JPH0672410B2 - Antifouling method - Google Patents

Antifouling method

Info

Publication number
JPH0672410B2
JPH0672410B2 JP2353891A JP2353891A JPH0672410B2 JP H0672410 B2 JPH0672410 B2 JP H0672410B2 JP 2353891 A JP2353891 A JP 2353891A JP 2353891 A JP2353891 A JP 2353891A JP H0672410 B2 JPH0672410 B2 JP H0672410B2
Authority
JP
Japan
Prior art keywords
coating layer
antifouling
electrode
seawater
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2353891A
Other languages
Japanese (ja)
Other versions
JPH04289309A (en
Inventor
嘉造 高木
成興 中村
智正 村山
正実 小池
勘丈 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2353891A priority Critical patent/JPH0672410B2/en
Publication of JPH04289309A publication Critical patent/JPH04289309A/en
Publication of JPH0672410B2 publication Critical patent/JPH0672410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海洋構造物、船舶、海
水輸送用の配管または水路、魚網やいけす網あるいは海
水取水口のスクリーンに海洋生物やスケールが付着して
汚染することを防止する防汚方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents marine organisms and scale from adhering to and contaminating marine structures, ships, pipes or waterways for transporting seawater, fish nets, faucet nets, or seawater intake screens. Regarding antifouling method.

【0002】[0002]

【従来の技術】たとえば発電所の冷却水用の海水を輸送
する配管や海水取水口のスクリーン、船の舷側、桟橋、
浮き台、橋脚などの海洋構造物において常に海水に接し
ている部分には、種々の海草やフジツボ、そのほかの貝
のような海洋生物が付着し、それによって取水量の減少
や船舶の航行速度低下などの問題が生じる。 このた
め、付着した海洋生物を定期的に取り除かなければなら
ないが、これは困難な作業である。
2. Description of the Related Art For example, a pipe for transporting seawater for cooling water of a power plant, a screen for seawater intake, a port side of a ship, a pier,
Various seaweeds, barnacles, and other marine organisms such as shellfish adhere to the parts of marine structures such as pontoons and piers that are constantly in contact with seawater, which reduces water intake and reduces the navigation speed of ships. Such problems occur. For this reason, adhering marine life must be regularly removed, which is a difficult task.

【0003】海洋生物の付着のメカニズムは、まず赤潮
菌などの微生物が付着して生物皮膜が形成され、それに
フジツボなどの大型生物の幼生が付着し成長するという
順序に従う。 従って、微生物の付着を防止すること、
および大型生物の幼生が付着し成長するのを防止するこ
とが上記の問題の効果的な解決策であり、そのための手
法が種々提案されている。
The mechanism of adhesion of marine organisms follows the order that microorganisms such as red tide bacteria first adhere to form a biological film, and larvae of large organisms such as barnacles adhere and grow on it. Therefore, preventing the attachment of microorganisms,
Also, preventing the larvae of large organisms from adhering and growing is an effective solution to the above problems, and various techniques have been proposed for that purpose.

【0004】その多くは、有機スズ化合物、塩素系イオ
ンまたは銅イオンを被防汚体の周囲に発生させて、付着
しようとする生物を死滅させる方法をとる。 これらの
方法は、使用のいかんによっては重大な海洋汚染につな
がり好ましくない。
[0004] Most of them adopt a method of killing the organism to be attached by generating an organic tin compound, a chlorine ion or a copper ion around the antifouling body. These methods are not preferable because they lead to serious marine pollution depending on their use.

【0005】このような状況のなかで、被防汚体に導電
性材料で被覆層を設け、この被覆層と接触しないように
海水中に、チタンなどの電極材と照合電極を配置し、被
覆層を陽極、電極材を陰極として直流電圧を印加し、照
合電極と陽極との電位差を塩素が発生しない範囲にある
一定値に制御しながら微弱な電流を流し、被覆層に触れ
た微生物に電気的なショックを与えてその付着を防止す
る方法が新たに加わり、無害な防汚方法として注目され
つつある。
Under these circumstances, a coating layer is provided on the antifouling body with a conductive material, and an electrode material such as titanium and a reference electrode are arranged in seawater so as not to come into contact with the coating layer, and the coating is performed. A DC voltage is applied with the layer as the anode and the electrode material as the cathode, and a weak current is applied while controlling the potential difference between the reference electrode and the anode to a constant value within the range where chlorine is not generated, and the microorganisms that touch the coating layer are electrically charged. A new method for applying a general shock to prevent the adhesion is newly added, and it is attracting attention as a harmless antifouling method.

【0006】上記の防汚方法によれば、海を汚染する有
害物質を発生することなく、被防汚体への生物付着を有
効に防止できるが、他の防汚方法と同様に砂、死貝のか
けら、海洋生物の排泄物、シリカ、鉄、マンガンなどの
粒子の付着を防止できず、被覆層の表面にスケールが形
成されてしまう。
According to the above antifouling method, it is possible to effectively prevent biological adhesion to the antifouling object without generating harmful substances that pollute the sea. It is not possible to prevent the attachment of particles such as shellfish fragments, excrement of marine organisms, silica, iron and manganese, and scales are formed on the surface of the coating layer.

【0007】スケールが被覆層の表面を覆うと通電が妨
げられ、防汚効果が低下する。 この問題は、微弱な電
流により生物の付着を防止する上記の防汚方法において
深刻である。
When the scale covers the surface of the coating layer, the current flow is hindered and the antifouling effect is reduced. This problem is serious in the above antifouling method, which prevents the attachment of organisms by a weak electric current.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、微弱
な電流により生物の付着を防止する上記の防汚方法にお
いて、スケールの形成を防止して効果を持続させた防汚
方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an antifouling method which prevents scale formation and maintains its effect in the above antifouling method for preventing the attachment of organisms by a weak electric current. Especially.

【0009】[0009]

【課題を解決するための手段】本発明の防汚方法は、海
水に接触する構造物、船舶、配管または網への海洋生物
およびスケールの付着による汚染を防止する方法であっ
て、被防汚体の防汚を必要とする部分に、直接または絶
縁層を介して導電性材料の被覆層を設けて作用極とし、
この被覆層と接触しないように海水中に不溶性の電極材
を設けて対極とし、さらに照合電極を配置して作用極と
対極の間に直流電圧を印加し、照合電極と作用極との電
位差を測定してそれが1.2〜−0.6V(対SCE)
の範囲で周期的に変化するように制御しながら微弱な電
流を流して、海洋生物およびスケールの付着を防止する
ことからなる。
The antifouling method of the present invention is a method for preventing pollution due to the adhesion of marine organisms and scales to structures, ships, pipes or nets which come into contact with seawater, and which is to be protected against contamination. A portion of the body that requires antifouling is provided with a coating layer of a conductive material directly or through an insulating layer to form a working electrode,
To prevent contact with this coating layer, provide an insoluble electrode material in seawater as a counter electrode, and then arrange a reference electrode and apply a DC voltage between the working electrode and the counter electrode to reduce the potential difference between the reference electrode and the working electrode. Measured and found to be 1.2 to -0.6V (vs. SCE)
A weak electric current is applied while controlling it to periodically change in the range of to prevent the attachment of marine organisms and scales.

【0010】照合電極と作用極との電位差を1.2〜−
0.6V(対SCE)の範囲で周期的に変化させると
は、電位差を上記の範囲で2段階以上、好ましくは4〜
6段階に分け、順に一定のサイクルで通電するか、また
は無段階で変化させるということである。 ただし、こ
のサイクルは規則的である必要はない。 このような通
電は、市販の直流電源装置(整流器)に電圧の調整およ
びタイミング手段を付加したものを使用して、容易に実
施できる。
The potential difference between the reference electrode and the working electrode is 1.2 to −
Periodically changing within the range of 0.6 V (vs. SCE) means that the potential difference is in two or more steps within the above range, preferably 4 to
It means that the current is divided into 6 stages, and the current is sequentially applied in a constant cycle or is changed steplessly. However, this cycle does not have to be regular. Such energization can be easily performed using a commercially available DC power supply device (rectifier) to which voltage adjustment and timing means are added.

【0011】被覆層はコンデンサ効果を有するから、電
源装置の出力を変化させても、被覆層の電位はすぐには
変化しない。 従って、電位差の変化をあまり短時間で
行なっても意味がない。 通電サイクルは、被覆層の厚
さ、表面積、材料などを考慮して設定する。 段階的に
変化させる場合、各電位における通電時間が1時間以上
であれば、上記のような問題はほとんど生じない。 一
方で、通電サイクルが長すぎると、被覆層への物体の付
着が次第に強固になり、剥離が難しくなる。海水中に含
まれている物質とそれらの濃度にもよるが、各電位の通
電時間は6時間以内にすることが好ましい。
Since the coating layer has a capacitor effect, the potential of the coating layer does not change immediately even if the output of the power supply device is changed. Therefore, it is meaningless to change the potential difference in a very short time. The energization cycle is set in consideration of the thickness, surface area, material, etc. of the coating layer. In the case of stepwise change, if the energization time at each potential is 1 hour or more, the above problems hardly occur. On the other hand, if the energization cycle is too long, the adherence of the object to the coating layer will gradually become strong, and peeling will be difficult. Although it depends on the substances contained in seawater and their concentrations, it is preferable that the energization time of each potential is within 6 hours.

【0012】本発明の防汚方法を実施する装置は、被防
汚体の種類および周囲の環境条件に応じて適切に構成す
ればよい。 被覆層は被防汚体に直接設けてもよいし、
被防汚体が絶縁を必要とするならば両者の間に絶縁層を
設けてもよい。 また、コンクリート水路、橋脚、船な
ど、被防汚体に直接被覆層を設けることが困難なものに
対しては、適当な給電体上に被覆層を形成し、それらを
被防汚体の表面に配置してもよい。
The apparatus for carrying out the antifouling method of the present invention may be constructed appropriately according to the type of the antifouling object and the surrounding environmental conditions. The coating layer may be directly provided on the antifouling body,
If the body to be soiled requires insulation, an insulating layer may be provided between the two. Also, for concrete waterways, bridge piers, ships, etc., where it is difficult to directly provide a coating layer on the anti-fouling body, form a coating layer on a suitable power supply and attach them to the surface of the anti-fouling body. It may be placed at.

【0013】被覆層についていえば、海水の流れが速い
ところなど摩耗の心配があるときは、導電性ゴムシート
をライニングしたものが好ましいし、海水の流れがほと
んどないところであれば、導電性塗料の塗膜で足りるで
あろう。 網のような被防汚体には、熱可塑性樹脂の粉
末と導電性物質の粉末とからなる組成物を使用した粉体
ライニング法で被覆層を形成するとよい。
As for the coating layer, a lined conductive rubber sheet is preferred when there is a risk of abrasion such as where the flow of seawater is fast, and when there is almost no flow of seawater, a conductive paint is used. A coating will suffice. It is advisable to form a coating layer on an antifouling object such as a net by a powder lining method using a composition comprising a powder of a thermoplastic resin and a powder of a conductive substance.

【0014】電極材には、チタン基材に貴金属をメッキ
したものや、貴金属の酸化物をコーティングしたもの、
あるいは銀鉛合金や炭素系材料の棒状体が適している。
電極材と被覆層とが直接接触しないように両者を配置
する必要があり、これには電極材を絶縁材のチューブな
どで部分的に被覆しておくとよい。
As the electrode material, a titanium base material plated with a noble metal or a noble metal oxide coated,
Alternatively, a rod-shaped body made of a silver-lead alloy or a carbon-based material is suitable.
It is necessary to dispose the electrode material and the coating layer so as not to come into direct contact with each other, and it is preferable to partially cover the electrode material with an insulating tube or the like.

【0015】[0015]

【作用】海水中には、微生物のほかにも鉱物質の粒子な
ど、さまざまな物体が浮遊している。 海水と浮遊する
粒子との界面にはゼータ電位とよばれる電位差が存在す
る。 このため、電場をかけると電気泳動により粒子が
電極に吸着され、スケールを形成する。 ゼータ電位は
海水の成分およびpHによって異なる。 一例として、
NaCl溶液中のAl23粒子について、溶液のpHと
ゼータ電位との関係を図1に示す。 図1にみるよう
に、ゼータ電位はあるpHで0になり、これを等電点と
よぶ。 等電点では、その物体の電極への吸着エネルギ
ーも0になる。 図1から、Al23の粒子は海水のp
Hが9.5のときゼータ電位が0となり、電極に付着し
なくなることがわかる。
[Function] Various objects such as particles of minerals are suspended in seawater in addition to microorganisms. There is a potential difference called zeta potential at the interface between seawater and floating particles. Therefore, when an electric field is applied, the particles are adsorbed to the electrodes by electrophoresis and form a scale. The zeta potential depends on the composition and pH of seawater. As an example,
FIG. 1 shows the relationship between the pH of the Al 2 O 3 particles in the NaCl solution and the zeta potential. As shown in FIG. 1, the zeta potential becomes 0 at a certain pH, which is called the isoelectric point. At the isoelectric point, the adsorption energy of the object on the electrode is also zero. From FIG. 1, the particles of Al 2 O 3 are p
It can be seen that when H is 9.5, the zeta potential becomes 0, and the zeta potential does not adhere to the electrode.

【0016】前記したように、海水中には種々の物質の
粒子が浮遊していて、等電点は各粒子を形成する物質ご
とに異なる。 このため電位を一定にして通電を続ける
と、その通電条件が与えるpHが等電点になる物質以外
の物質の粒子が電極に付着し、それらが次第に強固なス
ケールへと成長する。
As described above, particles of various substances are suspended in seawater, and the isoelectric point varies depending on the substance forming each particle. For this reason, when electricity is continued with the potential kept constant, particles of a substance other than the substance having a pH that is the isoelectric point given by the current attachment adheres to the electrode, and they gradually grow to a strong scale.

【0017】防汚装置の運転において照合電極に対する
被覆層の電位を変化させると、被覆層に接する部分の海
水のpHも変化する。 海水が滞留しているところで
は、被覆層の電位を1.2V(対SCE)から−0.6
V(対SCE)に変えると、被覆層に接する部分の海水
のpHは3から11に変化する。
When the potential of the coating layer with respect to the reference electrode is changed in the operation of the antifouling device, the pH of seawater in the portion in contact with the coating layer also changes. Where seawater is retained, change the potential of the coating layer from 1.2 V (against SCE) to -0.6
When changed to V (against SCE), the pH of seawater in the portion in contact with the coating layer changes from 3 to 11.

【0018】海水中に浮遊するほとんどの物体は、pH
3〜11の範囲内に等電点を有するから、被覆層の電位
をこの範囲で変化させると、一サイクル内で実質上すべ
ての粒子に関しゼータ電位が0になるときがある。 ゼ
ータ電位が0になった粒子に対しては吸着力が失われ、
粒子が被覆層から剥離する。 従って、鉱物質の粒子な
どが被覆層に付着しても、被覆層の電位が一サイクル変
化するうちに脱落して滞積せず、スケールが形成される
ことはない。
Most objects floating in seawater have a pH
Since it has an isoelectric point in the range of 3 to 11, when the potential of the coating layer is changed in this range, the zeta potential may become 0 for virtually all particles within one cycle. Adsorption force is lost for particles with a zeta potential of 0,
The particles detach from the coating layer. Therefore, even if the particles of the mineral substance adhere to the coating layer, the potential of the coating layer is not dropped and accumulated during one cycle change, and the scale is not formed.

【0019】被覆層の電位を1.2〜−0.6V(対S
CE)の範囲にえらぶことは、海水が電解されて塩素が
発生するに至らない最も貴な電位1.2V(対SCE)
から、水素が発生するに至らない最も卑な電位−0.6
V(対SCE)という理由もある。
The electric potential of the coating layer is 1.2 to -0.6 V (vs. S).
Choosing in the range of (CE) is the most noble potential of 1.2 V (against SCE) at which seawater is not electrolyzed to generate chlorine.
Therefore, the most base electric potential at which hydrogen is not generated −0.6
There is also a reason for V (against SCE).

【0020】[0020]

【実施例】両端にフランジを有する鋼管(口径「100
A」長さ1m)を10本用意した。 それぞれの内面
に、クロロプレンゴム100重量部にカーボンブラック
30重量部およびグラファイト40重量部を混練して押
し出した導電性ゴムシートをライニングして、導電性の
被覆層(3)を設けた。 加硫後のシートの厚さは5m
m。 鋼管のフランジ面や外周面など、導電性シートの
ライニングのないすべての部分を、絶縁材で被覆した。
[Example] A steel pipe having flanges at both ends (caliber "100"
Ten "A" lengths of 1 m) were prepared. A conductive rubber sheet extruded by kneading 30 parts by weight of carbon black and 40 parts by weight of graphite with 100 parts by weight of chloroprene rubber was lined on the inner surface of each to provide a conductive coating layer (3). Sheet thickness after vulcanization is 5m
m. All parts of the conductive sheet without lining, such as the flange surface and outer peripheral surface of the steel pipe, were covered with an insulating material.

【0021】被覆鋼管それぞれのフランジ近くに孔をあ
け、そこに絶縁材で側面および後端を被覆し後端の絶縁
材に小孔をあけた円柱状の銀からなる照合電極を、先端
が管内部にわずか突き出るように挿入し、固定した。
A cylindrical reference electrode made of silver, in which a hole is formed near each flange of the coated steel pipe, the side surface and the rear end are covered with an insulating material, and a small hole is formed in the insulating material at the rear end, the tip is a tube. It was inserted and fixed so that it protruded slightly inside.

【0022】フランジ部分と同じ形状寸法の面をもつチ
タン製のドーナツ状板に白金をメッキして、電極材をと
した。
An electrode material was prepared by plating platinum on a titanium donut-shaped plate having a surface having the same shape and dimensions as the flange portion.

【0023】上記の鋼管を、図2に示すように、電極材
(4)をはさんでフランジ接合して試験用の配管とし
た。 直流電源は、北斗電工製「ポテンシオスタット」
(6)に関数発生機(7)を接続したものを用いた。
ポテンシオスタット(6)の陽極端子、陰極端子および
照合電極端子は、各鋼管に設けた接続端子、電極材、照
合電極(5)と接続ケーブルで配線した。 図2におい
て、(8)は絶縁体である。
As shown in FIG. 2, the above steel pipe was flange-joined with an electrode material (4) sandwiched between the steel pipes to prepare a pipe for testing. DC power supply is "potentiostat" manufactured by Hokuto Denko
What connected the function generator (7) to (6) was used.
The anode terminal, the cathode terminal, and the reference electrode terminal of the potentiostat (6) were wired with the connection terminal, the electrode material, and the reference electrode (5) provided on each steel pipe with a connection cable. In FIG. 2, (8) is an insulator.

【0024】この配管に、海水を0.5m/sec の流速
で流した。 鋼管1本あたり40〜100mAの直流電流
を通電し、導電性の被覆層と照合電極(SCE)との電
位差が、1時間ごとに、1.2V,0.9V,0.6
V,0.0V,−0.6V,そして再び1.2Vに変化
するように制御しつつ、配管の防汚を行なった。
Seawater was passed through this pipe at a flow rate of 0.5 m / sec. A direct current of 40 to 100 mA is applied to each steel pipe, and the potential difference between the conductive coating layer and the reference electrode (SCE) is 1.2 V, 0.9 V, 0.6 per hour.
Antifouling of the pipe was performed while controlling so as to change to V, 0.0V, -0.6V, and 1.2V again.

【0025】1年後に配管の内部を調べたところ、海洋
生物の付着はほとんどみられなかった。 比較のため、
導電性の被覆層と照合電極(SCE)との電位差を0.
8〜1.2Vの範囲となるように制御したほかは上記と
同様にして配管の防汚を行なった。 1年後に配管内部
を調べたところ、ところどころにスケールが形成されて
いて、そのスケールの上に海洋生物が付着していた。
When the inside of the pipe was examined one year later, the adhesion of marine organisms was hardly seen. For comparison,
The potential difference between the conductive coating layer and the reference electrode (SCE) is set to 0.
Antifouling of the pipe was carried out in the same manner as above except that the control was carried out within the range of 8 to 1.2V. A year later, when the inside of the pipe was examined, scales were formed here and there, and marine organisms adhered to the scales.

【0026】[0026]

【発明の効果】本発明の防汚方法によれば、海洋生物の
付着を防ぐのはもちろんのこと、スケールの形成をも防
止できる。 従って、通電による防汚技術において、導
電性の被覆層にスケールができてその部分に電流が流れ
なくなりスケール上に海洋生物が付着する、という問題
もなくなる。このようにして、海洋生物の付着防止の効
果が向上した。
According to the antifouling method of the present invention, not only the adhesion of marine organisms but also the formation of scales can be prevented. Therefore, in the antifouling technique by energization, there is no problem that a scale is formed on the conductive coating layer and current does not flow to that portion, and marine organisms adhere to the scale. In this way, the effect of preventing the adhesion of marine organisms was improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 NaCl溶液のpHと、その溶液中にあるA
23のゼータ電位との関係を示すグラフ。
FIG. 1 pH of NaCl solution and A in the solution
graph showing the relationship between the zeta potential of the l 2 O 3.

【図2】 本発明の防汚方法を、配管に適用した例を説
明するための図。
FIG. 2 is a diagram for explaining an example in which the antifouling method of the present invention is applied to piping.

【符号の説明】[Explanation of symbols]

1 被防汚体 3 導電性の被覆層 4 電極材 5 照合電極 6 直流電源 8 絶縁体 9 海水 1 Antifouling Material 3 Conductive Coating Layer 4 Electrode Material 5 Reference Electrode 6 DC Power Supply 8 Insulator 9 Seawater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 勘丈 福岡県福岡市早良区荒江三丁目36−1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kanjo Takahashi 36-1, Arae, Sawara-ku, Fukuoka-shi, Fukuoka

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 海水に接触する構造物、船舶、配管また
は網への海洋生物およびスケールの付着による汚染を防
止する方法であって、被防汚体の防汚を必要とする部分
に導電性材料の被覆層を設けて作用極とし、この被覆層
と接触しないように海水中に不溶性の電極材を設けて対
極とし、さらに照合電極を配置して作用極と対極の間に
直流電圧を印加し、照合電極と作用極との電位差を測定
してそれが1.2〜−0.6V(対SCE)の範囲で周
期的に変化するように制御しながら微弱な電流を流し
て、海洋生物およびスケールの付着を防止することから
なる防汚方法。
1. A method for preventing pollution due to adhesion of marine organisms and scales to structures, ships, pipes or nets that come into contact with seawater, which is electrically conductive in a portion of an antifouling object requiring antifouling. A coating layer of material is provided as a working electrode, an electrode material insoluble in seawater is provided as a counter electrode so as not to come into contact with this coating layer, and a counter electrode is arranged to apply a DC voltage between the working electrode and the counter electrode. Then, the electric potential difference between the reference electrode and the working electrode is measured, and a weak current is flown while controlling it so that it changes periodically within the range of 1.2 to -0.6 V (vs. SCE), and marine organisms. And an antifouling method comprising preventing scale from adhering.
【請求項2】 被覆層が、導電性ゴムもしくは導電性樹
脂のライニング層、または導電性塗料の塗膜である請求
項1の防汚方法。
2. The antifouling method according to claim 1, wherein the coating layer is a lining layer of a conductive rubber or a conductive resin, or a coating film of a conductive paint.
【請求項3】 被覆層として、給電体を備えたものを使
用して実施する請求項1または2の防汚方法。
3. The antifouling method according to claim 1, which is carried out by using a coating layer provided with a power feeding body.
JP2353891A 1991-02-18 1991-02-18 Antifouling method Expired - Lifetime JPH0672410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2353891A JPH0672410B2 (en) 1991-02-18 1991-02-18 Antifouling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2353891A JPH0672410B2 (en) 1991-02-18 1991-02-18 Antifouling method

Publications (2)

Publication Number Publication Date
JPH04289309A JPH04289309A (en) 1992-10-14
JPH0672410B2 true JPH0672410B2 (en) 1994-09-14

Family

ID=12113245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2353891A Expired - Lifetime JPH0672410B2 (en) 1991-02-18 1991-02-18 Antifouling method

Country Status (1)

Country Link
JP (1) JPH0672410B2 (en)

Also Published As

Publication number Publication date
JPH04289309A (en) 1992-10-14

Similar Documents

Publication Publication Date Title
EP0468739B1 (en) Antifouling method and antifouling apparatus
EP0550766A1 (en) Method and device for preventing adhesion of aquatic organisms
JPH0672410B2 (en) Antifouling method
CN106222692B (en) Anti-fouler and its implementation based on platform piling bar ring type electrolysis anti-soil electrode
JP3962846B2 (en) Antifouling method and antifouling device
JP4157757B2 (en) Antifouling device
JP3385618B2 (en) Antifouling device
JPH0738981B2 (en) Antifouling device
JPH11264062A (en) Metallic nitride, thermal-sprayed coating thereof and production of member for electrochemical biological control or contamination prevention
JP2002282810A (en) Contamination prevention device
JP2000008338A (en) Antifouling device for underwater structure
JP2007186933A (en) Anti-fouling and corrosion protection device of structure contacting with seawater and anti-fouling and corrosion-proofing method
JP3526469B2 (en) Antifouling method for underwater structures
JPH08151617A (en) Constant-current flow type marine organism adherence preventing method and constant-current control device
JP3888756B2 (en) Electrochemical control method, antifouling method and antifouling device for aquatic organisms
JP3697650B2 (en) Electrochemical control method and antifouling method for aquatic organisms
JPH0325135B2 (en)
JP3668976B2 (en) Electrochemical control method and antifouling method for aquatic organisms
JPH11244861A (en) Anti-fouling device for underwater structure and electrochemical control method of organism
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures
JP4182636B2 (en) Electrochemical antifouling method and apparatus
JP4438158B2 (en) Antifouling method for concrete structure and antifouling device for seawater conduit of concrete structure
JPH09248554A (en) Electrochemical control method of aquatic organism and antifouling method
JPH10271942A (en) Member for electrochemical biological control
JP3480270B2 (en) Antifouling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20080914

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20090914

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 17