JPH0672400A - Full-bore calibration system for visible infrared radiometer - Google Patents

Full-bore calibration system for visible infrared radiometer

Info

Publication number
JPH0672400A
JPH0672400A JP4225448A JP22544892A JPH0672400A JP H0672400 A JPH0672400 A JP H0672400A JP 4225448 A JP4225448 A JP 4225448A JP 22544892 A JP22544892 A JP 22544892A JP H0672400 A JPH0672400 A JP H0672400A
Authority
JP
Japan
Prior art keywords
light
calibration
mirror
visible
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4225448A
Other languages
Japanese (ja)
Other versions
JP2800580B2 (en
Inventor
Akihiko Kuze
暁彦 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4225448A priority Critical patent/JP2800580B2/en
Publication of JPH0672400A publication Critical patent/JPH0672400A/en
Application granted granted Critical
Publication of JP2800580B2 publication Critical patent/JP2800580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make calibration of the light quantity in a visible infrared radiome ter with full bore of the light receiving system through composite usage of various light sources ranging from visible to infrared ray. CONSTITUTION:The measuring light 102 and calibration light 103 including three calibrating beams (a, b, c) are put in parallel beams by a reflex mirror 3 as three different light sources are installed in the light source part 5 arranged at the focus of the reflex mirror. Generally the calibration light is a little dislocated from the parallel beams due to different positions of the light source, but can be led to a radiometer optical part 4 by changing the rotaional angle of the calibration light incident to a scanning mirror 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可視赤外放射計用全口径
校正システムに関し、特に人工衛星等の宇宙航行体に搭
載し、地球などを対象として光学的なパッシブの対物走
査面を行ない、可視及び赤外の放射量を測定光として得
る可視赤外放射計の光学的校正を、受光光学系の全口径
にわたって行なうことを可能とした可視赤外放射計用全
口径校正システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a full-calibration calibration system for visible infrared radiometers, and in particular, it is mounted on a spacecraft such as an artificial satellite to perform an optical passive objective scanning surface for the earth, The present invention relates to a total aperture calibration system for a visible infrared radiometer that enables optical calibration of a visible infrared radiometer that obtains visible and infrared radiation amounts as measurement light over the entire diameter of a light receiving optical system.

【0002】[0002]

【従来の技術】従来の可視域の放射計の校正では、放射
計の受光光学系の口径の一部分に校正光を放射して行っ
ていた。
2. Description of the Related Art In the conventional calibration of a visible range radiometer, calibration light is emitted to a part of the aperture of a light receiving optical system of the radiometer.

【0003】また受光系の全口径にわたる校正を行なう
場合は、平板黒体を用いるため赤外域の校正に限定され
ていた。
Further, when performing calibration over the entire diameter of the light receiving system, a flat plate black body is used, so that the calibration is limited to the infrared region.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の校正方
式には以下のような欠点がある。
The above-mentioned conventional calibration method has the following drawbacks.

【0005】(1)可視域では、受光光学系のある一部
分にしか校正光を放射できないため、受光光学系の局所
的な透過率の劣化等が発生した場合にその校正ができな
い。
(1) In the visible range, since the calibration light can be emitted only to a certain part of the light receiving optical system, if the local deterioration of the transmittance of the light receiving optical system occurs, the calibration cannot be performed.

【0006】(2)可視域で受光光学系の全口径にわた
る校正を行なうおうとすると、赤外用とは別に配置する
ことが必要なため、寸法が大きくなり実用的でないとい
う欠点がある。
(2) When attempting to calibrate the entire diameter of the light-receiving optical system in the visible range, it is necessary to arrange it separately from the one for infrared light, which has a drawback that the size becomes large and it is not practical.

【0007】本発明の目的は上述した欠点を除去し、受
光光学系の全口径にわたる光学的校正を著しく容易にし
た可視赤外放射計用全口径校正システムを提供すること
にある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a total aperture calibration system for a visible infrared radiometer, which makes optical calibration over the entire aperture of a receiving optical system extremely easy.

【0008】[0008]

【課題を解決するための手段】本発明の可視赤外放射計
用全口径校正システムは、宇宙航行体をプラットホーム
として搭載し、地球などの走査対象を光学的にパッシブ
走査して可視および赤外の測定光を取得する可視赤外放
射計の受光系を校正光によって校正する校正システムに
おいて、前記測定光を対物面走査により取得する平面鏡
構成の回転走査鏡に対して複数の校正光を平行光として
投光する曲面鏡構成のコリメートミラーとしての反射鏡
と、前記反射鏡の焦点位置に配置し前記反射鏡に対して
複数の光源光を投光し前記複数の校正光を反射出光せし
める光源部とを備え、前記可視赤外放射計の受光系の全
口径にわたる光学的校正を前記回転走査鏡の一回転で行
なうことを可能とした構成を有する。
A full-calibration calibration system for a visible infrared radiometer according to the present invention is equipped with a spacecraft as a platform, and optically and passively scans a scanning object such as the earth to make visible and infrared rays. In the calibration system that calibrates the light receiving system of the visible infrared radiometer that acquires the measurement light by the calibration light, a plurality of calibration lights are collimated to the rotary scanning mirror of the plane mirror configuration that acquires the measurement light by scanning the object surface. A reflecting mirror as a collimating mirror having a curved mirror configuration for projecting light as a light source, and a light source unit arranged at a focal position of the reflecting mirror and projecting a plurality of light source lights to the reflecting mirror to reflect and emit the plurality of calibration lights. And a configuration capable of performing optical calibration over the entire diameter of the light receiving system of the visible infrared radiometer with one rotation of the rotary scanning mirror.

【0009】また本発明の可視赤外放射計用全口径校正
システムは、前記複数の光源光が、可視から赤外までの
各種の波長領域を混在させたものとした構成を有する。
Further, the total aperture calibration system for visible / infrared radiometer of the present invention has a constitution in which the plurality of light source lights are mixed with various wavelength regions from visible to infrared.

【0010】[0010]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0011】図1は本発明の一実施例の構成を示す平面
図である。図1に示す実施例は、平面鏡として構成さ
れ、回転軸101を中心として360度回転する回転走
査鏡1と、光源光を受け、その反射光を平行光として送
光するコリメートミラーとしての反射鏡2と、複数の光
源を有する光源部4と、回転走査鏡1によって反射され
る測定光102もしくは反射鏡2によって反射される校
正光103を受光する受光光学系を有する放射計光学部
3とを備えた構成を有する。
FIG. 1 is a plan view showing the structure of an embodiment of the present invention. The embodiment shown in FIG. 1 is configured as a plane mirror, and a rotary scanning mirror 1 that rotates 360 degrees about a rotation axis 101, and a reflecting mirror as a collimating mirror that receives light from a light source and sends the reflected light as parallel light. 2, a light source unit 4 having a plurality of light sources, and a radiometer optical unit 3 having a light receiving optical system for receiving the measurement light 102 reflected by the rotary scanning mirror 1 or the calibration light 103 reflected by the reflecting mirror 2. It has a configuration provided.

【0012】次に、本実施例の動作について説明する。Next, the operation of this embodiment will be described.

【0013】図1に示すように、測定光102は、回転
走査鏡1の波線表示位置で反射され放射計光学部4で測
定される。
As shown in FIG. 1, the measuring light 102 is reflected at the wavy line display position of the rotary scanning mirror 1 and measured by the radiometer optical section 4.

【0014】一方回転走査鏡1を回転軸101の回りに
回転させることにより、光源部4による校正光103が
反射鏡2で収束され、実線で示す回転走査鏡1を介して
放射計光学部4に投光される。
On the other hand, by rotating the rotary scanning mirror 1 around the rotary shaft 101, the calibration light 103 from the light source unit 4 is converged by the reflecting mirror 2, and the radiometer optical unit 4 is shown via the rotary scanning mirror 1 shown by the solid line. Is projected on.

【0015】コリメートミラーである反射鏡の焦点位置
に光源部5を配置することにより、放射計の受光光学系
の全口径をカバーする光束をもつ平行光が得られる。
By arranging the light source unit 5 at the focal position of the reflecting mirror which is a collimating mirror, it is possible to obtain parallel light having a luminous flux which covers the entire diameter of the light receiving optical system of the radiometer.

【0016】反射鏡2は銀、アルミ製の曲面鏡を使用
し、可視から赤外まで高い反射率が確保されるようにし
ている。
As the reflecting mirror 2, a curved mirror made of silver or aluminum is used to ensure a high reflectance from visible to infrared.

【0017】光源部4からは、3種類の波長領域の光源
光104が反射鏡2に投光され、それぞれ平行光として
の3つの校正光(1)a,校正光(2)b,校正光
(3)cを含む校正光103が反射鏡2から出光する。
From the light source unit 4, light source light 104 of three kinds of wavelength regions is projected on the reflecting mirror 2, and three calibration lights (1) a, calibration light (2) b, and calibration light as parallel lights, respectively. (3) The calibration light 103 including c is emitted from the reflecting mirror 2.

【0018】図2は、図1の測定光及び校正光の入射状
況を示す平面図である本実施例では、校正光103は互
いに波長領域の異る3種類の校正光(1)a,校正光
(2)bおよび校正光(3)cを利用し、それぞれ反射
鏡2によって異る方向から回転走査鏡2に投光され、反
射して放射計光学部3の受光光学系の受光面に達する
が、このときその全口径をカバーする立体角で受光され
るように設定されている。
FIG. 2 is a plan view showing the incident states of the measurement light and the calibration light of FIG. 1. In this embodiment, the calibration light 103 is composed of three types of calibration light (1) a having different wavelength regions, and calibration light. Using the light (2) b and the calibration light (3) c, the light is projected onto the rotary scanning mirror 2 from different directions by the reflecting mirror 2 and is reflected and reflected on the light receiving surface of the light receiving optical system of the radiometer optical unit 3. It reaches, but at this time it is set to receive light at a solid angle that covers the entire aperture.

【0019】また、対物面走査による測定光102も、
回転する走査鏡2によって反射され放射計光学部3に受
光される。
Further, the measuring light 102 by scanning the object plane is also
The light is reflected by the rotating scanning mirror 2 and received by the radiometer optical section 3.

【0020】このようにして、回転走査鏡1を回転軸1
01の回りに回転させることにより平面上の任意の方向
からの光を放射計光学部3に導くことが出来る。また測
定光102も回転走査鏡2を回転させることにより、ほ
ぼ90度程度の広い範囲から取得することができる。
In this way, the rotary scanning mirror 1 is attached to the rotary shaft 1
By rotating around 01, light from any direction on the plane can be guided to the radiometer optical section 3. Further, the measurement light 102 can also be acquired from a wide range of about 90 degrees by rotating the rotary scanning mirror 2.

【0021】測定光102もほぼ平行光に近いが画角を
もつため、回転走査鏡1の回転角を微小量変化させ放射
計光学部4に導く。
Since the measuring light 102 also has a field angle although it is almost parallel, it changes the rotation angle of the rotary scanning mirror 1 by a small amount and guides it to the radiometer optical section 4.

【0022】図3は、図1の光源部4の構成を示す平面
図で、反射鏡2を併記して示す。
FIG. 3 is a plan view showing the structure of the light source section 4 of FIG. 1, and also shows the reflecting mirror 2.

【0023】図3に示す如く、校正光(1)光源5、校
正光(2)光源6および校正光(3)光源7を用する光
源部4を反射鏡の焦点位置に配置すれば、回転走査鏡1
の回転角を変えることにより複数の光源からの校正光を
一枚の反射鏡2を使って放射計光学部3に照射すること
が可能となる。
As shown in FIG. 3, if the light source section 4 using the calibration light (1) light source 5, the calibration light (2) light source 6 and the calibration light (3) light source 7 is arranged at the focal point of the reflecting mirror, it is rotated. Scanning mirror 1
It is possible to irradiate the radiometer optical section 3 with the calibration light from a plurality of light sources by using one reflecting mirror 2 by changing the rotation angle of.

【0024】校正光(1)光源5,(2)光源6,
(3)光源7には可視域の光源としてハロゲンランプ、
水銀ランプ等の各種光源を、また赤外用の光源としては
空洞黒体等を配置することができる。配置の順は問わな
い。
Calibration light (1) light source 5, (2) light source 6,
(3) The light source 7 includes a halogen lamp as a visible light source,
Various light sources such as a mercury lamp can be arranged, and a hollow black body or the like can be arranged as an infrared light source. The arrangement order does not matter.

【0025】このようにして、走査鏡を一回転する間
に、測定光d,校正光(1)a,校正光(2)b,校正
光(3)cを放射計光学部3にとりいれる。
In this way, the measurement light d, the calibration light (1) a, the calibration light (2) b, and the calibration light (3) c are introduced into the radiometer optical section 3 during one rotation of the scanning mirror.

【0026】校正光は、光量の校正を行うものであり、
幾何学的な校正を行うものではない。よって多少の収差
は許容され、校正光の画角は広くとることができる。つ
まり焦点位置としてある程度の大きさをとることがで
き、各種光源が配置できる。
The calibration light is for calibrating the light quantity,
It does not calibrate geometrically. Therefore, some aberration is allowed, and the angle of view of the calibration light can be widened. That is, the focus position can have a certain size, and various light sources can be arranged.

【0027】[0027]

【発明の効果】以上説明したように本発明は、回転走査
鏡を有して対物面走査を行なう可視赤外放射計におい
て、反射光を回転走査鏡に投光する曲面構成の反射鏡
(コリメートミラー)と、この反射鏡に複数の校正光を
投光する複数の光源を設置することにより、可視赤外放
射計の受光光学系の全口径にわたる光学的校正を、各種
光源を用いて走査鏡を一回転させる間に測定を含み行な
うことができ、校正精度を著しく向上させることができ
る効果がある。
As described above, according to the present invention, in a visible infrared radiometer having a rotary scanning mirror for scanning an object surface, a reflecting mirror (collimator) having a curved surface for projecting reflected light to the rotary scanning mirror. Mirror) and a plurality of light sources for projecting a plurality of calibration lights on this reflecting mirror, so that optical calibration over the entire aperture of the light receiving optical system of the visible infrared radiometer can be performed using various light sources. It is possible to perform measurement including one rotation while rotating, and it is possible to significantly improve the calibration accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of an embodiment of the present invention.

【図2】図1の測定光及び校正光の入射状況を示す平面
図である。
FIG. 2 is a plan view showing an incident state of measurement light and calibration light of FIG.

【図3】図1の光源部4の構成を示す平面図である。FIG. 3 is a plan view showing a configuration of a light source unit 4 of FIG.

【符号の説明】[Explanation of symbols]

1 回転走査鏡 2 反射鏡 3 放射計光学部 4 光源部 5 校正光(1)光源 6 校正光(2)光源 7 校正光(3)光源 101 回転軸 102 測定光 103 校正光 a 校正光(1) b 校正光(2) c 校正光(3) 1 Rotating Scanning Mirror 2 Reflecting Mirror 3 Radiometer Optical Section 4 Light Source Section 5 Calibration Light (1) Light Source 6 Calibration Light (2) Light Source 7 Calibration Light (3) Light Source 101 Rotation Axis 102 Measurement Light 103 Calibration Light a Calibration Light (1 ) B Calibration light (2) c Calibration light (3)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 宇宙航行体をプラットホームとして搭載
し、地球などの走査対象を光学的にパッシブ走査して可
視および赤外の測定光を取得する可視赤外放射計の受光
系を校正光によって校正する校正システムにおいて、前
記測定光を対物面走査により取得する平面鏡構成の回転
走査鏡に対して複数の校正光を平行光として投光する曲
面鏡構成のコリメートミラーとしての反射鏡と、前記反
射鏡の焦点位置に配置し前記反射鏡に対して複数の光源
光を投光し前記複数の校正光を反射出光せしめる光源部
とを備え、前記可視赤外放射計の受光系の全口径にわた
る光学的校正を前記回転走査鏡の一回転で行なうことを
可能としたことを特徴とする可視赤外放射計用全口径校
正システム。
1. A light receiving system of a visible infrared radiometer, which mounts a spacecraft as a platform and optically and passively scans a scanning object such as the earth to obtain visible and infrared measurement light, is calibrated by calibration light. In the calibration system described above, a reflecting mirror as a collimating mirror having a curved mirror configuration for projecting a plurality of calibration beams as parallel light with respect to a rotary scanning mirror having a flat mirror configuration for acquiring the measurement light by scanning an object surface, and the reflecting mirror. And a light source unit for projecting a plurality of light source lights to the reflecting mirror to reflect and emit the plurality of calibration lights, and the optical system over the entire diameter of the light receiving system of the visible infrared radiometer. A full-calibration calibration system for a visible infrared radiometer, characterized in that the calibration can be performed by one rotation of the rotary scanning mirror.
【請求項2】 前記複数の光源光が、可視から赤外まで
の各種の波長領域を混在させたものとして構成したこと
を特徴とする請求項1記載の可視赤外放射形用全口径校
正システム。
2. The total aperture calibration system for a visible infrared radiation type according to claim 1, wherein the plurality of light sources are configured so that various wavelength regions from visible to infrared are mixed. .
JP4225448A 1992-08-25 1992-08-25 Full-calibration system for visible and infrared radiometers Expired - Lifetime JP2800580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225448A JP2800580B2 (en) 1992-08-25 1992-08-25 Full-calibration system for visible and infrared radiometers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225448A JP2800580B2 (en) 1992-08-25 1992-08-25 Full-calibration system for visible and infrared radiometers

Publications (2)

Publication Number Publication Date
JPH0672400A true JPH0672400A (en) 1994-03-15
JP2800580B2 JP2800580B2 (en) 1998-09-21

Family

ID=16829516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225448A Expired - Lifetime JP2800580B2 (en) 1992-08-25 1992-08-25 Full-calibration system for visible and infrared radiometers

Country Status (1)

Country Link
JP (1) JP2800580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047667A (en) * 2011-08-18 2013-03-07 Raytheon Co Calibration system for detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047667A (en) * 2011-08-18 2013-03-07 Raytheon Co Calibration system for detector
US8716651B2 (en) 2011-08-18 2014-05-06 Raytheon Company Calibration system for detector

Also Published As

Publication number Publication date
JP2800580B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
JP2767235B2 (en) Ring beam divergence angle control optical device
US6636308B1 (en) Apparatus for measuring characteristics of optical angle
US5009493A (en) Mirror arrangement for a beam path in a multiple-reflection measuring cell
US7159986B2 (en) Wide field collimator
KR100264761B1 (en) Optical scanning device
KR100521616B1 (en) Spectral reflectance measuring apparatus and spectral reflectance measuring method
JPS6129452B2 (en)
US5302823A (en) Satellite solar band calibration source target apparatus
JPH0659126A (en) Wide-angle optical system
US20110085160A1 (en) Spectral detector with angular resolution using refractive and reflective structures
KR840002359B1 (en) Infared fays film tick measuring instrument
JPH0672400A (en) Full-bore calibration system for visible infrared radiometer
US3782835A (en) Optical instruments
US5410407A (en) Large aperture mirror testing apparatus and method
JP2001281097A (en) Method and apparatus for measuring scattered light
GB2144880A (en) A method and device for axis harmonisation of optical instruments which are connected to one another
JPS60214332A (en) Optical scanner
JPS62251618A (en) Measuring instrument
JPH03172728A (en) Reflectivity measurement device for light-transmissive member
CN217425676U (en) Mixed solid-state laser radar
SU1314237A1 (en) Device for calibrating photodetectors against spectral response
US4624527A (en) Radiation-utilizing measurement system
Frassetto et al. Alignment and optical performance of the Metis coronagraph for the Solar Orbiter mission
JP3231268B2 (en) Optical viewing angle measuring device
Hsu Reflective wide-angle pinhole camera

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980609