JPH0673184B2 - Optical information reproducing method and device - Google Patents

Optical information reproducing method and device

Info

Publication number
JPH0673184B2
JPH0673184B2 JP59221722A JP22172284A JPH0673184B2 JP H0673184 B2 JPH0673184 B2 JP H0673184B2 JP 59221722 A JP59221722 A JP 59221722A JP 22172284 A JP22172284 A JP 22172284A JP H0673184 B2 JPH0673184 B2 JP H0673184B2
Authority
JP
Japan
Prior art keywords
light
recording medium
hole
depth
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59221722A
Other languages
Japanese (ja)
Other versions
JPS61104334A (en
Inventor
惠一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59221722A priority Critical patent/JPH0673184B2/en
Publication of JPS61104334A publication Critical patent/JPS61104334A/en
Publication of JPH0673184B2 publication Critical patent/JPH0673184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報記録媒体の情報再生方法及び装置に関す
るものである。
The present invention relates to an information reproducing method and apparatus for an optical information recording medium.

(従来技術と問題点) レーザビームを集光レンズにより微小スポットに集光し
て記録媒体面に照射し、記録媒体面に穴を形成すること
で情報を記録する方式としては種種のものが提案されて
いる。
(Prior art and problems) Various types of methods are proposed for recording information by converging a laser beam into a minute spot by a condenser lens and irradiating the surface of the recording medium to form a hole in the surface of the recording medium. Has been done.

しかし、穴の有無による記録方式では、媒体平面内での
密度は、媒体に照射されるビームスポット径で決まるた
め、ビームスポット径を変えずに記録密度を平面内で上
げることは難しい。このような問題点の解決策として記
録層を媒体厚さ方向で重ねることで記録容量を上げる方
式が提案されている(昭和59年度電子通信学会総合全国
大会講演論文集S5−12)。
However, in the recording method with or without holes, the density in the plane of the medium is determined by the diameter of the beam spot irradiated on the medium, so it is difficult to increase the recording density in the plane without changing the beam spot diameter. As a solution to such a problem, a method has been proposed in which the recording capacity is increased by stacking recording layers in the thickness direction of the medium (Proceedings of the Annual Conference of the Institute of Electronics and Communication Engineers, 1984, S5-12).

これは第1,第2,第3の光吸収層の上下に異なった色の発
色剤(例えば青色、赤色、緑色の発色剤)と顕色剤の層
を有する構造をもち、第1の光吸収層に光が照射される
と青色に、第2,第3の光吸収層に光が照射されるとそれ
ぞれ赤色,緑色の発色を示す。光吸収層の選択は照射ビ
ームの深さ方向の焦点位置を変えることにより可能で、
各吸収層への記録および再生を行っている。しかし、各
層間の間隔が近接しすぎるとクロストークが生じて各層
を独立に記録または再生することが難しくなり、ビーム
スポットの焦点深度からいって各吸収層の間隔は10μm
以上あることが必要である。
This has a structure having layers of different color developing agents (for example, blue, red and green color developing agents) and a developer above and below the first, second and third light absorbing layers, and the first light absorbing layer. When the absorption layer is irradiated with light, blue is emitted, and when the second and third light absorption layers are irradiated with light, red and green are emitted, respectively. The light absorption layer can be selected by changing the focal position of the irradiation beam in the depth direction.
Recording and reproduction are performed on each absorption layer. However, if the distance between the layers is too close, crosstalk occurs and it becomes difficult to record or reproduce each layer independently, and the distance between the absorption layers is 10 μm due to the depth of focus of the beam spot.
The above is necessary.

また、各層をかなりの厚さで均一に形成することが求め
られ、広い面積の記録媒体を形成することが難しい。
Further, it is required to form each layer uniformly with a considerable thickness, and it is difficult to form a recording medium having a large area.

そこで、光の照射により穴が形成される記録層を一層ま
たは三層有する記録媒体において、前記記録媒体表面か
ら深さが異なる穴を形成することで情報を記録すること
によって、記録容量を上げる方式が考えられる。
Therefore, in a recording medium having one or three recording layers in which holes are formed by light irradiation, information is recorded by forming holes having different depths from the surface of the recording medium to increase the recording capacity. Can be considered.

第5図は基板30上に形成した一層の記録層31に深さの異
なる穴を形成した図である。このような穴は光の照射時
間および照射パワーを変えることにより形成可能であ
る。また深さは1μm以下であるので、ビームスポット
の焦点の深さ方向の位置を変える必要はない。
FIG. 5 is a view in which holes having different depths are formed in one recording layer 31 formed on the substrate 30. Such holes can be formed by changing the irradiation time and irradiation power of light. Since the depth is 1 μm or less, it is not necessary to change the position of the focal point of the beam spot in the depth direction.

第6図は4つの異なる記録層32〜35を基板30上へ積層し
た記録媒体である。穴を形成する記録層の数を変えるこ
とで異なる深さの穴を形成することができる。第6図で
は4層の記録層があるので4種類の深さの異なる穴が形
成でき、深さに応じて各々を“1"、“2"、“3"、“4"の
情報とすることができる。従来は穴の有る、無しで各々
を“0"、“1"の情報としていたので、記録容量は2倍に
増加することがわかる。さらに多層にすれば、原理的に
はさらに容量が増加する。
FIG. 6 shows a recording medium in which four different recording layers 32 to 35 are laminated on the substrate 30. By changing the number of recording layers forming the holes, holes having different depths can be formed. Since there are four recording layers in FIG. 6, four kinds of holes having different depths can be formed, and each of them has information of "1", "2", "3", "4" according to the depth. be able to. It can be seen that the recording capacity is doubled because the information of “0” and “1” is conventionally used with and without holes. In principle, if the number of layers is increased, the capacity is further increased.

多層記録媒体においては、穴形成に必要な最小光照射パ
ワーを上側の層ほど低くしておくことで照射パワーを変
えて、異なる深さの穴を形成できることがわかる。低照
射パワーでは上側の層のみに、パワーを上げるほど下側
の層まで穴が形成されることになる。
It can be seen that in the multilayer recording medium, the minimum light irradiation power required for hole formation is set to be lower in the upper layer so that the irradiation power can be changed and holes having different depths can be formed. When the irradiation power is low, holes are formed only in the upper layer and as the power is increased to the lower layer.

穴の深さの検出は反射光量の変化で行うことができる。
穴の内側と外側からの反射光の干渉効果により、穴の深
さに対して第7図のaのような光量の変化を生じる。波
長の1/4の深さで最小の光量となる。よってこれより浅
い穴の深さであれば反射光量の違いで深さを検出できる
ことになる。
The depth of the hole can be detected by changing the amount of reflected light.
Due to the interference effect of the reflected light from the inside and the outside of the hole, a change in the amount of light occurs with respect to the depth of the hole as shown in FIG. The minimum amount of light is obtained at a depth of 1/4 of the wavelength. Therefore, if the depth of the hole is shallower than this, the depth can be detected by the difference in the amount of reflected light.

しかし、上記再生方法は光量の強弱でもって深さを判定
するために、媒体の反射率の不均一さの影響を受けやす
い。例えば第7図のbは媒体の反射率が低下した部分で
の反射光量を示したもので、媒体の反射率が50%低下す
れば、反射光量は50%に低下する。このように反射率が
変動しても穴の有無を判断できるためには、a、bの
山、谷を分離する閾値は第7図のTの値に設定する必要
があり、穴の有無だけの2値情報を得るのが限度であ
る。このように、従来では反射光量から穴の深さ情報を
多値に知ることは難しい。穴の深さをλ/4以上にした場
合、同じ反射光量が得られるλ/4以下の穴の深さが存在
するので、記録情報を増やすことにはならない。このよ
うに、従来は穴の深さ情報を有効に利用できなかった。
However, since the above-mentioned reproducing method determines the depth based on the intensity of light, it is susceptible to the nonuniformity of the reflectance of the medium. For example, FIG. 7B shows the amount of reflected light at the portion where the reflectance of the medium is reduced. If the reflectance of the medium is reduced by 50%, the amount of reflected light is reduced to 50%. In order to determine the presence or absence of a hole even if the reflectance fluctuates in this way, it is necessary to set the threshold value for separating the peaks and valleys of a and b to the value of T in FIG. The limit is to obtain binary information of. As described above, conventionally, it is difficult to obtain multi-valued depth information of a hole from the amount of reflected light. When the depth of the hole is λ / 4 or more, there is a hole depth of λ / 4 or less that can obtain the same amount of reflected light, so that the recorded information is not increased. As described above, conventionally, the depth information of the hole cannot be effectively used.

(発明の目的) 本発明の目的は上記のような欠点を除去せしめた媒体の
反射率の不均一さに影響されなく、かつ記録穴の深さを
2倍に検出できる光情報再生方法及び装置を提供するこ
とにある。
(Object of the Invention) An object of the present invention is an optical information reproducing method and apparatus which are not affected by the non-uniformity of the reflectance of the medium which eliminates the above-mentioned drawbacks and which can double the depth of the recording hole. To provide.

(発明の構成) この発明の光情報再生方法は表面上の高低でもって情報
を記録した情報媒体の情報再生方法において、少なくと
も2つ以上の異なる波長の単色光を上記情報記録媒体の
同一箇所に照射せしめ、上記情報媒体から反対もしくは
透過する光量を各々測定し、それら光量の比を求める工
程を有することに特徴がある。また、この発明の装置
は、少なくとも2つの異なる波長の単色光源と、上記光
源からの単色光を集光する手段と、焦点位置検出手段
と、被測定物からの上記単色光の反射光量もしくは透過
光量を測定する手段と、を備え、上記各各の単色光の反
射光量もしくは透過光量の比を求める回路を具備してい
ることに特徴がある。
(Structure of the Invention) The optical information reproducing method of the present invention is an information reproducing method for an information medium in which information is recorded with height on the surface, and at least two or more monochromatic lights having different wavelengths are applied to the same portion of the information recording medium. It is characterized in that it has a step of irradiating, measuring the amount of light opposite or transmitted from the information medium, and obtaining the ratio of the amounts of light. Further, the apparatus of the present invention includes at least two monochromatic light sources having different wavelengths, a means for condensing monochromatic light from the light source, a focus position detecting means, and a reflected light amount or transmission of the monochromatic light from the object to be measured. Means for measuring the amount of light, and a circuit for obtaining the ratio of the amount of reflected light or the amount of transmitted light of each monochromatic light.

(発明の作用・原理) 第2図、第3図は本発明による光情報再生方法の原理を
示す図である。記録媒体の表面S1から深さαの穴が記録
されているとき、信号再生時に得られる反射光量は表面
S1からの反射光と穴の底S2からの反射光との和によって
得られる。いま、表面S1の振幅反射率をγ、穴の底の
S2の振幅反射率をγとし、計算を簡単にするため、記
録媒体に照射した光ビーム(光量A)が表面S1で反射す
る断面積と穴の底S2で反射する断面積が等しいとした場
合、反射光量Rは次式で得られる。
(Operation and Principle of the Invention) FIGS. 2 and 3 are views showing the principle of the optical information reproducing method according to the present invention. When a hole of depth α is recorded from the surface S 1 of the recording medium, the amount of reflected light obtained during signal reproduction is
It is obtained by the sum of the reflected light from S 1 and the reflected light from the bottom S 2 of the hole. Now, the amplitude reflectance of the surface S 1 is γ 1 , the bottom of the hole
In order to simplify the calculation by setting the amplitude reflectance of S 2 to γ 2 , the cross-sectional area where the light beam (light amount A) irradiated on the recording medium is reflected on the surface S 1 and the bottom S 2 of the hole are defined. If they are equal, the reflected light amount R is obtained by the following equation.

(1)式において第1項は媒体表面S1からの反射光の振
幅、第2項は穴の底S2の振幅反射率に穴の深さに起因す
る光学位相差を乗じたもので、穴の底S2からの反射光振
幅を表す。(1)式において、反射光量が最小になる時は
第3項が−1になる時で、穴の深さαが次式を満足する
時である。
In equation (1), the first term is the amplitude of the reflected light from the medium surface S 1 , and the second term is the amplitude reflectance of the bottom S 2 of the hole multiplied by the optical phase difference due to the depth of the hole. It represents the reflected light amplitude from the bottom S 2 of the hole. In the formula (1), the amount of reflected light is the minimum when the third term is -1, and the depth α of the hole satisfies the following formula.

α=(2n+1)λ/4 ただしn=0,1,2, ……(2) 従って、反射光量は穴の深さによって異なると同時に、
入射光の波長によっても異なる。第3図は2つの波長の
光(λ12<λ)について、反射光量が穴の深
さにつれてどう変化するかを示す図である。λの波長
の光に対する反射光量は穴の深さαがλ1/4のとき最小
となるように変化しλの波長の光に対する反射光量は
穴の深さαがλ2/4のとき最小となるように変化する。
このため穴の深さがDのとき、反射光量はλの波長の
光に対してR1、λの波長の光に対してR2の値と異なっ
た値になる。この両者の反射光量の比Kは次式で与えら
れる。
α = (2n + 1) λ / 4 where n = 0,1,2, ... (2) Therefore, the amount of reflected light differs depending on the depth of the hole,
It also depends on the wavelength of the incident light. FIG. 3 is a diagram showing how the amount of reflected light changes with the depth of the hole for light of two wavelengths (λ 1 , λ 2 : λ 12 ). reflected light amount with respect to lambda 1 wavelengths of light are reflected light amount with respect to a change to lambda 2 wavelengths of light to minimize the time a depth α is lambda 1/4 of the holes of the hole depth α of lambda 2/4 When it changes to the minimum.
Therefore, when the depth of the hole is D, the amount of reflected light is different from the value of R 1 for the light of wavelength λ 1 and the value of R 2 for the light of wavelength λ 2 . The ratio K of the two reflected light amounts is given by the following equation.

ただし、m=21γγ2/(▲γ2 1▼+▲γ2 2▼) 反射光量比Kと穴の深さαとの関係を第4図に示す。反
射光量比は、nを整数とすると、α=(2n−1)λ1/4
で極小値、α=(2n−1)λ2/4で極大値になる。この
図から穴の深さを0〜λ1/4またはλ2/4〜3λ1/4の範
囲で、反射光量比Kから穴の深さの値が一義的に決めら
れる。また、(1)式のRと(3)式のKとではγ1の変
化による変動が小さい。例えば、反射振幅γ、γ
同じく50%小さくなっても反射光量比Kは変化しない。
このため、図4のa,b,c,d,eの様に閾値を設定し、反射
光量から多値(1、2、3、4、5、6)の値として読
み取ることが可能である。したがって、波長の異なるレ
ーザ光を記録媒体に入射せしめ、その反射光を別々に検
出し、両者の検出光量比を求めることによって記録媒体
の穴の深さを求めることができ、多値の記録情報として
読み出せる。このため、本発明では従来に比べ2倍以上
の記録再生が可能である。
However, FIG. 4 shows the relationship between m = 2 1 γ 1 γ 2 / (▲ γ 2 1 ▼ + ▲ γ 2 2 ▼) reflected light amount ratio K and the depth α of the hole. Reflection light intensity ratio, when n is an integer, α = (2n-1) λ 1/4
In minimum value, alpha = become maximum at (2n-1) λ 2/ 4. In the range of this figure the depth of the hole in the 0~λ 1/4 or λ 2 / 4~3λ 1/4, the depth values of the hole from the reflected light amount ratio K is determined uniquely. Further, in the R of the equation (1) and the K of the equation (3), the variation due to the change of γ 1 and γ 2 is small. For example, the reflected light amount ratio K does not change even when the reflection amplitudes γ 1 and γ 2 are similarly reduced by 50%.
Therefore, it is possible to set a threshold value like a, b, c, d, and e in FIG. 4 and read it as a multivalued value (1, 2, 3, 4, 5, 6) from the reflected light amount. . Therefore, it is possible to obtain the depth of the hole of the recording medium by making laser light having different wavelengths incident on the recording medium, detecting the reflected lights separately, and obtaining the ratio of the detected light amounts of both, and to obtain the multivalued recording information. Can be read as Therefore, in the present invention, recording / reproducing more than twice as much as the conventional one can be performed.

(実施例) 第1図は本発明による光情報再生方法と装置の実施例を
示す図である。半導体レーザ1aから出射された波長λ
の光2aはレンズ3で平行光束になり誘電体ミラー4を通
過する。半導体レーザ1bから出射された波長λの光2b
はレンズ3で平行光束になり誘電体ミラー4で反射され
る。波長λとλの光は偏光プリズム6を通過した後
1/4波長板7によって円偏光になり、反射鏡8で反射さ
れた後、レンズ9で記録媒体20上の記録トラック21上に
記録された穴に集光される。記録媒体20からの反射光は
レンズ9,反射鏡8を経た後、1/4波長板7によって再び
直線偏光に戻り、偏光ビームスプリッター6で反射され
る。さらに反射光は誘電体ミラー11によって波長λ
光12と波長λの光13とに分けられ、波長λの光12は
受光器14で光量が検出される。波長λの光13はハーフ
ミラー15によって2分され、一方はフォーカシング検出
器16で、他方はトラッキング検出器17で検出される。フ
ォーカシング検出器16とトラッキング検出器17との和信
号と受光器14の検出信号の比が比較器18で演算され、こ
の出力が穴の深さに対する検出信号として得られる。
(Embodiment) FIG. 1 is a diagram showing an embodiment of an optical information reproducing method and apparatus according to the present invention. Wavelength λ 1 emitted from semiconductor laser 1a
The light 2a is converted into a parallel light flux by the lens 3 and passes through the dielectric mirror 4. Light 2b of wavelength λ 2 emitted from semiconductor laser 1b
Is converted into a parallel light flux by the lens 3 and reflected by the dielectric mirror 4. After the light of wavelengths λ 1 and λ 2 passes through the polarizing prism 6,
The light is converted into circularly polarized light by the quarter-wave plate 7, reflected by the reflecting mirror 8, and then condensed by the lens 9 into the hole recorded on the recording track 21 on the recording medium 20. The reflected light from the recording medium 20 passes through the lens 9 and the reflecting mirror 8, then returns to linearly polarized light again by the 1/4 wavelength plate 7, and is reflected by the polarization beam splitter 6. Furthermore the reflected light is divided into the light 13 of the light 12 and wavelength lambda 2 wavelength lambda 1 by the dielectric mirror 11, the light 12 of the wavelength lambda 1 is the amount of light is detected by the photodetector 14. The light 13 having the wavelength λ 2 is split into two by the half mirror 15, one of which is detected by the focusing detector 16 and the other of which is detected by the tracking detector 17. The comparator 18 calculates the ratio between the sum signal of the focusing detector 16 and the tracking detector 17 and the detection signal of the photodetector 14, and this output is obtained as a detection signal for the depth of the hole.

半導体レーザ1a,1bの波長λ1が780nm、830nmの光
を用い、反射率γ1 22 2が0.5の記録媒体を用いたと
き、第(3)式から求められる検出信号Kの値として第4
図と同様の図が得られ、穴の深さをλ2/4〜3λ1/4の約
1/2波長にわたって決めることができた。
When the wavelengths λ 1 and λ 2 of the semiconductor lasers 1a and 1b are 780 nm and 830 nm, and the recording medium has the reflectances γ 1 2 and γ 2 2 of 0.5, the detection signal obtained from the equation (3) is used. Fourth as the value of K
Figure similar is obtained about the depth of the hole of the λ 2 / 4~3λ 1/4
It was possible to decide over 1/2 wavelength.

(発明の効果) 本発明により、従来の再生方法よりも2倍の記録情報を
検出でき、容量の大きな光記録を実現することができ
る。また、記録媒体表面の反射率の不均一さに影響され
ることなく穴の深さを検出することができる。
(Effects of the Invention) According to the present invention, it is possible to detect twice as much recording information as in the conventional reproducing method, and it is possible to realize optical recording with a large capacity. Further, the depth of the hole can be detected without being affected by the unevenness of the reflectance of the surface of the recording medium.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による光情報再生方法と装置の一実施例
を示す図、第2図,第3図は本発明による光情報再生方
法の原理を示す図、第4図は本発明による光情報再生方
法の効果を示す図、第5図は本発明に用いる単層記録媒
体の例を示す図、第6図は本発明に用いる多層記録媒体
の例を示す図第7図は従来の反射光量検出信号を示す図
である。 図において、1a,1b……レーザ、3,9……レンズ、4,11…
…議誘電体ミラー、6……偏光ビームスプリッター、7
……1/4波長板、14……受光器、15……ハーフミラー、1
6……フォーカミング検出器、17……トラッキング検出
器、18……比較器、20……記録媒体、である。
FIG. 1 is a diagram showing an embodiment of an optical information reproducing method and apparatus according to the present invention, FIGS. 2 and 3 are diagrams showing the principle of the optical information reproducing method according to the present invention, and FIG. 4 is an optical diagram according to the present invention. FIG. 5 is a diagram showing an effect of the information reproducing method, FIG. 5 is a diagram showing an example of a single layer recording medium used in the present invention, FIG. 6 is a diagram showing an example of a multilayer recording medium used in the present invention, and FIG. 7 is a conventional reflection. It is a figure which shows a light amount detection signal. In the figure, 1a, 1b ... laser, 3, 9 ... lens, 4, 11 ...
… Council dielectric mirror, 6 …… Polarizing beam splitter, 7
...... 1/4 wave plate, 14 ...... Receiver, 15 ...... Half mirror, 1
6 ... Focusing detector, 17 ... Tracking detector, 18 ... Comparator, 20 ... Recording medium.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】記録媒体表面からの深さが異なる穴を備え
た光記録媒体の光情報再生方法において、前記光記録媒
体は2つの波長λ、λ(λ<λ)に対して0〜
λ1/4、又はnを1以上の整数とした時に(2n−1)λ2
/4〜(2n+1)λ1/4の深さで穴が形成されていて、2
つの異なる波長の単色光を前記光記録媒体の同一箇所に
照射せしめ、前記光記録媒体から反射もしくは透過する
光量を各波長ごとに測定し、それら光量の比を求める工
程を有することを特徴とする光情報再生方法。
1. An optical information reproducing method for an optical recording medium having holes having different depths from the surface of the recording medium, wherein the optical recording medium has two wavelengths λ 1 and λ 212 ). 0
lambda 1/4, or n a when integers of 1 or above (2n-1) λ 2
/ 4~ (2n + 1) hole at a depth of lambda 1/4 is being formed, 2
And irradiating the same location of the optical recording medium with monochromatic light of three different wavelengths, measuring the amount of light reflected or transmitted from the optical recording medium for each wavelength, and determining the ratio of the amounts of light. Optical information reproduction method.
【請求項2】記録媒体表面からの深さが異なる穴を備
え、2つの波長λ、λ(λ<λ)に対して0〜
λ1/4、又はnを1以上の整数とした時に(2n−1)λ2
/4〜(2n+1)λ1/4の深さで穴が形成されている光記
録媒体と、2つの異なる波長の単色光と、前記各々の光
源からの単色光を合波し集光する手段と、焦点位置およ
びトラック位置検出手段と、被測定物からの上記単色光
の反射光量もしくは透過光量を測定する手段と、を備
え、さらに上記各々の単色光の反射光量もしくは透過光
量の比を求める回路を具備していることを特徴とする光
情報再生装置。
2. A hole having different depths from the surface of the recording medium is provided, and 0 to 2 wavelengths λ 1 and λ 212 ) are provided.
lambda 1/4, or n a when integers of 1 or above (2n-1) λ 2
/ 4~ (2n + 1) and the optical recording medium having a hole at a depth of lambda 1/4 is formed, two different monochromatic light of wavelength multiplexes condensing a means of monochromatic light from the respective light source And a focus position and track position detecting means, and means for measuring the reflected light amount or transmitted light amount of the monochromatic light from the object to be measured, and further obtaining the ratio of the reflected light amount or the transmitted light amount of each of the monochromatic light. An optical information reproducing apparatus comprising a circuit.
JP59221722A 1984-10-22 1984-10-22 Optical information reproducing method and device Expired - Lifetime JPH0673184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59221722A JPH0673184B2 (en) 1984-10-22 1984-10-22 Optical information reproducing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221722A JPH0673184B2 (en) 1984-10-22 1984-10-22 Optical information reproducing method and device

Publications (2)

Publication Number Publication Date
JPS61104334A JPS61104334A (en) 1986-05-22
JPH0673184B2 true JPH0673184B2 (en) 1994-09-14

Family

ID=16771231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221722A Expired - Lifetime JPH0673184B2 (en) 1984-10-22 1984-10-22 Optical information reproducing method and device

Country Status (1)

Country Link
JP (1) JPH0673184B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648514A (en) * 1987-07-01 1989-01-12 Canon Kk Method and device for reproducing optical information and optical information recording medium
JPH01112530A (en) * 1987-10-26 1989-05-01 Nec Corp Method and device for recording and reproducing information for optical disk

Also Published As

Publication number Publication date
JPS61104334A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
JPH0778916B2 (en) Magneto-optical information reproducing device
US4253019A (en) Apparatus for reading an optical record carrier having a radiation-reflecting information structure
US5724339A (en) Optical recording medium having recording pits of different shapes
US5946288A (en) Optical recording medium having recording pits of different shapes
US5995473A (en) Optical pickup system capable of selectively reading a multiple number of optical disks
JPS6076028A (en) Optical information recording and reproducing device
JPH0673184B2 (en) Optical information reproducing method and device
JPH02265036A (en) Optical head
US6914858B2 (en) Optical pickup for high density recording/reproduction and method to detect a reproduction signal
US8659982B2 (en) Optical information recording/reproducing apparatus and optical information reproducing apparatus
JP2002358683A (en) Optical pickup device
JPS6190339A (en) Optical pick-up
KR0166744B1 (en) High density magneto-optical disk device
JP2955392B2 (en) Optical playback device
JP2638402B2 (en) Optical pickup
JPS60119643A (en) Photodetector
JPH04155630A (en) Optical head and spot projection optical system
JP2970885B2 (en) Optical information reproducing device
KR100322566B1 (en) Method for detecting reproducing signal and/or prepit header signal of optical disk and optical pickup apparatus
KR100214581B1 (en) An optical pickup device
JP3022660B2 (en) Optical recording / reproducing device
JPH07101525B2 (en) Magneto-optical information reproducing device
JPH06274930A (en) Optical recording and reproducing device
JPS5829151A (en) Focus error detector in optical recorder and reproducer
JPH06119653A (en) Optical head device