exchange capacity as described above, after reaction with the glycidyl ether of the aliphatic polyalcohol, it may be reacted with epichlorohydrin and then with polyethyleneimine. .

脂肪族ポリアルコールのグリシジルエーテルとしては、
ポリエチレングリコールジグリシジルエーテル及びアル
キレングリコールグリシジルエーテルを用いる。ポリエ
チレングリコールジグリシジルエーテルとしては、エチ
レングルコールジグリシジルエーテル,ジエチレングリ
コールジグリシジルエーテル,トリエチレングリコール
ジグリシジルエーテル等が、又、アルキレングリコール
ジグリシジルエーテルとしては、トリメチレングリコー
ルジグリシジルエーテル,テトラメチレングリコールジ
グリシジルエーテル,ヘキサメチレングルコールジグリ
シジルエーテル等が挙げられる。
As the glycidyl ether of aliphatic polyalcohol,
Polyethylene glycol diglycidyl ether and alkylene glycol glycidyl ether are used. Examples of the polyethylene glycol diglycidyl ether include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, and the alkylene glycol diglycidyl ether includes trimethylene glycol diglycidyl ether and tetramethylene glycol diglycidyl ether. Examples thereof include glycidyl ether and hexamethylene glycol diglycidyl ether.

多孔質キトサン成形物と脂肪族ポリアルコールのグリシ
ジルエーテルとの反応は、水溶液中で20〜100℃、好ま
しくは25〜90℃で1〜24時間ゆるやかな攪拌下で行なわ
れ、脂肪族ポリアルコールのグリシジルエーテルが水に
対する溶解度が低いときはメタノール,エタノール,n−
プロパノール,イソプロピルアルコール等の極性溶媒を
添加してもよい。
The reaction between the porous chitosan molded product and the glycidyl ether of the aliphatic polyalcohol is carried out in an aqueous solution at 20 to 100 ° C., preferably 25 to 90 ° C. for 1 to 24 hours under mild stirring to obtain the aliphatic polyalcohol. When glycidyl ether has low solubility in water, methanol, ethanol, n-
A polar solvent such as propanol or isopropyl alcohol may be added.

次いで反応させるポリエチレンイミンとしては特に制限
はないが、次工程でのエピクロロヒドリンを効率よく導
入するためには一級アミンの含有量が出来るだけ多いも
のが好ましい。又、分子量は300〜100,000の範囲のもの
が使用されるが、低分子量の場合、ポリエチレンイミン
の分子鎖が短いためにイオン交換容量が余り向上しない
ので、必要なイオン交換容量に応じて適当な分子量のも
のを選択すればよい。ポリエチレンイミンとの反応は脂
肪族ポリアルコールのグリシジルエーテルを反応させた
多孔質キトサン成形物を充分水洗した後に、水溶液中で
5〜90℃、好ましくは10〜80℃で1〜48時間ゆるやかに
攪拌することにより行われる。高分子量のポリエチレン
イミンの場合、多孔質キトサン成形物の内部に充分拡散
させないと反応し難いため、所望されるイオン交換容量
に応じてポリエチレンイミンの添加量,温度,時間を選
択することが重要である。反応終了後充分水洗を行なっ
てイオン交換容量に優れた多孔質キトサン成形体を得
る。
The polyethyleneimine to be subsequently reacted is not particularly limited, but in order to efficiently introduce epichlorohydrin in the next step, one having as much primary amine content as possible is preferable. Further, the molecular weight is used in the range of 300 to 100,000, but in the case of low molecular weight, the ion exchange capacity does not improve so much because the molecular chain of polyethyleneimine is short, so it is appropriate depending on the required ion exchange capacity. The molecular weight may be selected. The reaction with polyethyleneimine is to wash the porous chitosan molded product obtained by reacting the glycidyl ether of an aliphatic polyalcohol thoroughly with water, and then gently stir in an aqueous solution at 5 to 90 ° C, preferably 10 to 80 ° C for 1 to 48 hours. It is done by doing. In the case of high molecular weight polyethyleneimine, it is difficult to react unless it is sufficiently diffused inside the porous chitosan molded product, so it is important to select the addition amount, temperature and time of polyethyleneimine according to the desired ion exchange capacity. is there. After the completion of the reaction, the product is thoroughly washed with water to obtain a porous chitosan molded product having an excellent ion exchange capacity.

一方、前記のように脂肪族ポリアルコールのグリシジル
エーテルを反応させた多孔質キトサン成形物にポリエチ
レンイミンとの反応に先立ってエピクロロヒドリンを反
応させる場合には、メタノール,エタノール,n−プロパ
ノール,イソプロピルアルコール等の極性溶媒中で20〜
100℃、好ましくは25〜90℃で1〜24時間ゆるやかに攪
拌しながらエピクロロヒドリンを反応させる。次いで、
ポリエチレンイミンとの反応は上述の方法で行なえばよ
い。
On the other hand, in the case where epichlorohydrin is reacted with the porous chitosan molded product obtained by reacting the glycidyl ether of the aliphatic polyalcohol as described above prior to the reaction with polyethyleneimine, methanol, ethanol, n-propanol, 20 ~ in polar solvent such as isopropyl alcohol
The epichlorohydrin is reacted with gentle stirring at 100 ° C, preferably 25-90 ° C for 1-24 hours. Then
The reaction with polyethyleneimine may be performed by the method described above.

次に、上記のようにポリエチレンイミンを反応させた多
孔質キトサン成形物にエピクロロヒドリンを反応させ、
ポリエチレンイミンの活性化を行なう。この反応は、メ
タノール,エタノール,n−プロパノール,イソプロピル
アルコール等の極性溶媒中で20〜100℃、好ましくは25
〜90℃で1〜24時間ゆるやかに攪拌しながら行なう。更
に上述の如くして得られた活性化された多孔質キトサン
成形物に対し、ポリエチレンイミン導入後のイオン交換
容量の0.1〜10当量のイミノジ酢酸を水溶液中で10〜90
℃、1〜24時間ゆるやかに攪拌しながら反応させる。こ
のとき水溶液のpHは中性からアルカリ性域に保つことが
好ましい。反応終了後、充分水洗し未反応のイミノジ酢
酸を除去する。
Next, epichlorohydrin is reacted with the porous chitosan molded product obtained by reacting polyethyleneimine as described above,
Activates polyethyleneimine. This reaction is carried out in a polar solvent such as methanol, ethanol, n-propanol or isopropyl alcohol at 20 to 100 ° C, preferably 25
Gently stir at ~ 90 ° C for 1-24 hours with gentle stirring. Further, with respect to the activated porous chitosan molded product obtained as described above, 0.1 to 10 equivalents of iminodiacetic acid, which is the ion exchange capacity after introduction of polyethyleneimine, is added in an aqueous solution to 10 to 90%.
The reaction is carried out at ℃ for 1 to 24 hours with gentle stirring. At this time, the pH of the aqueous solution is preferably maintained in the neutral to alkaline range. After completion of the reaction, the unreacted iminodiacetic acid is removed by washing thoroughly with water.

次に、得られた多孔質キトサン成形物1容に対し、ポリ
エチレンイミンの反応時に用いられた極性溶媒を1〜5
容加えて、残存するイオン交換容量に対し大過剰量の無
水酢酸を加えて、10〜50℃で1〜48時間反応させ、用い
た極性溶媒で未反応の無水酢酸を除去した後、充分水洗
して本発明のキトサン系キレート成形物が得られる。
Next, 1 to 5 parts of the obtained porous chitosan molded product was mixed with 1 to 5 parts of the polar solvent used during the reaction of polyethyleneimine.
In addition, add a large excess amount of acetic anhydride to the remaining ion exchange capacity, react at 10 to 50 ° C for 1 to 48 hours, remove unreacted acetic anhydride with the polar solvent used, and then wash thoroughly with water. Thus, the chitosan-based chelate molded product of the present invention is obtained.

〔実施例〕〔Example〕

以下本発明を実施例によって詳細に説明するが、本発明
は実施例記載の範囲に限定されるものではない。尚、イ
オン交換容量,圧縮弾性率,金属イオンの吸着量は次の
方法で測定した。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the scope described in the Examples. The ion exchange capacity, compressive modulus, and metal ion adsorption amount were measured by the following methods.

陰イオン交換容量 試料約50mlをカラムにつめ1N−NaOH 1をSV50で通液
後、脱イオン水で中性になるまで充分水洗する。メスシ
リンダーでタッピング法により正確に30ml秤り、空気中
の炭酸ガスを吸収させないように注意しながら脱水後、
1/5N−HCl 500mlに投入してゆるやかに攪拌しながら24
時間放置する。この上澄液を試験液とし10ml採取し、フ
ェノールフタレイン溶液を指示薬として1/10−NaOHで中
和滴定を行なって次式で陰イオン交換容量(CTV)を求
めた。
Anion exchange capacity Approximately 50 ml of sample is packed in a column and 1N-NaOH 1 is passed through with SV50, and then washed with deionized water until it becomes neutral. Accurately weigh 30 ml with a graduated cylinder by the tapping method, after dehydrating while being careful not to absorb carbon dioxide in the air,
Add to 1 / 5N-HCl 500ml and gently stir 24
Leave for hours. This supernatant was used as a test solution and 10 ml was sampled. Neutralization titration was performed with 1 / 10-NaOH using a phenolphthalein solution as an indicator, and the anion exchange capacity (CTV) was determined by the following formula.

a;試験液10mlを中和するに要した 1/10N−NaOH量 b;試料を入れる前の1/5N−HCl 10mlを中和するに要した
1/10N−NaOH量 f1;1/10N−NaOHの力価 陽イオン交換容量 試料約50mlをカラムにつめ1N−HNO31をSV50で通液
後、脱イオン水で中性になるまで充分水洗する。メスシ
リンダーでタッピング法により正確に30ml秤り、脱水後
1/5N−NaOH 500ml中に投入してゆるやかに攪拌しながら
24時間放置する。この上澄液を試験液とし10ml採取し、
メチルレッド,ブロムクレゾールグリーン混合液を指示
薬として1/10N−H2SO4で中和滴定を行なって次式で陽イ
オン交換容量(CTV)を求めた。
a; 1/10 N-NaOH amount required to neutralize 10 ml of test solution b; Necessary to neutralize 10 ml of 1/5 N-HCl before adding sample
1 / 10N-NaOH amount f 1 ; 1 / 10N-NaOH titer Cation exchange capacity Approximately 50 ml of sample is packed in a column, 1N-HNO 3 1 is passed through SV50, and then deionized water is sufficient to neutralize. Wash with water. Accurately weigh 30 ml with a graduated cylinder by the tapping method and after dehydration
Add to 500 ml of 1 / 5N-NaOH and gently stir.
Leave for 24 hours. 10 ml of this supernatant was used as a test solution,
Methyl red was performed to neutralization titration with 1 / 10N-H 2 SO 4 and bromocresol green mixture as an indicator calculated cation exchange capacity (CTV) by the following equation.

c;試験液10mlを中和するに要した 1/10N−H2SO4量 d;試料を入れる前の1/5N−NaOH10mlを中和するに要した
1/10N−H2SO4量 f2;1/10N−H2SO4の力価 圧縮弾性率試験 レオメーターNRM−2010J−CW(不動工業(株)製)を用
い直径3.5mmφ,深さ2mmのサンプルアダプターに試料を
詰め、直径3.0mmφの棒を2cm/minの速度で0.2mm押し込
んだ時の圧縮強度を弾性率として測定した。
c; required to neutralize the previous 1 / 5N-NaOH10ml placing samples; 1 / 10N-H 2 SO 4 amount d required for neutralizing the test solution 10ml
1 / 10N-H 2 SO 4 amount f 2; 1 / 10N-H 2 SO 4 titers compressive modulus test Rheometer NRM-2010J-CW diameter using (immobility Industry Co., Ltd.) 3.5Mmfai, depth The sample was packed in a 2 mm sample adapter, and a compressive strength when a rod having a diameter of 3.0 mm was pushed 0.2 mm at a speed of 2 cm / min was measured as an elastic modulus.

比表面積 比表面積測定装置を用いて、BET法で測定した。Specific surface area It was measured by the BET method using a specific surface area measuring device.

細孔径 成形物を凍結乾燥後、走査形電子顕微鏡で測定した。Pore size The molded product was freeze-dried and then measured with a scanning electron microscope.

金属イオン濃度 濃度1,000ppmの原子吸光用金属標準液を純水で稀釈し、
0.1Mのビス(2−ヒドロキシエチル),イミノートリス
(ヒドロキシメチル)メタン水溶液を適宜加え、pHを所
定の値に調整することにより濃度100ppmの試験液を調製
した。該試験液80mlに樹脂1mを加え、25℃で3日間ゆる
やかに攪拌後、プラズマ発光分光光度計(セイコー電子
工業(株)SPS−7000)で吸着残液中の金属イオン濃度
を測定した。
Dilute the metal standard for atomic absorption with a metal ion concentration of 1,000 ppm with pure water,
A test solution having a concentration of 100 ppm was prepared by appropriately adding a 0.1 M aqueous solution of bis (2-hydroxyethyl) and iminotris (hydroxymethyl) methane to adjust the pH to a predetermined value. A resin (1 m) was added to 80 ml of the test solution, and the mixture was gently stirred at 25 ° C. for 3 days, and then the metal ion concentration in the adsorption residual liquid was measured by a plasma emission spectrophotometer (Seiko Denshi Kogyo SPS-7000).

実施例1. 脱アセチル化度80%,平均分子量48,000のキトサン78g
を、3.9%酢酸水溶液922gに溶解した。該水溶液を圧縮
空気と共に吐出し、6.5%NaOH,20%エタノール,73.5%
水よりなる混合水溶液中に滴下せしめ凝固再生し、中性
になるまで充分水洗して平均粒径0.3mmφの多孔質粒状
キトサン700ml(湿潤)を得た。得られた多孔質粒状キ
トサン700ml(湿潤)に水700mlとエチレングリコールジ
グリシジルエーテル70gを加えて60℃で1時間反応させ
た。反応終了後、充分水洗する。ポリエチレンイミン
(SP−200,平均分子量10,000,日本触媒化学工業(株)
製)180gを水420gに溶解し、上記のエチレングリコール
ジグリシジルエーテルを反応させた多孔質粒体状キトサ
ン600mlを加え、25℃で24時間ゆるやかに攪拌後、70℃
に昇温した後3時間攪拌反応させた。反応終了後、充分
水洗し未反応のポリエチレンイミンを除去した。陰イオ
ン交換容量を測定したところ、1.4meq/mlの高い交換容
量を有するポリエチレンイミンを導入した多孔質キトサ
ン粒状成形物を得た。
Example 1. 78 g of chitosan having a deacetylation degree of 80% and an average molecular weight of 48,000
Was dissolved in 922 g of a 3.9% acetic acid aqueous solution. The aqueous solution was discharged together with compressed air, 6.5% NaOH, 20% ethanol, 73.5%
The mixture was dropped into a mixed aqueous solution of water, coagulated and regenerated, and sufficiently washed with water until it became neutral to obtain 700 ml (wet) of porous granular chitosan having an average particle diameter of 0.3 mmφ. 700 ml of water and 70 g of ethylene glycol diglycidyl ether were added to 700 ml (wet) of the obtained porous granular chitosan, and the mixture was reacted at 60 ° C for 1 hour. After completion of the reaction, it is washed thoroughly with water. Polyethyleneimine (SP-200, average molecular weight 10,000, Nippon Shokubai Chemical Industry Co., Ltd.)
180 g of water was dissolved in 420 g of water, and 600 ml of porous granular chitosan obtained by reacting the above ethylene glycol diglycidyl ether was added, and after gently stirring at 25 ° C for 24 hours, 70 ° C.
After the temperature was raised to 3, the reaction was stirred for 3 hours. After completion of the reaction, unreacted polyethyleneimine was removed by sufficiently washing with water. When the anion exchange capacity was measured, a porous chitosan granular molded product into which polyethyleneimine was introduced having a high exchange capacity of 1.4 meq / ml was obtained.

該成形物に含まれる水をイソプロピルアルコールで充分
置換し、成形物500mlに対しエピクロロヒドリン194g,水
250g,イソプロピルアルコール250gを含む水溶液に入
れ、50℃で2時間反応させた。未反応のエピクロロヒド
リンをイソプロピルアルコールで充分除去後、水洗し、
イソプロピルアルコールを除去した。
The water contained in the molded product was sufficiently replaced with isopropyl alcohol, and 194 g of epichlorohydrin and water were added to 500 ml of the molded product.
The mixture was placed in an aqueous solution containing 250 g and 250 g of isopropyl alcohol and reacted at 50 ° C. for 2 hours. After sufficiently removing unreacted epichlorohydrin with isopropyl alcohol, washing with water,
Isopropyl alcohol was removed.

該成形物400mlをイミノジ酢酸149g,水400ml中に入れ、5
0%NaOHでpH7.0〜8.0に調整しながら70℃で2時間攪拌
反応させた。
400 ml of the molded product was placed in 149 g of iminodiacetic acid and 400 ml of water,
While adjusting the pH to 7.0 to 8.0 with 0% NaOH, the mixture was reacted with stirring at 70 ° C for 2 hours.

水洗し未反応のイミノジ酢酸を充分除去した後、成形物
に含まれる水をエタノールに置換した後、無水酢酸57.2
g(大過剰量)を加え、室温で24時間軽く攪拌しながら
反応させた。未反応の無水酢酸をエタネールで充分除去
した後、水洗し、キトサン系キレート成形物を得た(試
料A)。陽イオン交換容量,圧縮弾性率,比表面積,細
孔径の測定結果を第1表に示した。
After sufficiently washing unreacted iminodiacetic acid by washing with water, after replacing the water contained in the molded product with ethanol, acetic anhydride 57.2
g (large excess amount) was added, and the mixture was reacted at room temperature for 24 hours with light stirring. After unreacted acetic anhydride was sufficiently removed with ethane, the product was washed with water to obtain a chitosan-based chelate molded product (Sample A). Table 1 shows the measurement results of cation exchange capacity, compressive elastic modulus, specific surface area, and pore size.

実施例2. 脱アセチル化度75%,平均分子量48,000のキトサン78g
を3.9%酢酸水溶液922gに溶解した。該水溶液を圧縮空
気と共に吐出し、6.5%NaOH,20%エタノール,73.5%水
よりなる混合水溶液中に滴下せしめ凝固再生し、中性に
なるまで充分水洗して平均粒径0.3mmφの多孔質粒状キ
トサン700ml(湿潤)を得た。得られた多孔質粒状キト
サン700ml(湿潤)に水700mlとエタレングリコールジグ
リシジルエーテル3.8gを加えて80℃で2時間反応させた
後、充分水洗する。次いで50%イソプロピルアルコール
水溶液中でエピクロロヒドリン124gを50℃,2時間反応さ
せ、充分水洗後、ポリエチレンイミン(SP−200,平均分
子量10,000,日本触媒化学工業(株)製)180gを水420g
に溶解し、上記のエピクロロヒドリンを反応させた多孔
質粒状キトサン600mlを加え、25℃で24時間ゆるやかに
攪拌後、70℃に昇温した後3時間攪拌反応させた。反応
終了後、充分水洗し未反応のポリエチレンイミンを除去
した。陰イオン交換容量を測定したところ、1.7meq/ml
の高い交換容量を有するポリエチレンイミンを導入した
多孔質キトサン粒状成形物を得た。
Example 2. 78 g of chitosan having a deacetylation degree of 75% and an average molecular weight of 48,000
Was dissolved in 922 g of a 3.9% acetic acid aqueous solution. The aqueous solution was discharged together with compressed air, dropped into a mixed aqueous solution of 6.5% NaOH, 20% ethanol, and 73.5% water to coagulate and regenerate, and washed sufficiently with water until neutral and then porous particles having an average particle diameter of 0.3 mmφ. Obtained 700 ml (wet) of chitosan. To 700 ml (wet) of the obtained porous granular chitosan, 700 ml of water and 3.8 g of ethalene glycol diglycidyl ether were added, reacted at 80 ° C. for 2 hours, and then thoroughly washed with water. Next, 124 g of epichlorohydrin was reacted in 50% isopropyl alcohol aqueous solution at 50 ° C. for 2 hours, washed thoroughly with water, and then 180 g of polyethyleneimine (SP-200, average molecular weight 10,000, manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.) in 420 g of water.
600 ml of porous granular chitosan reacted with epichlorohydrin was added, gently stirred at 25 ° C. for 24 hours, heated to 70 ° C., and reacted with stirring for 3 hours. After completion of the reaction, unreacted polyethyleneimine was removed by sufficiently washing with water. When the anion exchange capacity was measured, it was 1.7 meq / ml
A porous chitosan granular molded product into which polyethyleneimine was introduced having a high exchange capacity was obtained.

該成形物に含まれる水をイソプロピルアルコールで充分
置換し、成形物500mlに対しエピクロロヒドリン236g,水
250g,イソプロピルアルコール250gを含む水溶液に入
れ、50℃で2時間反応させた。未反応のエピクロロヒド
リンをイソプロピルアルコールで充分除去後、水洗し、
イソプロピルアルコールを除去した。
The water contained in the molded product was sufficiently replaced with isopropyl alcohol, and 500 ml of the molded product had 236 g of epichlorohydrin and water.
The mixture was placed in an aqueous solution containing 250 g and 250 g of isopropyl alcohol and reacted at 50 ° C. for 2 hours. After sufficiently removing unreacted epichlorohydrin with isopropyl alcohol, washing with water,
Isopropyl alcohol was removed.

該成形物400mlをイミノジ酢酸179g,水400ml中に入れ、5
0%NaOHでpH7.0〜8.0に調整しながら70℃で2時間攪拌
反応させた。
400 ml of the molded product was placed in 179 g of iminodiacetic acid and 400 ml of water,
While adjusting the pH to 7.0 to 8.0 with 0% NaOH, the mixture was reacted with stirring at 70 ° C for 2 hours.

水洗し未反応のイミノジ酢酸を充分除去した後、成形物
に含まれる水をエタノールに置換した後、無水酢酸69.4
g(大過剰量)を加え、室温で24時間軽く攪拌しながら
反応させた。未反応の無水酢酸をエタノールで充分除去
した後、水洗し、キトサン系キレート成形物を得た(試
料B)。陽イオン交換容量,圧縮弾性率,比表面積,細
孔系の測定結果を第2表に示した。
After washing with water to sufficiently remove unreacted iminodiacetic acid, the water contained in the molded product was replaced with ethanol, and then acetic anhydride 69.4
g (large excess amount) was added, and the mixture was reacted at room temperature for 24 hours with light stirring. Unreacted acetic anhydride was sufficiently removed with ethanol and then washed with water to obtain a chitosan-based chelate molded product (Sample B). Table 2 shows the measurement results of cation exchange capacity, compressive elastic modulus, specific surface area and pore system.

比較例1. 脱アセチル化度80%,平均分子量48,000のキトサン78g
を3.9%酢酸水溶液922gに溶解した。該水溶液を圧縮空
気と共に吐出し、6.5%NaOH,20%エタノール,73.5%よ
りなる混合溶液中に滴下せしめ、凝固再生し中性になる
まで充分水洗して平均粒径0.3mmφの多孔質粒状キトサ
ン700ml(湿潤)を得た。得られた粒状キトサン700ml
(湿潤)に水700mlとエチレングリコールジグリシジル
エーテル70gを加えて60℃で1時間反応させた。反応終
了後、充分水洗する。ポリエチレンイミン(SP−200,平
均分子量10,000,日本触媒化学工業(株)製)180gを水4
20gに溶解し、上記のエチレングリコールジグリシジル
エーテルを反応させた多孔質粒状キトサン600mlを加
え、25℃で24時間ゆるやかに攪拌後、70℃に昇温した後
3時間攪拌反応させた。反応終了後、充分水洗し未反応
のポリエチレンイミンを除去した。陰イオン交換容量を
測定したところ、1.4meq/mlの高い交換容量を有するポ
リエチレンイミン導入多孔質粒状成形物を得た(試料
C)。
Comparative Example 1. 78 g of chitosan having a deacetylation degree of 80% and an average molecular weight of 48,000.
Was dissolved in 922 g of a 3.9% acetic acid aqueous solution. The aqueous solution was discharged together with compressed air, dropped into a mixed solution of 6.5% NaOH, 20% ethanol, and 73.5%, coagulated and regenerated, washed sufficiently with water until neutral, and then porous granular chitosan having an average particle diameter of 0.3 mmφ. 700 ml (wet) were obtained. 700 ml of the obtained granular chitosan
700 ml of water and 70 g of ethylene glycol diglycidyl ether were added to (wet) and reacted at 60 ° C for 1 hour. After completion of the reaction, it is washed thoroughly with water. 180 g of polyethyleneimine (SP-200, average molecular weight 10,000, Nippon Shokubai Chemical Co., Ltd.) was added to water 4
600 ml of porous granular chitosan which was dissolved in 20 g and reacted with the above ethylene glycol diglycidyl ether was added, gently stirred at 25 ° C. for 24 hours, heated to 70 ° C. and then reacted for 3 hours with stirring. After completion of the reaction, unreacted polyethyleneimine was removed by sufficiently washing with water. When the anion exchange capacity was measured, a polyethyleneimine-introduced porous granular molding having a high exchange capacity of 1.4 meq / ml was obtained (Sample C).

又、更に、該成形物に含まれる水をジメチルホルムアミ
ドで充分置換し、成形物300mlに対し無水トリメリット
酸を161g添加し、室温で32時間ゆるやかに攪拌し反応さ
せた。未反応の無水トリメリット酸をジメチルホルムア
ミドで充分除去後、該成形物を200ml採取し、200mlのジ
メチルホルムアミドを加え、無水酢酸29g(大過剰量)
を加え、室温で24時間軽く攪拌しながら反応させた。未
反応の無水酢酸をジメチルホルムアミドで充分除去した
後、水洗して多孔質粒状キトサン成形物を得た(試料
D)。
Further, the water contained in the molded product was sufficiently replaced with dimethylformamide, 161 g of trimellitic anhydride was added to 300 ml of the molded product, and the mixture was reacted by gently stirring at room temperature for 32 hours. After sufficiently removing unreacted trimellitic anhydride with dimethylformamide, 200 ml of the molded product was sampled, 200 ml of dimethylformamide was added, and acetic anhydride 29 g (large excess amount)
Was added, and the mixture was reacted at room temperature for 24 hours with light stirring. Unreacted acetic anhydride was sufficiently removed with dimethylformamide and then washed with water to obtain a porous granular chitosan molded product (Sample D).

実施例3. 実施例1,2,及び比較例1で得られた試料A,B,C,Dの夫々1
mlを予めpH調整したNi++,Hg++,Cd++イオン水溶液80ml
中に入れて吸着残液中の金属イオン濃度とpH値とを測定
し、その結果を第3表,第4表,第5表に示した。更に
第3表,第4表,第5表に示した金属イオン濃度とpH値
との関係を第1図,第2図,第3図に夫々図示した。第
1図はNi++イオン水溶液を用いた場合のNi++イオン濃度
とpH値との関係を、第2図はHg++イオン水溶液を用いた
場合のHg++イオン濃度とpH値との関係を、第3図はCd++
イオン水溶液を用いた場合のCd++pH値との関係をそれぞ
れ示すものであり、第1〜3図中、□印が試料A,*が試
料B,○印が試料C,●印が試料Dの各値を示す。初期濃度
が100ppmであり残液中のイオン濃度が低いほど吸着が良
好であることから、本発明に係るイミノジ酢酸を導入し
た試料A,Bが比較例の試料C,Dに較べて低いpH域でも金属
イオンの吸着能に優れていることが明らかである。
Example 3. Samples A, B, C and D obtained in Examples 1 and 2 and Comparative Example 1 respectively 1
80 ml of Ni + + , Hg + + , Cd + + ion aqueous solution whose pH has been adjusted in advance
The metal ion concentration and the pH value in the adsorption residual liquid were measured by putting the solution inside and the results are shown in Tables 3, 4, and 5. Furthermore, the relationship between the metal ion concentration and the pH value shown in Tables 3, 4, and 5 is shown in FIGS. 1, 2, and 3, respectively. Fig. 1 shows the relationship between the Ni ++ ion concentration and pH value when using the Ni ++ ion aqueous solution, and Fig. 2 shows the Hg ++ ion concentration and pH value when using the Hg ++ ion aqueous solution. Figure 3 shows Cd ++
Figure 1 shows the relationship with Cd ++ pH value when using an ionic aqueous solution. In Figures 1 to 3, □ indicates sample A, * indicates sample B, ○ indicates sample C, and ● indicates sample. Each value of D is shown. Since the initial concentration is 100 ppm and the lower the ion concentration in the residual liquid is, the better the adsorption is, the samples A and B introduced with iminodiacetic acid according to the present invention have a lower pH range than the samples C and D of the comparative examples. However, it is clear that the metal ion adsorption capacity is excellent.

〔発明の効果〕 本発明によって得られる多孔質キトサン成形物に脂肪族
ポリアルコールのグリシジルエーテルを反応させた後、
エピクロロヒドリンを反応させるか或いは反応させず
に、次いでポリエチレンイミンを反応後、エピクロロヒ
ドリンを反応させ、更にイミノジ酢酸と反応後、無水酢
酸を反応させたキトサン系キレート成形物は、金属配位
基であるイミノジ酢酸が金属イオンと強力な錯体を形成
することから、上記実施例の結果から明らかなように酸
性水溶液中からの金属イオンの吸着,回収に優れた機能
を発揮するものである。
[Effect of the invention] After reacting the porous chitosan molded product obtained by the present invention with a glycidyl ether of an aliphatic polyalcohol,
Chitosan-based chelate moldings obtained by reacting epichlorohydrin with or without reaction, then reacting with polyethyleneimine, then reacting with epichlorohydrin, further reacting with iminodiacetic acid, and then reacting with acetic anhydride are Since the coordinating group iminodiacetic acid forms a strong complex with the metal ion, it exhibits an excellent function for adsorbing and recovering the metal ion from the acidic aqueous solution, as is clear from the results of the above examples. is there.

又、本発明のキトサン系キレート成形物は、その母体で
ある成形物が多孔質キトサン成形物であり、大きい比表
面積と極めて大きい孔径の多孔構造を具備しているため
に、イオンの拡散,吸着速度も早く、又、強度も高いか
ら各種金属イオンの吸着,回収に用いた場合に優れたカ
ラム効率を有する効果もある。
Further, the molded product of the chitosan-based chelate of the present invention is a molded product which is a base material thereof is a porous chitosan molded product and has a porous structure having a large specific surface area and an extremely large pore size, so that diffusion and adsorption of ions Since it has a high speed and high strength, it has an effect of having excellent column efficiency when used for adsorption and recovery of various metal ions.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図及び第3図は金属イオン水溶液を用い、
各液中の金属イオンを本発明による試料A,B,及び比較例
の試料C,Dで吸着した後の吸着残液中の金属イオン濃度
とpH値の関係を示したグラフである。
1, 2 and 3 use an aqueous metal ion solution,
6 is a graph showing the relationship between the pH value and the metal ion concentration in the adsorption residual liquid after the metal ions in each liquid were adsorbed by Samples A and B according to the present invention and Samples C and D of Comparative Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多孔質キトサン成形物に脂肪族ポリアルコ
ールのグリシジルエーテルを反応させた後、ポリエチレ
ンイミンを反応させ、次いでエピクロロヒドリンを反応
後、イミノジ酢酸を反応させ、更に無水酢酸を反応させ
ることを特徴とするキトサン系キレート成形物の製造方
法。
1. A porous chitosan molded product is reacted with a glycidyl ether of an aliphatic polyalcohol, then with polyethyleneimine, then with epichlorohydrin, then with iminodiacetic acid, and further with acetic anhydride. A method for producing a chitosan-based chelate molded article, comprising:
【請求項2】多孔質キトサン成形物に脂肪族ポリアルコ
ールのグリシジルエーテルを反応させた後、エピクロロ
ヒドリンを反応させ、次いでポリエチレンイミンを反応
後、エピクロロヒドリンを反応させ、更にイミノジ酢酸
を反応後、無水酢酸を反応させることを特徴とするキト
サン系キレート成形物の製造方法。
2. A porous chitosan molded product is reacted with a glycidyl ether of an aliphatic polyalcohol, followed by reaction with epichlorohydrin, followed by reaction with polyethyleneimine, followed by reaction with epichlorohydrin, and further iminodiacetic acid. The method for producing a chitosan-based chelate molded article, which comprises reacting acetic anhydride after the reaction.
JP1134082A 1989-05-26 1989-05-26 Method for producing chitosan-based chelate molding Expired - Fee Related JPH0673635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134082A JPH0673635B2 (en) 1989-05-26 1989-05-26 Method for producing chitosan-based chelate molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134082A JPH0673635B2 (en) 1989-05-26 1989-05-26 Method for producing chitosan-based chelate molding

Publications (2)

Publication Number Publication Date
JPH03136A JPH03136A (en) 1991-01-07
JPH0673635B2 true JPH0673635B2 (en) 1994-09-21

Family

ID=15119982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134082A Expired - Fee Related JPH0673635B2 (en) 1989-05-26 1989-05-26 Method for producing chitosan-based chelate molding

Country Status (1)

Country Link
JP (1) JPH0673635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525129A (en) * 2014-12-31 2015-04-22 湖南科技大学 Preparation method of modified activated carbon used for heavy metal wastewater treatment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187377A1 (en) * 2018-03-29 2019-10-03 昭和電工株式会社 Base material for filler, manufacturing method of base material for filler, filler, and protein purification method
CN115007118B (en) * 2022-08-08 2022-11-08 康盈红莓(中山)生物科技有限公司 Magnetic bead for separating and purifying protein, cross-linked chitosan thereof, and preparation and use methods thereof
CN115845809B (en) * 2022-10-13 2024-07-16 浙江工业大学 Tetraethylenepentamine modified chitosan gel ball and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525129A (en) * 2014-12-31 2015-04-22 湖南科技大学 Preparation method of modified activated carbon used for heavy metal wastewater treatment
CN104525129B (en) * 2014-12-31 2016-10-05 湖南科技大学 A kind of preparation method of the modified activated carbon for heavy metal containing wastewater treatment

Also Published As

Publication number Publication date
JPH03136A (en) 1991-01-07

Similar Documents

Publication Publication Date Title
Pan et al. Highly efficient macroporous adsorbents for toxic metal ions in water systems based on polyvinyl alcohol–formaldehyde sponges
CN108479712B (en) Modified carbon nanotube film material capable of adsorbing and degrading tetrabromobisphenol A and application method thereof
WO2010122954A1 (en) Metal adsorbent containing chelating polymer
CN106076290B (en) A kind of method and application of the quick modified acrylic fibre of microwave
CN109174034A (en) A kind of copper ion blotting chitosan/sodium carboxymethylcellulose compound adsorbent and preparation method thereof
CN112029106B (en) Preparation method and application of modified HKUST-1 sulfur-resistant adsorbent for adsorbing n-hexane
CN106984137B (en) CO absorption device capable of realizing rapid phase separation2Preparation and use method of polyamino acid ionic liquid type phase separation absorbent
JP2004181352A (en) Method for refining non-aqueous liquid material
JPS6242739A (en) Insoluble composition used in removal of mercury from liquidmedium
JP2011083711A (en) Boron adsorbent, resin composition for boron adsorbent and method for manufacturing boron adsorbent
JPH0673635B2 (en) Method for producing chitosan-based chelate molding
CA1042364A (en) Method for the removal of sulfur dioxide from gas mixtures
JP2796995B2 (en) Anion-selective adsorptive porous membrane and its production method
Vakili et al. Removal of GenX by APTES functionalized diepoxyoctane cross-linked chitosan beads
CN109806841A (en) Basic amino acid modified silica-gel material and its preparation method and application
CN115814767B (en) Preparation method and application of coordination polymer adsorbent CPs-ECL
KR101621954B1 (en) Chelating compound, and method of use of, poly(2-octadecyl-butanedioate) and the corresponding acid, poly(2-octadecyl-butanedioate)
CN114367267B (en) Mesoporous composite material and preparation method and application thereof
JPH075739B2 (en) Manufacturing method of chitosan chelate resin
CN112427022A (en) Preparation method of gel balls of nitrogen-doped organic and inorganic ion-crosslinked polymer
JPH075740B2 (en) Method for producing chitosan chelate resin
CN115228448A (en) Preparation and application of chitosan-based high-molecular polymer adsorbent
RU2081130C1 (en) Process for preparing sorbent
JP2000140631A (en) Boron selectively adsorbing resin and removing method of boron
CN113070045A (en) Preparation method of adsorbent for removing nitrate in industrial wastewater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees