JPH0673414A - Method for controlling quality of molten iron in blast furnace - Google Patents

Method for controlling quality of molten iron in blast furnace

Info

Publication number
JPH0673414A
JPH0673414A JP21119092A JP21119092A JPH0673414A JP H0673414 A JPH0673414 A JP H0673414A JP 21119092 A JP21119092 A JP 21119092A JP 21119092 A JP21119092 A JP 21119092A JP H0673414 A JPH0673414 A JP H0673414A
Authority
JP
Japan
Prior art keywords
hot metal
quality
blast furnace
metal quality
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21119092A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tarumi
義彦 垂水
Hideaki Inoue
英明 井上
Mamoru Inaba
護 稲葉
Yoshiro Nishi
洋四郎 西
Masaki Takenaka
正樹 竹中
Katsushi Okuda
克志 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21119092A priority Critical patent/JPH0673414A/en
Publication of JPH0673414A publication Critical patent/JPH0673414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To provide a quality control method of molten iron in a blast furnace so as to obtain the molten iron having a prescribed quality in the blast furnace by quantitatively estimating the molten iron temp. and component values of Si and S, etc., in the iron as indexes of the quality of the molten iron in the blast furnace and by adjusting operational quantity and various kinds of elemental values. CONSTITUTION:In this controlling device, an inputting layer for inputting various kinds of data values, sensor values and operational quantities in the blast furnace operation and an outputting layer for outputting the component values of Si and S in the iron are provided. The various kinds of elemental values, sensor values and operational quantities in the blast furnace operation are inputted to the inputting layer of the prelearnt two or more layers of molten iron quality neural net work. By changing the operating quantity so as to come in the permissible range when the eliminated value in the molten iron quality obtd. from the outputting layer is out of the permissible range of the aimed control value, the estimated value of the molten iron quality is obtd. When the molten iron quality does not come in the permissible range even in the case of changing the operating quantity, the various kinds of elemental values of the blast furnace operation is changed. When the estimated value in the molten iron quality comes in the permissible range, based on the various kinds of data values and operational quantity in the blast furnace operation, the operation is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高炉溶銑の品質管理方法
に関し、特にニューラルネットワークの手法を利用して
過去の高炉操業の諸元値、センサ値、操作量、溶銑品質
値等の実績値を学習しそれを用いた高炉溶銑の品質管理
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quality control method for blast furnace hot metal, and in particular, it utilizes a neural network method to obtain past blast furnace operation data such as specifications, sensor values, manipulated variables, and hot metal quality values. Study and quality control method of blast furnace hot metal using it.

【0002】[0002]

【従来の技術】高炉操業は非常に多くの操業因子が交互
に関連し合った複雑な反応を対象とし、更に設備条件等
から直接視覚で監視することが困難であり、操業レベル
の維持向上を図るためには、高炉に取り付けられたセン
サ等の情報を総合的に判断し的確に操作する必要があ
る。このため、現在でも高炉の日常操業管理には操業者
の経験や知識が重要となっている。ところが、人間判断
による操業は個人差があり操業方法の標準化や評価の定
量化が困難であり、常に適切なアクションを継続する事
が難しいという問題点があった。
2. Description of the Related Art Blast furnace operation is intended for complex reactions in which a large number of operation factors are alternately related to each other, and it is difficult to directly visually monitor from equipment conditions, etc. In order to achieve this, it is necessary to comprehensively judge the information from the sensors attached to the blast furnace and operate it appropriately. Therefore, the experience and knowledge of operators are still important for the daily operation management of blast furnaces. However, there is a problem in that it is difficult to standardize the operation method and quantify the evaluation due to individual differences in the operation based on human judgment, and it is difficult to always continue appropriate actions.

【0003】人間の判断を定量的に行うために統計処理
や数学モデルの応用が試みられている。各種センサ情報
を利用し自己回帰モデルであるARMAを用いた炉熱の
予測方法としては、特開昭63−210213号公報〜
特開昭63−210221号公報、特開昭63−213
608号公報〜特開昭63−213611号公報、特開
昭63−266010号公報に提案されている方法があ
る。
Attempts have been made to apply statistical processing and mathematical models to quantitatively make human judgments. As a method for predicting furnace heat using ARMA, which is an autoregressive model using various sensor information, Japanese Patent Laid-Open No. 63-210213 discloses.
JP-A-63-210221 and JP-A-63-213
There are methods proposed in Japanese Patent Laid-Open No. 608 to 63-213611 and Japanese Patent Laid-Open No. 63-266010.

【0004】知識工学システムは熟練者の経験や知識を
計算機に取り組んで処理できるため、特開昭62−27
0708号公報、特開昭62−270712号公報、特
開平1−205010号公報、特開平1−205011
号公報、特開平2−77508号公報、特開平2−30
1504号公報に示されているような高炉操業管理のシ
ステム化により、情報の見落としや判断ミス等の問題が
無くなり、操業管理の適正化や標準化が図られている。
Since a knowledge engineering system can process the experience and knowledge of a skilled person by working on a computer, it is disclosed in JP-A-62-27.
No. 0708, No. 62-270712, No. 1-205010, No. 1-205011.
Japanese Patent Laid-Open No. 2-77508, Japanese Patent Laid-Open No. 2-30
By systematizing blast furnace operation management as disclosed in Japanese Patent No. 1504, problems such as oversight of information and erroneous judgment are eliminated, and the operation management is optimized and standardized.

【0005】また、人間の神経細胞を模したニューラル
ネットワークを応用した提案もある。特開平2−170
904号公報には階層型のニューラルネットワークの手
法を応用し、高炉炉熱レベルの現在から将来にむけての
推移を予測し炉熱制御に利用する方法が提案されてい
る。この炉熱制御システムは、高炉操業データを各ユニ
ットに入力できるようにした入力層をもち、出力層から
は炉熱がどのくらいの確率で将来上昇してゆくか、現状
維持するのか、下がっていくのかという炉熱レベルの推
移を予測して出力している。
There is also a proposal to which a neural network imitating human nerve cells is applied. JP-A-2-170
In 904, a method is proposed in which a hierarchical neural network method is applied to predict the transition of the blast furnace furnace heat level from the present to the future and utilize it for furnace heat control. This furnace heat control system has an input layer that allows blast furnace operation data to be input to each unit, and from the output layer, how much probability the furnace heat will rise in the future and whether it will be maintained or not will decrease. It predicts and outputs the transition of the furnace heat level.

【0006】[0006]

【発明が解決しようとする課題】特開昭63−2102
13号公報〜特開昭63−210221号公報、特開昭
63−213608号公報〜特開昭63−213611
号公報及び特開昭63−266010号公報に開示され
ている高炉炉熱予測方法では、各種センサ情報等を数学
・統計モデルの手法であるARMAで予測しているが、
その数学モデルの機能を維持し続けるためには、内部パ
ラメータを最適に管理し続けなければならずシステムメ
ンテナンスの負荷が大きく、十分に活用するためには多
大のマンパワー要求される。また、高炉の炉熱を予測す
る機能のみで溶銑品位を考慮していない。
Problems to be Solved by the Invention JP-A-63-2102
No. 13-Japanese Unexamined Patent Publication No. 63-210221, No. 63-213608 No. 63-213611.
In the blast furnace heat prediction method disclosed in Japanese Patent Laid-Open No. 63-266010 and Japanese Patent Laid-Open No. 63-266010, various sensor information and the like are predicted by ARMA which is a mathematical / statistical model method.
In order to continue to maintain the function of the mathematical model, it is necessary to keep the internal parameters optimally controlled, which imposes a heavy load on system maintenance and requires a great deal of manpower to make full use of it. Moreover, only the function of predicting the furnace heat of the blast furnace is taken into consideration and the quality of hot metal is not taken into consideration.

【0007】また、特開平2−170904号公報では
階層型のニューラルネットワークの手法を利用して高炉
炉熱レベルの現在から将来に向けての推移を予測し炉熱
制御に利用しており、高炉炉熱レベルの推移が予測でき
るが、炉熱の指標である溶銑温度値が定量的に決定でき
ず、また、他の溶銑品質の指標である銑中SiやSなど
成分値の予測もできない。
Further, in Japanese Patent Laid-Open No. 2-170904, a hierarchical neural network method is used to predict the transition of the blast furnace heat level from the present to the future and utilize it for furnace heat control. Although the transition of the furnace heat level can be predicted, the hot metal temperature value that is an index of the furnace heat cannot be quantitatively determined, and the component values such as Si and S in the pig iron that are other indexes of the hot metal quality cannot be predicted.

【0008】本発明は、このように従来の統計処理、エ
キスパートシステム及びニューラルネットワークによる
炉熱レベル推移予測による炉熱制御方法のもつ次のよう
な問題点を解決するために開発されたものである。 (1)各種観測データから炉熱レベルの推移傾向は予測
できるが、製品品質の指標となる溶銑温度や銑中Siや
Sなどの成分値の定量的な予測ができない。 (2)溶銑品質に重大な影響を及ぼすコークス比や塩基
度などの炉頂部操作量や送風諸元の炉下部操作量及び出
銑量などの生産状況或いは炉内反応状況を総合的に判断
して溶銑品質を決定していない。
The present invention was developed in order to solve the following problems of the conventional furnace heat control method based on the furnace heat level transition prediction by the statistical processing, expert system and neural network. . (1) Although the trend of the furnace heat level can be predicted from various observation data, it is not possible to quantitatively predict the hot metal temperature and the component values such as Si and S in the pig iron, which are indicators of product quality. (2) Comprehensively judge the production situation or reaction situation in the furnace such as the operation amount at the top of the furnace such as coke ratio and basicity, the operation amount at the lower part of blower specifications and the amount of tapping, which have a significant effect on the quality of hot metal. The hot metal quality has not been decided.

【0009】[0009]

【課題を解決するための手段】本発明の高炉溶銑の品質
管理方法は、高炉溶銑の品質の指標となる溶銑温度及び
銑中SiやSなどの成分値を定量的に予測して管理して
いるが、そのために次の処理がなされている。 (1)溶銑品質に重大な影響を及ぼす要因を各ユニット
に入力できるようにした入力層をもち、溶銑品質を出力
する出力層をもち、予め学習させた2層以上の階層型の
溶銑品質ニューラルネットワークを用意しておく。 (2)上記の溶銑品質ニューラルネットワークに基づい
て作られたシステムにおいて、少なくとも溶銑品質に影
響を及ぼすコークス比、塩基度や送風諸元などの操業操
作量、出銑量などの操業状態諸元値及び炉内状況を表す
センサ値を所定のタイミングで読み込む。 (3)上記入力層への操業情報の入力により出力層から
得られる溶銑品質の指標となる溶銑温度や銑中SiやS
などの成分値を用いて以下の操業を行う。 a)溶銑品質予測値が目標管理値の許容範囲内に入って
いれば現状の操業操作量を維持する。 b)溶銑品質予測値が目標管理値の許容範囲外であれ
ば、溶銑品質予測値が目標管理値の許容範囲内に入るよ
うに、入力層の操作量を変更して最適操作量を決定し、
その得られた最適操作量により操業変更を行う。また、
操業量の変更によっても溶銑品質予測値が許容範囲内に
収まらないときは操業の諸元値の変更を行う。 (4)使用原料銘柄や高炉生産量の変更など操業条件の
変化に伴い必ずしも溶銑品質ニューラルネットワークが
学習させた当初のまま使えるとは限らない。また、高炉
設備は稼動を続けると炉内煉瓦等の状況が変化してくる
ため、同一操業を行っていても溶銑品質には相違が現れ
てくる。このため、溶銑品質予測値が操業で得られる実
測値との偏差が許容範囲外になれば、そのときの高炉操
業の諸元値、センサ値及び操作量を入力層に、実績溶銑
品質値を出力層に使い、自己組織による再学習を適宜行
って溶銑品質ニューラルネットワークの予測精度を維持
し続ける。この再学習は一定周期でも行われる。
The blast furnace hot metal quality control method of the present invention quantitatively predicts and manages the hot metal temperature, which is an index of the quality of the blast furnace hot metal, and the component values such as Si and S in the hot metal. However, the following processing is performed for that purpose. (1) A hierarchy of two or more layers of pre-learned hot metal quality, which has an input layer that allows input of factors that have a significant effect on hot metal quality to each unit, and an output layer that outputs hot metal quality. Have a network ready. (2) In the system made based on the above-mentioned hot metal quality neural network, at least operating condition parameters such as coke ratio, basicity and blast parameters that affect hot metal quality, and tapping amount. And, the sensor value indicating the inside of the furnace is read at a predetermined timing. (3) Hot metal temperature and Si or S in the hot metal, which is an index of hot metal quality obtained from the output layer by inputting operation information to the input layer
The following operations are performed using the component values such as. a) If the hot metal quality prediction value is within the allowable range of the target control value, the current operation amount is maintained. b) If the predicted hot metal quality value is outside the allowable range of the target control value, the optimum manipulated variable is determined by changing the manipulated variable of the input layer so that the predicted hot metal quality value falls within the allowable range of the target controlled value. ,
The operation is changed according to the obtained optimum operation amount. Also,
If the hot metal quality prediction does not fall within the allowable range due to the change in the operation amount, change the operation specifications. (4) Due to changes in operating conditions such as changes in the raw material brands used and the amount of blast furnace production, the hot metal quality neural network cannot always be used as it was initially trained. In addition, since the condition of bricks in the furnace changes as the blast furnace equipment continues to operate, differences in the quality of hot metal appear even if the same operation is performed. Therefore, if the deviation of the predicted value of hot metal quality from the actual value obtained in operation is outside the allowable range, the actual value of hot metal quality is input into the input layer with the parameter values, sensor values and manipulated variables of the blast furnace operation at that time. It is used for the output layer, and re-learning by self-organization is appropriately performed to continue maintaining the prediction accuracy of the hot metal quality neural network. This re-learning is also performed in a fixed cycle.

【0010】[0010]

【作用】本発明においては、各種の高炉溶銑の品質への
各種の影響要因を溶銑品質ニューラルネットワークの入
力層に入力し、出力層に高炉溶銑の品質を定性的かつ定
量的に出力させて予測し、溶銑品質予測値が目標管理値
の許容範囲を越えれば操業操作量を変更することにより
溶銑品質が一定になるように管理する。また、操業操作
量の変更によっても目標管理値の許容範囲内に収まらな
いときは操業の諸元値の変更を行う。また、予測精度を
維持・向上させるために溶銑品質ニューラルネットワー
クの相互結合係数を自動生成又は修正する。
In the present invention, various factors affecting the quality of various types of blast furnace hot metal are input to the input layer of the hot metal quality neural network, and the quality of blast furnace hot metal is output to the output layer qualitatively and quantitatively for prediction. If the hot metal quality predicted value exceeds the allowable range of the target control value, the hot metal quality is controlled to be constant by changing the operation amount. If the target control value does not fall within the permissible range due to the change in the operation amount, change the operation specifications. Further, the mutual coupling coefficient of the hot metal quality neural network is automatically generated or modified in order to maintain and improve the prediction accuracy.

【0011】[0011]

【実施例】図1は本発明の一実施例に係る高炉溶銑の品
質管理方法を実施するための高炉溶銑品質管理システム
のブロック図である。溶銑品質影響要因1は操業操作量
やセンサ値及び操作量などを基にした操業データであ
る。これはデータ入力手段2を通してシステムに取り込
まれ、遅れ時間補正手段3によって溶銑品質に効果が現
れてくる遅れ時間に対応した補正が行われる。例えば炉
頂部操作量であるコークス比や塩基度の変更は原料降下
時間より6〜10時間の遅れ補正が必要であり、炉下部
操作量の送風諸元値の変更は羽口と出銑口の位置関係等
から1〜4時間の遅れ補正が必要である。データの正規
化手段4はニューラルネットワークの入力値に適するよ
うに0〜1の正規化を行う。これらのデータは溶銑品質
ニューラルネットワーク5に渡され、ニューラルネット
ワーク5は溶銑品質予測値6を出力する。
1 is a block diagram of a blast furnace hot metal quality control system for carrying out a blast furnace hot metal quality control method according to an embodiment of the present invention. The hot metal quality influence factor 1 is operation data based on the operation operation amount, the sensor value, the operation amount, and the like. This is taken into the system through the data input means 2, and the delay time correction means 3 performs correction corresponding to the delay time at which the effect on the hot metal quality appears. For example, changing the coke ratio or basicity, which is the operation amount of the furnace top, requires a delay correction of 6 to 10 hours from the raw material descent time, and changing the blast specifications of the operation amount of the furnace bottom requires changing the tuyere and taphole. It is necessary to correct the delay of 1 to 4 hours due to the positional relationship. The data normalizing means 4 normalizes 0 to 1 so as to suit the input value of the neural network. These data are passed to the hot metal quality neural network 5, and the neural network 5 outputs a hot metal quality predicted value 6.

【0012】溶銑品質予測値6は、(a)溶銑温度、
(b)銑中Si成分値、(c)銑中S成分値の3種類の
情報からなっている。(a)〜(c)の各項目は定量的
な扱いができるように0〜1の間の正規化した数字で出
力されるため、具体的な溶銑品質予測値に変換し、オペ
レータに指示する。この溶銑品質予測値6が目標管理値
7の許容範囲内であるかどうかを比較器8によって確認
する。溶銑品質予測値6が許容範囲内であれば現状の操
業を維持し続けるが、許容範囲外になれば溶銑品質予測
値6が目標管理値7の許容範囲内になるように、変更量
選択手段9により品質影響要因のうち操作量等を疑似的
に変化させて最適変更操作量等を決定する。
The hot metal quality prediction value 6 is (a) hot metal temperature,
It is composed of three types of information: (b) Si component value in pig iron, and (c) S component value in pig iron. Since each item of (a) to (c) is output as a normalized number between 0 and 1 so that it can be handled quantitatively, it is converted to a concrete hot metal quality prediction value and instructed to the operator. . The comparator 8 confirms whether the hot metal quality predicted value 6 is within the allowable range of the target control value 7. If the hot metal quality predicted value 6 is within the allowable range, the current operation is continued, but if the hot metal quality predicted value 6 is outside the allowable range, the change amount selecting means is set so that the hot metal quality predicted value 6 falls within the allowable range of the target control value 7. The operation amount and the like among the quality influencing factors are pseudo-changed by 9 to determine the optimum change operation amount and the like.

【0013】上記の溶銑品質予測値を用いた操業とは別
に溶銑品質ニューラルネットワークの学習のため参照入
力データ10と教師出力11をシステムに与える。参照
入力データ10は高炉操業データである品質影響要因1
と形式的には同じであり、教師出力11は参照入力デー
タ10に対する出力として正確な情報である必要があ
る。日々の操業結果が教師となり、教師出力11のデー
タを与えることになる。学習用パターン作成処理手段1
2は単に参照入力データ10及び教師出力11を溶銑品
質ニューラルネットワーク5が学習しやすいようなパタ
ーンに変換しているだけのものである。なお、学習用パ
ターン作成処理手段12は日々の操業結果のうち溶銑品
質予測値が実績値に一致しなかった場合には必ず作成す
るように成っている。
In addition to the operation using the above-mentioned hot metal quality prediction value, reference input data 10 and teacher output 11 are given to the system for learning of the hot metal quality neural network. Reference input data 10 is blast furnace operation data, and quality influence factor 1
And the teacher output 11 needs to be accurate information as an output for the reference input data 10. The daily operation result becomes a teacher, and the data of the teacher output 11 is given. Learning pattern creation processing means 1
The reference numeral 2 simply converts the reference input data 10 and the teacher output 11 into a pattern that the hot metal quality neural network 5 can easily learn. The learning pattern creation processing means 12 is designed to create the hot metal quality predictive value when the predicted hot metal quality does not match the actual value in the daily operation results.

【0014】以上の構成からなる高炉溶銑品質管理シス
テムをさらに詳細に説明する。高炉は1000〜500
0m3 と広範な炉容積であり、また各炉で特性が異なる
ため、図1のデータ入力手段2に与える品質影響要因1
も複数検討できる。以下、例として時間概念を含めない
静的(スタティック)モデルと時間概念を含めた動的
(ダイナミック)モデルを説明する。以下述べる品質影
響要因以外の項目を使用しても同様な期待が出来る。先
ず静的モデルを説明する。図1のデータ入力手段2に与
える品質影響要因1の項目を以下に示す。 (1) 目標出銑量 (2) コークス比 (3) 装入原料塩基度 (4) 送風温度 (5) 送風流量 (6) 送風圧力 (7) 送風湿度 (8) 酸素付加率 (9) 羽口埋込温度平均値 (10) 羽口埋込温度偏差値
The blast furnace hot metal quality control system having the above construction will be described in more detail. Blast furnace is 1000-500
Since the furnace volume is as wide as 0 m 3 and the characteristics are different in each furnace, the quality influence factor 1 that affects the data input means 2 in FIG.
You can also consider more than one. Hereinafter, as an example, a static model that does not include the time concept and a dynamic model that includes the time concept will be described. Similar expectations can be achieved by using items other than the quality affecting factors described below. First, the static model will be described. Items of quality influence factor 1 given to the data input means 2 of FIG. 1 are shown below. (1) Target amount of tapping (2) Coke ratio (3) Basicity of charging raw material (4) Air temperature (5) Air flow rate (6) Air pressure (7) Air humidity (8) Oxygenation rate (9) Feather Mouth embedding temperature average value (10) Tuyere embedding temperature deviation value

【0015】高炉炉容積が大きくなり、出銑孔数や羽口
数が増えれば以下の項目を加えると精度向上が出来る。 (11)炉頂ガス利用率 (12)原料荷下がり速度 (13)ソリューションロス (14)出銑孔番号 次に動的モデルを説明する。図1のデータ入力手段2に
与える品質影響要因1の項目を以下に示す。 (1) 目標出銑量 (2) コークス比 (3) 装入原料塩基度 (4) 送風温度 (5) 送風流量 (6) 送風圧力 (7) 送風湿度 (8) 酸素付加率 (9) 羽口埋込温度平均値 (10) 炉頂ガス利用率 (11) 原料荷下がり速度 (12) ソリューションロス (13) 出銑孔番号 (14) 出銑孔開口後の出銑時間 (15) 前回溶銑温度 (16) 前回Si値 (17) 前回S値
If the volume of the blast furnace increases and the number of tap holes and tuyere increases, the accuracy can be improved by adding the following items. (11) Top gas utilization rate (12) Raw material unloading rate (13) Solution loss (14) Tap hole number Next, the dynamic model will be described. Items of quality influence factor 1 given to the data input means 2 of FIG. 1 are shown below. (1) Target amount of tapping (2) Coke ratio (3) Basicity of charging raw material (4) Air temperature (5) Air flow rate (6) Air pressure (7) Air humidity (8) Oxygenation rate (9) Feather Mouth filling temperature average value (10) Top gas utilization rate (11) Raw material unloading rate (12) Solution loss (13) Tap hole number (14) Tap time after tap hole opening (15) Previous hot metal Temperature (16) Previous Si value (17) Previous S value

【0016】図2は溶銑品質学習モデルの溶銑品質ニュ
ーラルネットワーク5の構成例を静的(スタティック)
モデルで示した図であり、図3はその構成例を動的(ダ
イナミック)モデルで示した図である。この溶銑品質ニ
ューラルネットワーク5は、図1のデータ加工されたデ
ータを受け入れる入力層と変更操作量の出力層との間に
隠れ層を1つおいた3層構造にしている。溶銑品質ニュ
ーラルネットワーク5は、2層構造では線形であるのに
対し、3層以上では非線形になり情報加工手段が格段に
向上する。しかし、層数が増加すれば学習に要する時間
が多く掛かり、かつ5層以上では解の精度向上も期待で
きないため、一般には中間層(隠れ層)を設けた3層の
ニューラルネットワークを使うところが多い。本実施例
では出力層は3ユニットで前述の「溶銑温度」、「銑中
Si成分値」、「銑中S成分値」の3つの情報にそれぞ
れ1つのユニットを対応させている。
FIG. 2 shows a static example of the structure of the hot metal quality neural network 5 of the hot metal quality learning model.
It is the figure shown by the model, and FIG. 3 is the figure which showed the structural example by the dynamic (dynamic) model. The hot metal quality neural network 5 has a three-layer structure in which one hidden layer is provided between the input layer for receiving the processed data of FIG. 1 and the output layer for the change operation amount. The hot metal quality neural network 5 is linear in a two-layer structure, but is non-linear in three or more layers, and the information processing means is remarkably improved. However, if the number of layers increases, it will take a long time for learning, and if the number of layers is 5 or more, the accuracy of the solution cannot be expected to improve. Therefore, in general, a neural network of 3 layers with an intermediate layer (hidden layer) is used. . In this embodiment, the output layer has three units, and one unit is associated with each of the above-mentioned three information of "molten pig temperature", "pigment Si component value", and "pigment S component value".

【0017】図4は出力層のアウトプットを時系列デー
タとしてみた場合の例を示した図であり、溶銑温度のユ
ニットの出力をプロットで示してある。前述のように0
〜1の値をもっており、値が1に近いほどその溶銑温度
値が大きいことを意味する。この値から変換された溶銑
品質予測値で操業を管理することにより現在の高炉操業
状態の目標管理値との隔たりが把握でき、許容範囲を越
えた場合は収まるように操作量等を変更する。
FIG. 4 is a diagram showing an example in which the output of the output layer is viewed as time series data, and the output of the hot metal temperature unit is plotted. 0 as described above
It has a value of ˜1, and the closer the value is to 1, the larger the hot metal temperature value. By controlling the operation with the hot metal quality predicted value converted from this value, the distance from the target control value of the current blast furnace operating state can be grasped, and if the allowable range is exceeded, the operation amount etc. are changed so that it falls.

【0018】図5はシステム全体の動作を示すフローチ
ャートである。通常の溶銑品質予測は定周期起動し(例
えば5分間)、上述のようにデータ入力手段2を介して
品質影響要因1の各種データを入力し、遅れ時間補正手
段3により所定時間遅らせた後にデータ正規化手段4に
よりそのデータを加工して正規化する。次に、そのデー
タを溶銑品質ニューラルネットワーク5の入力層に入力
する。その入力データはネットワーク内で順方向に伝播
し、出力層から溶銑品質予測値6が出力する。比較器8
によりこの溶銑品質予測値6が目標管理値7の許容範囲
内にあるかどうかが判断され、許容範囲外のときには操
作量の変更を行う。そして、上述の処理を繰り返し、仮
にまだその偏差が許容範囲に収まらないときには操業の
諸元値の変更を行う。このようにして上述の処理を繰り
返してその溶銑品質予測値6が許容範囲内になった時点
の変更後の操業操作量又は操業の諸元値を採用し、その
操業操作量又は操業の諸元値に基づいて操業をする。
FIG. 5 is a flow chart showing the operation of the entire system. Normal hot metal quality prediction is started at a fixed period (for example, 5 minutes), various data of the quality influence factor 1 is input via the data input means 2 as described above, and the delay time correction means 3 delays the data for a predetermined time and then the data. The normalizing means 4 processes and normalizes the data. Next, the data is input to the input layer of the hot metal quality neural network 5. The input data propagates in the network in the forward direction, and the hot metal quality prediction value 6 is output from the output layer. Comparator 8
Thus, it is determined whether or not the hot metal quality predicted value 6 is within the allowable range of the target control value 7, and if it is outside the allowable range, the manipulated variable is changed. Then, the above-described processing is repeated, and if the deviation is still not within the allowable range, the operating specification values are changed. In this way, by repeating the above-mentioned processing, the changed operation amount or operation specification value at the time when the hot metal quality predicted value 6 falls within the allowable range is adopted, and the operation operation amount or operation specification is adopted. Operate based on the value.

【0019】操業操作量の変更に際しては、予め優先順
位を例えば次のように定めておきその順序に従って変更
する。なお、装入塩基度及び酸素付加率は固定してお
く。 (1) 送風湿度 (2) 装入コークス比 (3) 送風温度 (4) 目標出銑量 (5) 送風流量 (6) 送風圧力
When changing the operation amount, the priorities are set in advance as follows, for example, and are changed according to the order. The basicity and the oxygen addition rate are fixed. (1) Blast humidity (2) Charge coke ratio (3) Blast temperature (4) Target amount of tapping (5) Blast flow rate (6) Blast pressure

【0020】また、学習処理も定周期起動とし(例えば
1日毎)、教師データを作成し、参照入力データ7及び
教師出力8を学習パターン作成手段9を介して溶銑品質
ニューラルネットワーク5の入力層に読み込み、順方向
に伝播して溶銑品質ニューラルネットワーク5の相互結
合係数を修正し、偏差が許容値以下になるまで繰り返
す。表1に炉容積4000m3 の高炉における静的(ス
タティック)モデルのデータ正規化手段4と操業操作量
の範囲を示す。以下、図6及び図7の実施例も同容積と
する。
The learning process is also started at a fixed period (for example, every day), teacher data is created, and the reference input data 7 and the teacher output 8 are input to the input layer of the hot metal quality neural network 5 via the learning pattern creating means 9. It is read, propagated in the forward direction, corrects the mutual coupling coefficient of the hot metal quality neural network 5, and is repeated until the deviation becomes equal to or less than the allowable value. Table 1 shows the data normalization means 4 of the static model in the blast furnace with the furnace volume of 4000 m 3 and the range of the operation amount. Hereinafter, the embodiments of FIGS. 6 and 7 have the same volume.

【0021】[0021]

【表1】 [Table 1]

【0022】図6及び図7は上記実施例による溶銑品質
の予測値トレンドと実操業の溶銑品質データのトレンド
を示した図である。図6の時刻T1における上述の演算
処理により時刻T1+3時間後の溶銑温度予測値が許容
範囲の下限値に達すると、図7に示すようにここで送風
湿度アクション(送風湿度を下げる)をとるものとして
溶銑温度予測値を出力し、それが許容範囲内に入ってい
れば、そのアクションをとるものとする。そして、時刻
T2(=T1+6時間)において見ると、時刻T2−3
時間(=T1+3時間)の溶銑温度の実績値が許容範囲
に入っていることが分かる。これは上記の送風湿度アク
ションが約3時間後に有効になっていることによる。羽
口と出銑口との間隔と炉底部の直径とに応じた溶銑体積
によってその反応時間(遅れ時間)は異なり、上述の実
施例においてそれが約3時間になっている。このように
操業アクションをとるときにはその反応時間を考慮して
行う。このことは操業の諸元値を変更するときも同様で
ある。この場合には6〜10時間程度の反応時間にな
る。
FIGS. 6 and 7 are graphs showing the predicted hot metal quality predictive value trend and the hot metal quality data trend in the actual operation according to the above embodiment. When the predicted value of the hot metal temperature after the time T1 + 3 hours reaches the lower limit value of the allowable range by the above-described calculation processing at time T1 in FIG. 6, the blast humidity action (decrease blast humidity) is taken here as shown in FIG. The predicted value of the hot metal temperature is output as, and if it is within the allowable range, the action is taken. Then, when viewed at time T2 (= T1 + 6 hours), time T2-3
It can be seen that the actual value of the hot metal temperature at time (= T1 + 3 hours) is within the allowable range. This is because the above blast humidity action is effective after about 3 hours. The reaction time (delay time) differs depending on the hot metal volume depending on the distance between the tuyere and tap hole and the diameter of the furnace bottom, and it is about 3 hours in the above-mentioned embodiment. When taking an operation action in this way, the reaction time is taken into consideration. This also applies when changing the specifications of the operation. In this case, the reaction time is about 6 to 10 hours.

【0023】[0023]

【発明の効果】以上のように本発明によれば、溶銑品質
予測値が目標管理値の許容範囲外になれば、溶銑品質予
測値が目標管理値の許容範囲内になるように、入力層に
疑似的に操業操作量や操業の諸元値を入力して最適操作
量が決定され、また、予測時間は入力値の前処理で導入
した各種遅延時間で決まるようにしたので、溶銑品位に
影響する要因が変化したときに適切な品質予測値が得ら
れ、高炉溶銑の品質管理が的確に行えるようになった。
更に、溶銑品質ニューラルネットワークの学習方法を用
いて再学習を適宜行い、システムの機能を維持し続ける
ようにしたので、設備の状態や操業状況の変化に柔軟に
対応することができる。
As described above, according to the present invention, if the hot metal quality predicted value is outside the allowable range of the target control value, the hot metal quality predicted value is within the allowable range of the target control value. Since the optimum operation amount is determined by inputting the operation amount and the specifications of operation in a pseudo manner, and the predicted time is determined by various delay times introduced in the preprocessing of the input value, Appropriate quality prediction values were obtained when the influencing factors changed, and the quality control of blast furnace hot metal became appropriate.
Further, since the re-learning is appropriately performed by using the learning method of the hot metal quality neural network and the function of the system is continuously maintained, it is possible to flexibly respond to changes in the state of equipment and the operating state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の方法を実施するためのシス
テムのブロック図である。
FIG. 1 is a block diagram of a system for implementing the method of one embodiment of the present invention.

【図2】溶銑品質学習モデルの溶銑品質ニューラルネッ
トワークの構成例を静的(スタティック)モデルで示し
た図である。
FIG. 2 is a diagram showing a configuration example of a hot metal quality neural network of a hot metal quality learning model as a static model.

【図3】溶銑品質学習モデルの溶銑品質ニューラルネッ
トワーク5の構成例を動的(ダイナミック)モデルで示
した図である。
FIG. 3 is a diagram showing a configuration example of a hot metal quality neural network 5 of a hot metal quality learning model by a dynamic model.

【図4】溶銑品質ニューラルネットワークの出力層のア
ウトプットの例を示した図である。
FIG. 4 is a diagram showing an example of output of an output layer of a hot metal quality neural network.

【図5】前記実施例の動作を示すフローチャートであ
る。
FIG. 5 is a flowchart showing the operation of the embodiment.

【図6】前記実施例による溶銑品質の予測値トレンドと
実操業の溶銑品質データのトレンドを示した図である。
FIG. 6 is a diagram showing a predicted value trend of hot metal quality and a trend of hot metal quality data in actual operation according to the embodiment.

【図7】前記実施例による溶銑品質の予測値トレンドと
実操業の溶銑品質データのトレンドを示した図である。
FIG. 7 is a diagram showing a predicted value trend of hot metal quality and a trend of hot metal quality data in actual operation according to the embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西 洋四郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 竹中 正樹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 奥田 克志 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshiro Nishi Marunouchi 1-2-2, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Masaki Takenaka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd. (72) Inventor Katsushi Okuda 1-2 1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高炉操業の諸元値、センサ値及び操作量
を入力する入力層と、溶銑品質の指標となる溶銑温度、
銑中Si及びSの成分値を出力する出力層とを有し、予
め学習させた2層以上の階層型のニューラルネットワー
ク(以下溶銑品質ニューラルネットワークという)を用
意しておき、 この溶銑品質ニューラルネットワークの入力層に現在操
業中の高炉操業の諸元値、センサ値及び操作量を入力
し、その出力層から得られる溶銑品質予測値が許容範囲
内になるように、前記操作量を変更して溶銑品質ニュー
ラルネットワークにより溶銑品質予測値を求め、 溶銑品質予測値が許容範囲内となったときに、溶銑品質
ニューラルネットワークの入力層に入力している高炉操
業の諸元値及び操作量に基づいて操業を行って溶銑品質
の管理を行う高炉溶銑の品質管理方法。
1. An input layer for inputting specifications, sensor values and manipulated variables of blast furnace operation, and hot metal temperature as an index of hot metal quality,
A layered neural network having two or more layers, which has an output layer for outputting the component values of Si and S in the pig iron and is trained in advance (hereinafter referred to as a hot metal quality neural network), is prepared. Input the specifications, sensor values and manipulated variables of the blast furnace operation currently in operation to the input layer of the above, and change the manipulated variables so that the hot metal quality prediction value obtained from the output layer is within the allowable range. The hot metal quality neural network is used to calculate the hot metal quality predicted value, and when the hot metal quality predicted value is within the allowable range, it is based on the blast furnace operation specifications and the manipulated value input to the input layer of the hot metal quality neural network. Blast furnace hot metal quality control method for operating and controlling hot metal quality.
【請求項2】 前記操作量を変更しても溶銑品質予測値
が許容範囲外のときには、溶銑品質予測値が許容範囲内
になるように、前記高炉操業の諸元値を変更して溶銑品
質ニューラルネットワークにより溶銑品質を求める請求
項1記載の高炉溶銑の品質管理方法。
2. When the predicted hot metal quality value is outside the allowable range even if the manipulated variable is changed, the specifications of the blast furnace operation are changed so that the predicted hot metal quality value falls within the allowable range. The quality control method for blast furnace hot metal according to claim 1, wherein the hot metal quality is determined by a neural network.
【請求項3】 所定周期で溶銑品質ニューラルネットワ
ークの自己組織を再学習させる請求項1又は2記載の高
炉溶銑の品質管理方法。
3. The quality control method for hot metal of blast furnace according to claim 1, wherein the self-organization of the hot metal quality neural network is re-learned at a predetermined cycle.
【請求項4】 溶銑品質ニューラルネットワークの出力
層から出力された溶銑品質予測値と、実操業上得られた
実績品質値とが許容偏差以上相違する場合には、溶銑品
質ニューラルネットワークの自己組織を再学習させる請
求項1、2又は3記載の高炉溶銑の品質管理方法。
4. If the hot metal quality prediction value output from the output layer of the hot metal quality neural network and the actual quality value obtained in actual operation differ by more than a permissible deviation, the self-organization of the hot metal quality neural network is performed. The quality control method for blast furnace hot metal according to claim 1, 2 or 3, wherein the method is relearned.
JP21119092A 1991-08-09 1992-08-07 Method for controlling quality of molten iron in blast furnace Pending JPH0673414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21119092A JPH0673414A (en) 1991-08-09 1992-08-07 Method for controlling quality of molten iron in blast furnace

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP20022091 1991-08-09
JP2643592 1992-02-13
JP3-200220 1992-07-08
JP4-180798 1992-07-08
JP4-26435 1992-07-08
JP18079892 1992-07-08
JP21119092A JPH0673414A (en) 1991-08-09 1992-08-07 Method for controlling quality of molten iron in blast furnace

Publications (1)

Publication Number Publication Date
JPH0673414A true JPH0673414A (en) 1994-03-15

Family

ID=27458497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21119092A Pending JPH0673414A (en) 1991-08-09 1992-08-07 Method for controlling quality of molten iron in blast furnace

Country Status (1)

Country Link
JP (1) JPH0673414A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014562A3 (en) * 2000-08-11 2002-12-19 Dofasco Inc Desulphurization reagent control method and system
CN104778361A (en) * 2015-04-14 2015-07-15 浙江大学 Improved method for predicting hot-metal silicon content by EMD-Elman (empirical mode decomposition-Elman) neural network
WO2019112207A1 (en) * 2017-12-04 2019-06-13 주식회사 포스코 Apparatus and method for controlling amount of pulverized coal injection
JP2022010199A (en) * 2017-03-10 2022-01-14 荏原環境プラント株式会社 Process-control supporting device and method
JP7028375B1 (en) * 2020-07-29 2022-03-02 Jfeスチール株式会社 Dross defect prediction method, dross defect reduction method, hot-dip galvanized steel sheet manufacturing method, alloyed hot-dip galvanized steel sheet manufacturing method, dross defect prediction model generation method, dross defect prediction device, and dross defect prediction terminal system
WO2022049859A1 (en) 2020-09-03 2022-03-10 Jfeスチール株式会社 Steel strip absorbed hydrogen amount prediction method, absorbed hydrogen amount control method, manufacturing method, generation method of absorbed hydrogen amount prediction model, and absorbed hydrogen amount prediction device
JPWO2022270092A1 (en) * 2021-06-25 2022-12-29

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014562A3 (en) * 2000-08-11 2002-12-19 Dofasco Inc Desulphurization reagent control method and system
US6607577B2 (en) 2000-08-11 2003-08-19 Dofasco Inc. Desulphurization reagent control method and system
CN104778361A (en) * 2015-04-14 2015-07-15 浙江大学 Improved method for predicting hot-metal silicon content by EMD-Elman (empirical mode decomposition-Elman) neural network
JP2022010199A (en) * 2017-03-10 2022-01-14 荏原環境プラント株式会社 Process-control supporting device and method
WO2019112207A1 (en) * 2017-12-04 2019-06-13 주식회사 포스코 Apparatus and method for controlling amount of pulverized coal injection
JP7028375B1 (en) * 2020-07-29 2022-03-02 Jfeスチール株式会社 Dross defect prediction method, dross defect reduction method, hot-dip galvanized steel sheet manufacturing method, alloyed hot-dip galvanized steel sheet manufacturing method, dross defect prediction model generation method, dross defect prediction device, and dross defect prediction terminal system
WO2022049859A1 (en) 2020-09-03 2022-03-10 Jfeスチール株式会社 Steel strip absorbed hydrogen amount prediction method, absorbed hydrogen amount control method, manufacturing method, generation method of absorbed hydrogen amount prediction model, and absorbed hydrogen amount prediction device
JPWO2022270092A1 (en) * 2021-06-25 2022-12-29
WO2022270092A1 (en) * 2021-06-25 2022-12-29 Jfeスチール株式会社 Steel sheet non-plating defect prediction method, steel sheet defect reduction method, method for manufacturing hot-dip galvanized steel sheet, and method for generating steel sheet non-plating defect prediction model

Similar Documents

Publication Publication Date Title
He et al. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network
CN108676955A (en) A kind of BOF Steelmaking Endpoint carbon content and temprature control method
CN109447346B (en) Converter oxygen consumption prediction method based on gray prediction and neural network combined model
US11294338B2 (en) Use of comprehensive artificial intelligence in primary industry plants
CN1403593A (en) Blast furnace smelt controlling method with intelligent control system
CN104778361B (en) The method of modified EMD Elman neural network prediction molten iron silicon contents
CN113849020B (en) Billet heating curve design method and device based on artificial intelligence algorithm
CN113962050A (en) Oxygen scheduling calculation method combining production consumption prediction and pipe network calculation
JPH0673414A (en) Method for controlling quality of molten iron in blast furnace
Larsen et al. Intelligent control of cupola melting
KR100328937B1 (en) Method for predicting blowing of converter using neural network
US4857106A (en) Method for controlling operation of a blast furnace
JPH02170904A (en) Method for predicting furnace heat in blast furnace
JPH05195035A (en) Device for controlling blowing converter
JPH05247467A (en) Control unit for combustion in coke oven
JPH0587462A (en) Burning controller of sintered ore
JP4110780B2 (en) Estimation method of hot metal temperature and disturbance in blast furnace
CN111679584B (en) Regulating and controlling method and device for blast furnace smelting
JPH0637650B2 (en) Blast furnace blast flow control method
KR970010980B1 (en) Temperature and components in furnace bath using neural network
JP6933196B2 (en) Blast furnace unloading speed prediction model learning method, blast furnace unloading speed prediction method, blast furnace operation guidance method, blast furnace unloading speed control method, hot metal manufacturing method, blast furnace operation method, and blast furnace unloading speed prediction Model learning device
JP2696114B2 (en) Blast furnace operation management method
CN117272788A (en) Method for predicting temperature of molten pool
JP2518753B2 (en) Blast furnace charge distribution control device
CN117369263A (en) Intelligent combustion control method of hot blast stove based on reinforcement learning and attention mechanism