JPH0672063B2 - Lightweight cellular concrete with excellent frost resistance - Google Patents

Lightweight cellular concrete with excellent frost resistance

Info

Publication number
JPH0672063B2
JPH0672063B2 JP1187570A JP18757089A JPH0672063B2 JP H0672063 B2 JPH0672063 B2 JP H0672063B2 JP 1187570 A JP1187570 A JP 1187570A JP 18757089 A JP18757089 A JP 18757089A JP H0672063 B2 JPH0672063 B2 JP H0672063B2
Authority
JP
Japan
Prior art keywords
alc
weight
product
parts
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1187570A
Other languages
Japanese (ja)
Other versions
JPH0354175A (en
Inventor
雅幸 田畑
幸雄 浜
茂 花田
賢之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1187570A priority Critical patent/JPH0672063B2/en
Publication of JPH0354175A publication Critical patent/JPH0354175A/en
Publication of JPH0672063B2 publication Critical patent/JPH0672063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、寒冷地において構築される構築物に利用され
る素材として、特に、耐凍害性に優れた特性を示す軽量
気泡コンクリートに関する。
TECHNICAL FIELD The present invention relates to a lightweight cellular concrete that exhibits excellent frost damage resistance, as a material used for a structure constructed in a cold region.

【従来の技術】[Prior art]

従来、軽量、耐火性並びに施工性に優れることを利点と
して構築物に多く利用されている軽量気泡コンクリート
(以下、ALCと称す)は、珪石、珪砂等の珪酸質原料
と、セメント及び生石灰等の石灰質原料とを原料粉と
し、上記原料粉に水と添加剤等が加えられてスラリーと
された後、さらに上記スラリーにアルミニウム粉末が加
えられて後、発泡、半可塑化処理され、次いで、オート
クレーブに移送され、高温高圧にて、水蒸気養生処理が
施されて製品化されている。 この場合、先ず軽量であることを基準に考えられる為、
その規定された比重は、JIS規格にあっても0.45〜0.55
と定められている。 一方、ALC製品を寒冷地にて利用する際に多く認められ
て問題とされたALC製品表面の亀裂発泡現象が、ALC製品
の吸水率に起因するものであると判断して、ALC製品の
吸水率を低減できれば寒冷地におけるALC製品の亀裂発
生現象を軽減できるとして、既に、シリコンオイル等の
撥水剤又は、防水剤を含有させた嵩比重0.45〜0.55のAL
C製品の市販されている。
Conventionally, lightweight cellular concrete (hereinafter referred to as ALC), which has been widely used in structures for its advantages of light weight, fire resistance, and workability, is a siliceous raw material such as silica stone and silica sand, and a calcareous material such as cement and quicklime. Raw material and raw material powder, water and additives are added to the raw material powder to form a slurry, and then aluminum powder is further added to the slurry, followed by foaming and semi-plasticizing treatment, and then in an autoclave. It is transferred and steam-cured at high temperature and high pressure to be commercialized. In this case, first of all, it is considered to be lightweight,
The specified specific gravity is 0.45 to 0.55 even in JIS standard.
Has been defined. On the other hand, it was judged that the cracking and foaming phenomenon on the surface of ALC products, which was often observed and used as a problem when using ALC products in cold regions, was caused by the water absorption rate of ALC products, and the water absorption of ALC products was determined. If the rate can be reduced, it is possible to reduce the cracking phenomenon of ALC products in cold regions.Although AL with a water-repellent agent such as silicone oil or a waterproofing agent and a bulk specific gravity of 0.45-0.55 is used.
C products are commercially available.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

然しながら、含水率の高いALCを、寒冷地で利用する際
には依然として凍害による劣化現象が著しく、その改善
が強く望まれていた。 ALCの凍害には2つの異なった形態が認められることが
明らかにされている。その一つは含水率の高いALCの外
気側表層部が凍結融解を繰り返すことによって発生され
る表層剥落現象であり、もう一つは、ALCの室内側表層
部から供給された水分がALC内部の0℃位置(凍結線)
に引き寄せられて凍結されることにより生じて来る製品
表面の亀裂発生現象である。 ALCに関する上記二つの凍害現象は相互に関連がない
為、ALCの耐凍害性を予め検査する場合に、表層剥落現
象の評価については気中凍結水中融解試験を、製品表面
の亀裂発生現象の評価については一面凍結持続試験を、
夫々実施した後、両試験の結果を総合してALCの耐凍害
性を評価している。 現状では、上記の如き二つの凍害に対して共に十分な耐
凍害性を示すALC製品は市場に見られない。例えば、特
開昭60-127276号公報では、撥水性物質としてジメチル
シロキサンを添加して防水性を付与したALCが紹介され
ているが、ポリジメチルシロキサンを1.5部添加したも
のでも未だ不十分とされている。従って、寒冷地に於け
る構築物に供給することを目的として、優れた耐凍害性
を持ち合わせたALCの開発が強く望まれていた。 本発明は、上記の要求に応えて、耐凍害性に優れたALC
製品を市場に供給することを目的とする。
However, when ALC with high water content is used in cold regions, the deterioration phenomenon due to frost damage is still remarkable, and improvement thereof has been strongly desired. It has been shown that there are two different forms of frost damage in ALC. One of them is a surface layer peeling phenomenon that occurs when the outside air side surface layer of ALC, which has a high water content, is repeatedly frozen and thawed, and the other is that the water supplied from the indoor side surface layer of ALC is inside the ALC. 0 ° C position (freezing line)
It is a phenomenon that cracks occur on the surface of the product caused by being attracted to and frozen. Since the above two frost damage phenomena related to ALC are not related to each other, when inspecting the frost damage resistance of ALC in advance, for the evaluation of the surface layer peeling phenomenon, an air frozen water melting test is conducted, and a crack generation phenomenon of the product surface is evaluated. For one-sided freezing continuation test,
After each test, the results of both tests are combined to evaluate the frost damage resistance of ALC. At present, there is no ALC product on the market that exhibits sufficient frost damage resistance against the above two frost damages. For example, JP-A-60-127276 discloses ALC in which dimethylsiloxane is added as a water-repellent substance to impart waterproofness, but it is still insufficient to add 1.5 parts of polydimethylsiloxane. ing. Therefore, there has been a strong demand for the development of an ALC having excellent frost damage resistance for the purpose of supplying it to a structure in a cold region. The present invention, in response to the above requirements, is an ALC having excellent frost damage resistance.
The purpose is to supply the product to the market.

【課題を解決する為の手段】[Means for solving the problem]

本発明は、上記の課題を解決して、耐凍害性に優れたAL
C製品を市場に供給することを目的として、珪酸質原料
と石灰質原料とを主原料とし、ジメチルポリシロキサン
が0.1〜1.0重量%含有され、高温高圧下にて水蒸気養生
処理されて製造された軽量気泡コンクリートを提示する
ものであるが、この軽量気泡コンクリートは、嵩比重が
0.6〜1.0である。
The present invention solves the above problems, and has excellent frost damage resistance
A lightweight product made mainly of siliceous and calcareous raw materials, containing 0.1 to 1.0% by weight of dimethylpolysiloxane and steam-cured at high temperature and high pressure for the purpose of supplying C products to the market. This lightweight cellular concrete presents cellular concrete, but its bulk specific gravity is
It is 0.6 to 1.0.

【作用】[Action]

本発明で、ALC製品の嵩比重を0.6〜1.0と限定した理由
は、この範囲内では、亀裂発生回数及び表層剥落現象で
良好な結果を得ており、ALC製品の嵩比重が0.6未満では
ALC製品の表層剥落現象が著しくなり、また、嵩比重が
低いほど亀裂発生回数が短くなり、逆に嵩比重が1.0を
超えるとALC製品が重くなり、構築物形成用素材として
本来要求されている軽量という面で、要求を満たさなく
なる為である。 尚、嵩比重の調整はアルミニウム粉末の量で行い、嵩比
重を低くするにはアルミニウム粉末の量を多くする。 更に、本発明で、ALC製品に含有されたジメチルポリシ
ロキサンの含有量を0.1〜1.0重量%と限定した理由は、
ジメチルポリシロキサンの含有量が0.1重量%未満ではA
LC製品の表面に於ける亀裂発生が著しく、逆にジメチル
ポリシロキサンの含有量が1.0重量%を超えると、表層
剥落現象の抑制効果が弱くなって来る為である。尚、ジ
メチルポリシロキサンの存在は、亀裂発生の抑制に有効
であるが、その量の影響は小さい。そして、表層剥離現
象に対しては、ジメチルポリシロキサンの量が0.34〜0.
38重量%の範囲で最も良好である。 尚、本発明の効果は、本発明で規定されたALC製品の嵩
比重とジメチルポリシロキサンの含有量の相乗効果によ
るものである。
In the present invention, the reason why the bulk specific gravity of the ALC product is limited to 0.6 to 1.0 is that, within this range, good results have been obtained in the number of crack occurrences and the surface layer peeling phenomenon, and the bulk specific gravity of the ALC product is less than 0.6.
The surface layer peeling phenomenon of ALC products becomes remarkable, and the frequency of cracks decreases as the bulk specific gravity decreases, and conversely, when the bulk specific gravity exceeds 1.0, ALC products become heavier, which is the light weight originally required as a material for constructing structures. In that respect, it is because the requirement will not be met. The bulk specific gravity is adjusted with the amount of aluminum powder, and the amount of aluminum powder is increased to reduce the bulk specific gravity. Further, in the present invention, the reason for limiting the content of dimethylpolysiloxane contained in the ALC product to 0.1 to 1.0% by weight is
A when the content of dimethylpolysiloxane is less than 0.1% by weight
This is because the occurrence of cracks on the surface of LC products is remarkable, and conversely, when the content of dimethylpolysiloxane exceeds 1.0% by weight, the effect of suppressing the surface layer peeling phenomenon becomes weak. The presence of dimethylpolysiloxane is effective in suppressing the occurrence of cracks, but its amount has little effect. And for the surface layer peeling phenomenon, the amount of dimethylpolysiloxane is 0.34 to 0.
Best in the range of 38% by weight. The effect of the present invention is due to the synergistic effect of the bulk specific gravity of the ALC product and the content of dimethylpolysiloxane defined in the present invention.

【実施例】【Example】

(実施例1) 10重量部の粉末状生石灰と、37重量部のポルトランドセ
メントと、53重量部の珪石粉とを混合してALC原料粉と
した後、前記ALC原料粉100重量部に対して、67重量部の
水と、0.4重量部のシリコンオイルとを添加して作成し
たスラリーに0.04重量部のアルミニウム粉末を加えて発
泡成型した後、オートクレーブにて、ゲージ圧10Kg/c
m2、処理温度約180℃の水蒸気養生を施して得られた、
嵩比重0.63のALC製品について、耐凍害性を評価する為
の試験を行った結果、一面凍結持続試験によるALC製品
表面の亀裂発生日数は171日であると共に、ALC製品の表
層剥落現象を検出する気中凍結水中融解試験では、体積
減少率が16.4%を示すに過ぎなかった。 尚、この製品を分析した結果、製品に含有されているジ
メチルポリシロキサンは0.36重量%であることが認めら
れた。 (比較例1−1) 実施例1と同様に作製されたが、ジメチルポリシロキサ
ンを全く含有せず、アルミニウム粉末の量を多くして嵩
比重0.50の市販標準品について、試験結果が示した表面
の亀裂発生日数は45日で、体積減少率は22.6%であっ
た。 (比較例1−2) 実施例1と同様に作製されたが、ジメチルポリシロキサ
ンを0.36重量%含有し、アルミニウム粉末の量を多くし
て嵩比重を0.48に調整された撥水処理ALC製品が示した
試験結果は、表面の亀裂発生日数は、168日と実施例1
ほぼ同等の値を示しながら、当該撥水処理ALC製品は体
積減少が大きくなり、表層剥離現象が激しく、亀裂の発
生により僅かに25回のサイクル試験で破壊してしまっ
た。 上記の如く、実施例1の製品について耐凍害性を評価す
る為に行った試験の結果は、比較例1−1および比較例
1−2と比較すれば、本発明の耐凍害性は大幅に向上さ
れていることがわかる。 (実施例2) 10重量部の粉末状生石灰と、37重量部のポルトランドセ
メントと、53重量部の珪石粉とを混合してALC原料粉と
した後、前記ALC原料粉100重量部に対して、67重量部の
水と、0.4重量部のシリコンオイルとを添加して作成し
たスラリーに0.03重量部のアルミニウム粉末を加えて発
泡成型した後、オートクレーブにて、ゲージ圧10Kg/c
m2、処理温度約180℃の水蒸気養生を施して得られた、
嵩比重0.71のALC製品について、耐凍害性を評価する為
の試験を行った結果、一面凍結持続試験によるALC製品
表面の亀裂発生日数は177日であると共に、ALC製品の表
層剥落現象を検出する気中凍結水中融解試験では、体積
減少率が14.2%を示すに過ぎなかった。 尚、この製品を分析した結果、製品に含有されているジ
メチルポリシロキサンは0.34重量%であることが認めら
れた。 (実施例3) 10重量部の粉末状生石灰と、37重量部のポルトランドセ
メントと、53重量部の珪石粉とを混合してALC原料粉と
した後、前記ALC原料粉100重量部に対して、67重量部の
水と、0.4重量部のシリコンオイルとを添加して作成し
たスラリーに0.02重量部のアルミニウム粉末を加えて発
泡成型した後、オートクレーブにて、ゲージ圧10Kg/c
m2、処理温度約180℃の水蒸気養生を施して得られた、
嵩比重0.84のALC製品について、耐凍害性を評価する為
の試験を行った結果、一面凍結持続試験によるALC製品
表面の亀裂発生日数は185日であると共に、ALC製品の表
層剥落現象を検出する気中凍結水中融解試験では、体積
減少率が11.4%を示すに過ぎなかった。 尚、この製品を分析した結果、製品に含有されているジ
メチルポリシロキサンは0.38重量%であることが認めら
れた。 (比較例3−1) 実施例3と同様に作製されたが、ジメチルポリシロキサ
ンを全く含有せず、アルミニウム粉末の量を多くして嵩
比重0.50の市販標準品についての試験結果は、表面の亀
裂発生日数が70日で、体積減少率が12.2%であった。 (比較例3−2) 実施例3と同様に作製されたが、ALC原料粉100重量部に
対して、1.3重量部のシリコンオイルを添加し、ジメチ
ルポリシロキサンを1.20重量%含有し、アルミニウム粉
末の量を多くして嵩比重を0.48に調整された撥水処理AL
C製品が示した試験結果は、表面の亀裂発生日数は192日
と実施例3にほぼ同等の値を示しながら、体積減少率は
35.0%と実施例3より大きくなった。 上記の如く、実施例3の製品について耐凍害性を評価す
る為に行った試験の結果は、比較例3−1および比較例
3−2と比較すれば、本発明の耐凍害性は大幅に向上さ
れていることがわかる。 (実施例4) 10重量部の粉末状生石灰と、37重量部のポルトランドセ
メントと、53重量部の珪石粉とを混合してALC原料粉と
した後、前記ALC原料粉100重量部に対して、67重量部の
水と、0.11重量部のシリコンオイルとを添加して作成し
たスラリーに0.04重量部のアルミニウム粉末を加えて発
泡成型した後、オートクレーブにて、ゲージ圧10Kg/c
m2、処理温度約180℃の水蒸気養生を施して得られた、
嵩比重0.63のALC製品について、耐凍害性を評価する為
の試験を行った結果、一面凍結持続試験によるALC製品
表面の亀裂発生日数は130日であると共に、ALC製品の表
層剥落現象を検出する気中凍結水中融解試験では、体積
減少率が18.3%を示すに過ぎなかった。 尚、この製品を分析した結果、製品に含有されているジ
メチルポリシロキサンは0.10重量%であることが認めら
れた。 (実施例5) 10重量部の粉末状生石灰と、37重量部のポルトランドセ
メントと、53重量部の珪石粉とを混合してALC原料粉と
した後、前記ALC原料粉100重量部に対して、67重量部の
水と、1.1重量部のシリコンオイルとを添加して作成し
たスラリーに0.04重量部のアルミニウム粉末を加えて発
泡成型した後、オートクレーブにて、ゲージ圧10Kg/c
m2、処理温度約180℃の水蒸気養生を施して得られた、
嵩比重0.63のALC製品について、耐凍害性を評価する為
の試験を行った結果、一面凍結持続試験によるALC製品
表面の亀裂発生日数は180日であると共に、ALC製品の表
層剥落現象を検出する気中凍結水中融解試験では、体積
減少率が18.8%を示すに過ぎなかった。 尚、この製品を分析した結果、製品に含有されているジ
メチルポリシロキサンは0.99重量%であることが認めら
れた。 尚、本発明品について実施した一面凍結持続試験とは、
ALC製品より直径100mm長さ100mmのALC供試体を切り出
し、ALC供試体の下部空間に水槽を設置し、ALCの上下面
に温度差を与える為にALCの上面を−20℃に保ち、水槽
内の水温を+20℃に保持しながら、水分は水槽に垂らし
た晒を通してALC供試体の下方1cmの水面から供給してAL
C製品の凍結状態を持続し、ALC供試体の表面に亀裂が発
生して来る状況を歪みゲージを用いて測定し、ALC供試
体の表面に亀裂が発生した供試日数を検出することによ
りALC製品の耐凍害性の良否を判断する試験方法であ
る。 又、本発明品についいて実施した気中凍結水中融解試験
とは、ASTM C-666 B法に準じて行われたもので、ALC製
品より100×100×200mmのブロックを切り出してALC供試
体とし、ALC供試体の含水状態を一定とする為に、ALC供
試体を48時間水中に浸漬する吸水処理を行った後、−1
7.8℃に於ける凍結処理を4時間、+4.4℃における融解
処理を7時間とする合計11時間を1サイクルとする150
サイクルの繰り返し試験を行い、試験前後のALC供試体
の体積を計測して求めたALC製品の体積減少率にてALC製
品の耐凍害性の良否を判断する方法である。 この場合、体積減少率は次式より計算し、JIS Z 8401に
よって小数点以下一桁を求めて整数で表してある。 式中; Wsn:nサイクルの試験後の質量(g) Wwn:nサイクルの試験後の水中における見掛けの質量
(g) Wso:試験前の質量(g) Wwo:試験前の水中における見掛けの質量(g)
(Example 1) 10 parts by weight of powdered quick lime, 37 parts by weight of Portland cement and 53 parts by weight of silica stone powder were mixed into an ALC raw material powder, and then, relative to 100 parts by weight of the ALC raw material powder. , 67 parts by weight of water and 0.4 parts by weight of silicon oil were added to 0.04 parts by weight of aluminum powder to form a slurry, which was foam-molded, and then autoclaved at a gauge pressure of 10 kg / c.
m 2, and obtained by subjecting a steam curing process temperature of about 180 ° C.,
As a result of performing a test to evaluate frost damage resistance of an ALC product having a bulk specific gravity of 0.63, the number of days of cracking on the surface of the ALC product by the one-side freezing continuation test is 171 days, and the surface layer peeling phenomenon of the ALC product is detected. In the freeze-thaw test in air, the volume reduction rate was only 16.4%. As a result of analysis of this product, it was found that the content of dimethylpolysiloxane in the product was 0.36% by weight. (Comparative Example 1-1) The surface shown by the test results for a commercial standard product prepared in the same manner as in Example 1 but containing no dimethylpolysiloxane and a large amount of aluminum powder and a bulk specific gravity of 0.50. The number of days that cracks occurred was 45 days, and the volume reduction rate was 22.6%. (Comparative Example 1-2) A water-repellent treated ALC product prepared in the same manner as in Example 1 but containing dimethylpolysiloxane in an amount of 0.36% by weight and having a bulk specific gravity adjusted to 0.48 by increasing the amount of aluminum powder. The test results shown show that the number of days of surface cracking was 168 days and that of Example 1
While exhibiting almost the same value, the water-repellent treated ALC product had a large volume reduction, the surface layer peeling phenomenon was severe, and it was destroyed in only 25 cycles by the occurrence of cracks. As described above, the result of the test conducted to evaluate the frost damage resistance of the product of Example 1 shows that the frost damage resistance of the present invention is significantly larger than that of Comparative Example 1-1 and Comparative Example 1-2. You can see that it has been improved. (Example 2) 10 parts by weight of powdered quick lime, 37 parts by weight of Portland cement, and 53 parts by weight of silica stone powder were mixed into ALC raw material powder, and then, relative to 100 parts by weight of the ALC raw material powder. , 67 parts by weight of water and 0.4 parts by weight of silicone oil were added to 0.03 parts by weight of aluminum powder to form a slurry, which was then foam-molded and then autoclaved at a gauge pressure of 10 kg / c.
m 2, and obtained by subjecting a steam curing process temperature of about 180 ° C.,
As a result of a test to evaluate frost damage resistance of an ALC product with a bulk specific gravity of 0.71, the number of days of cracking on the surface of the ALC product due to the one-sided freezing continuation test was 177 days, and the surface layer peeling phenomenon of the ALC product was detected. In the freeze-thaw test in air, the volume reduction rate was only 14.2%. As a result of analysis of this product, it was confirmed that the content of dimethylpolysiloxane in the product was 0.34% by weight. (Example 3) 10 parts by weight of powdered quick lime, 37 parts by weight of Portland cement, and 53 parts by weight of silica stone powder were mixed to prepare an ALC raw material powder, and then to 100 parts by weight of the ALC raw material powder. , 67 parts by weight of water and 0.4 parts by weight of silicone oil were added to 0.02 parts by weight of aluminum powder to form a slurry, which was then foam-molded and then autoclaved at a gauge pressure of 10 kg / c.
m 2, and obtained by subjecting a steam curing process temperature of about 180 ° C.,
As a result of a test for evaluating frost damage resistance of an ALC product with a bulk specific gravity of 0.84, the number of days of cracking on the surface of the ALC product by the one-sided freezing continuation test was 185 days, and the surface layer peeling phenomenon of the ALC product was detected. In the freeze-thaw test in air, the volume reduction rate was only 11.4%. As a result of analysis of this product, it was found that the content of dimethylpolysiloxane in the product was 0.38% by weight. (Comparative Example 3-1) The test result of a commercially available standard product prepared in the same manner as in Example 3 except that dimethylpolysiloxane was not contained at all and the amount of aluminum powder was increased and the bulk specific gravity was 0.50 was obtained. The number of days of cracking was 70 days and the volume reduction rate was 12.2%. (Comparative Example 3-2) Although prepared in the same manner as in Example 3, 1.3 parts by weight of silicon oil was added to 100 parts by weight of ALC raw material powder, and 1.20% by weight of dimethylpolysiloxane was contained. The water-repellent treated AL whose bulk density is adjusted to 0.48 by increasing the amount of
The test result of the C product shows that the number of days of cracking on the surface is 192 days, which is almost the same value as in Example 3, but the volume reduction rate is
It was 35.0%, which was larger than that in Example 3. As described above, the result of the test conducted to evaluate the frost damage resistance of the product of Example 3 shows that the frost damage resistance of the present invention is significantly larger than that of Comparative Example 3-1 and Comparative Example 3-2. You can see that it has been improved. (Example 4) 10 parts by weight of powdered quick lime, 37 parts by weight of Portland cement, and 53 parts by weight of silica stone powder were mixed into ALC raw material powder, and then, relative to 100 parts by weight of the ALC raw material powder. , 67 parts by weight of water and 0.11 parts by weight of silicone oil were added to 0.04 parts by weight of aluminum powder to form a slurry, which was foam-molded and then autoclaved at a gauge pressure of 10 kg / c.
m 2, and obtained by subjecting a steam curing process temperature of about 180 ° C.,
As a result of performing a test for evaluating frost damage resistance of an ALC product having a bulk specific gravity of 0.63, the number of days of cracking on the surface of the ALC product by the one-side freezing continuation test is 130 days, and the surface layer peeling phenomenon of the ALC product is detected. In the freeze-thaw test in air, the volume reduction rate was only 18.3%. As a result of analysis of this product, it was found that the content of dimethylpolysiloxane in the product was 0.10% by weight. (Example 5) After mixing 10 parts by weight of powdered quick lime, 37 parts by weight of Portland cement and 53 parts by weight of silica stone powder into an ALC raw material powder, 100 parts by weight of the ALC raw material powder , 67 parts by weight of water and 1.1 parts by weight of silicone oil were added to 0.04 parts by weight of aluminum powder to form a slurry, which was then foam-molded and then autoclaved at a gauge pressure of 10 Kg / c.
m 2, and obtained by subjecting a steam curing process temperature of about 180 ° C.,
As a result of performing a test for evaluating freeze resistance against ALC products with a bulk specific gravity of 0.63, the number of days of cracking on the surface of ALC products due to the one-sided freeze duration test was 180 days, and the surface layer peeling phenomenon of ALC products was detected. In the freeze-thaw test in air, the volume reduction rate was only 18.8%. As a result of analysis of this product, it was found that the dimethylpolysiloxane contained in the product was 0.99% by weight. In addition, the one-sided freeze duration test conducted on the product of the present invention,
Cut out an ALC specimen with a diameter of 100 mm and a length of 100 mm from the ALC product, install a water tank in the lower space of the ALC specimen, and keep the upper surface of the ALC at −20 ° C. to give a temperature difference to the upper and lower surfaces of the ALC While maintaining the water temperature of + 20 ° C, water is supplied from the water surface 1 cm below the ALC specimen through the bleaching in the water tank.
C The condition that the frozen state of the product is maintained and the cracks are generated on the surface of the ALC specimen is measured using a strain gauge, and the number of test days when the crack is generated on the surface of the ALC specimen is detected. It is a test method to judge the frost damage resistance of the product. Further, the air-freezing and thawing test carried out on the product of the present invention was carried out in accordance with the ASTM C-666 B method, and a 100 × 100 × 200 mm block was cut out from an ALC product to obtain an ALC specimen. In order to keep the water content of the ALC specimen constant, after the water absorption treatment of immersing the ALC specimen in water for 48 hours, -1
Freezing at 7.8 ° C for 4 hours, thawing at + 4.4 ° C for 7 hours, totaling 11 hours 150 cycles
This is a method to judge the frost damage resistance of ALC products by the volume reduction rate of ALC products obtained by measuring the volume of ALC specimens before and after the cycle repetition test. In this case, the volume reduction rate is calculated by the following formula, and one digit after the decimal point is calculated by JIS Z 8401 and expressed as an integer. In the formula: Wsn: mass after test of n cycles (g) Wwn: apparent mass in water after test of n cycles (g) Wso: mass before test (g) Wwo: apparent mass in water before test (G)

【発明の効果】 以上に記述した如く、本発明による高比重撥水性のALC
製品は、一面凍結持続試験並びに、気中凍結水中融解試
験の何れによる場合にも良好な結果を示し、ALCの凍害
現象として存在する表層剥落現象と表面亀裂発生現象
の、何れの凍害現象に対しても極めて良好な耐凍害性を
示すALCの供給を可能にしたもので、産業界に寄与する
ところ大なるものがある。
As described above, the high specific gravity water repellent ALC according to the present invention
The product shows good results both in the one-sided freeze duration test and in the air-freeze-and-water thaw test, and against any of the freezing damage phenomena of surface layer exfoliation phenomenon and surface cracking phenomenon that exist as the freezing damage phenomenon of ALC. Even so, it has made it possible to supply ALC, which exhibits extremely good frost damage resistance, and has great contributions to the industrial world.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−42272(JP,A) 特開 昭56−134549(JP,A) 特開 昭57−22162(JP,A) 特開 昭60−127276(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-55-42272 (JP, A) JP-A-56-134549 (JP, A) JP-A-57-22162 (JP, A) JP-A-60- 127276 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】珪酸質原料と石灰質原料とを主原料とし、
アルミニウム粉末を加えて発泡成形された後、高温高圧
下にて水蒸気養生処理された軽量気泡コンクリートにお
いてジメチルポリシロキサンが0.1〜1.0重量%含有され
ていて、かつ嵩比重が0.6〜1.0であることを特徴とする
耐凍害性に優れた軽量気泡コンクリート。
1. A siliceous raw material and a calcareous raw material as main raw materials,
After foaming by adding aluminum powder, the lightweight cellular concrete steam-cured at high temperature and high pressure contains dimethylpolysiloxane in an amount of 0.1 to 1.0% by weight and a bulk specific gravity of 0.6 to 1.0. Lightweight cellular concrete with excellent frost resistance.
【請求項2】ジメチルポリシロキサンが0.34〜0.38重量
%含有されていることを特徴とする請求項1に記載され
た耐凍害性に優れた軽量気泡コンクリート。
2. The lightweight cellular concrete excellent in frost damage resistance according to claim 1, wherein dimethylpolysiloxane is contained in an amount of 0.34 to 0.38% by weight.
JP1187570A 1989-07-21 1989-07-21 Lightweight cellular concrete with excellent frost resistance Expired - Lifetime JPH0672063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187570A JPH0672063B2 (en) 1989-07-21 1989-07-21 Lightweight cellular concrete with excellent frost resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187570A JPH0672063B2 (en) 1989-07-21 1989-07-21 Lightweight cellular concrete with excellent frost resistance

Publications (2)

Publication Number Publication Date
JPH0354175A JPH0354175A (en) 1991-03-08
JPH0672063B2 true JPH0672063B2 (en) 1994-09-14

Family

ID=16208410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187570A Expired - Lifetime JPH0672063B2 (en) 1989-07-21 1989-07-21 Lightweight cellular concrete with excellent frost resistance

Country Status (1)

Country Link
JP (1) JPH0672063B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105330200A (en) * 2015-11-30 2016-02-17 无锡大塘复合材料有限公司 Crack-resistant high-toughness non-stick paint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6006699A (en) * 1998-12-14 2000-07-03 Sumitomo Metal Mining Company Limited Light-weight cellular concrete with excellent carbonatization resistance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542272A (en) * 1978-09-21 1980-03-25 Sumitomo Metal Mining Co Manufacture of waterproofing vaporrcuring light weight foamed concrete
SE419747C (en) * 1979-02-15 1984-06-19 Siporex Int Ab SET FOR MANUFACTURING OF HANDLED GAS CONCRETE WITH WATER REFUSING PROPERTIES
JPS56134549A (en) * 1980-03-21 1981-10-21 Sumitomo Metal Mining Co Manufacture of waterproofing vapor-cured lightweght foamed concrete
JPS5849507B2 (en) * 1980-07-14 1983-11-04 東邦化学工業株式会社 Manufacturing method of autoclaved water-repellent lightweight cellular concrete
JPS5855359A (en) * 1981-09-22 1983-04-01 旭化成株式会社 Manufacture of water-repellent lightweight foamed concrete
JPS59232954A (en) * 1983-06-13 1984-12-27 東レ・ダウコーニング・シリコーン株式会社 Manufacture of water-repellent formed hardened body
JPS60127276A (en) * 1983-12-14 1985-07-06 旭化成株式会社 Manufacture of frost resistant alc
JPS6348832A (en) * 1986-08-19 1988-03-01 Tokyo Electron Ltd Cleaning for chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105330200A (en) * 2015-11-30 2016-02-17 无锡大塘复合材料有限公司 Crack-resistant high-toughness non-stick paint

Also Published As

Publication number Publication date
JPH0354175A (en) 1991-03-08

Similar Documents

Publication Publication Date Title
Nadeem et al. The performance of fly ash and metakaolin concrete at elevated temperatures
Zhang et al. Drying shrinkage and microstructure characteristics of mortar incorporating ground granulated blast furnace slag and shrinkage reducing admixture
Karakurt et al. Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete
Browning et al. Lightweight aggregate as internal curing agent to limit concrete shrinkage
JP2019524633A (en) Low temperature melting concrete
Salemi et al. Effect of nanoparticles on frost durability of concrete
Skripkiūnas et al. The cement type effect on freeze–thaw and deicing salt resistance of concrete
Aygörmez Evaluation of the red mud and quartz sand on reinforced metazeolite-based geopolymer composites
CN108341619B (en) Internal and external water migration inhibitor for concrete
KR101940645B1 (en) Crack-Reducing Type Fast Curing Concrete Composition, And Method For Repairing And Rehabilitating Road Pavement Using The Composition
Nadeem et al. Qualitative and quantitative analysis and identification of flaws in the microstructure of fly ash and metakaolin blended high performance concrete after exposure to elevated temperatures
Mao et al. Study of durability of concrete with fly ash as fine aggregate under alternative interactions of freeze-thaw and carbonation
Cyr et al. The frost resistance of alkali-activated cement-based binders
WO2015108990A1 (en) Addition of colloidal silica to concrete
Çullu et al. The effects of chemical attacks on physical and mechanical properties of concrete produced under cold weather conditions
Özodabaş et al. Improvement of the performance of alkali activated blast furnace slag mortars with very finely ground pumice
KR19980065526A (en) Composition of multifunctional high performance mortar
Aggelakopoulou et al. Evaluation of mortar mix designs for the conservation of the Acropolis monuments
Reinhardt et al. Self-consolidating concrete in fire
EP1176124A1 (en) Inorganic cohesion agent for self-compacting cement pastes
Stratoura et al. Chloride penetration in lightweight aggregate mortars incorporating supplementary cementing materials
JPH0672063B2 (en) Lightweight cellular concrete with excellent frost resistance
Karahan et al. Ground granulated pumice-based cement mortars exposed to abrasion and fire
Canpolat et al. Effect of curing conditions on strength and durability of high-performance concrete
Rashad A synopsis about the effect of metakaolin on the durability of Portland cement-An overview